• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lower Bounds on the(Laplacian)Spectral Radius of Weighted Graphs?

    2014-06-05 03:09:40AimeiYUMeiLU

    Aimei YU Mei LU

    1 Introduction

    In this paper,we consider a simple connected weighted graph in which the edge weights are positive numbers.LetG=(V,E)be a simple connected weighted graph with a vertex setV={v1,v2,···,vn}.We denote bythe weight of the edgeand assume=For short,we writei~jif the verticesviandvjare adjacent.Forvi∈V,let=w(vi)=wij.IfGis a weighted graph with=wjfor any∈V,thenGis called a regular weighted graph.IfG=(X∪Y,E)is a weighted bipartite graph withwi=wjfor anyvi,vj∈Xandfor any,∈Y,thenGis called a semiregular weighted bipartite graph.

    Forvi∈V,letγi=γ(vi)=IfGis a weighted graph withfor any∈V,thenGis called a pseudo-regular weighted graph.IfG=(X∪Y,E)is a weighted bipartite graph withfor anyvi,vj∈Xandfor anyvk,vl∈Y,thenGis called a pseudo-semiregular weighted bipartite graph.Obviously,any regular weighted graph is a pseudo-regular weighted graph and any semiregular weighted bipartite graph is a pseudo-semiregular weighted bipartite graph.

    The adjacency matrixA(G)of a weighted graphGis defined asA(G)=where

    LetW(G)=diag(w1,w2,···,wn).Then the Laplacian matrixL(G)of a weighted graphGisL(G)=W(G)?A(G).The signless Laplacian matrixQ(G)of a weighted graphGisQ(G)=W(G)+A(G).Clearly,A(G),L(G)andQ(G)are real symmetric matrices.Hence their eigenvalues are real numbers.We denote by(M)the largest eigenvalue of a real symmetric matrixM.For a weighted graphG,we denote by(G),(G)and(G)the largest eigenvalues ofA(G),L(G)andQ(G),respectively,and call them the spectral radius,the Laplacian spectral radius and the signless Laplacian spectral radius ofG,respectively.WhenGis connected,A(G)andQ(G)are irreducible matices and so by Perron-Frobenius Theorem,(G)and(G)are simple with the positive eigenvectors.

    If=1 for all edgesthenGis an unweighted graph.For an unweighted graph,wi=w()=is the degree of∈V(G),andis the 2-degree ofThere exists a vast literature that studies the bounds of the spectral radius,the Laplacian spectral radius and the signless spectral radius.We refer the reader to[1,7–8,10–13,15–16,21]for more information.

    For weighted graphs,Yang,Hu and Hong[19]gave the upper and lower bounds of the spectral radius of the weighted trees;Das and Bapat[6]and Sorgun and Bykkse[17]gave some upper bounds of the spectral radius;Rojo[14]and Das[4–5]gave some upper bounds of the Laplacian spectral radius.

    The remainder of this paper is organized as follows.In Section 2,we give some useful lemmas.In Section 3,we present some lower bounds of the spectral radius of weighted graphs.In Section 4,we give some lower bounds of the signless Laplacian spectral radius of weighted graphs,from which we can get some lower bounds of the Laplacian spectral radius of weighted graphs.From these bounds,we can deduce some known lower bounds on the spectral radius and the Laplacian spectral radius of unweighted graphs.

    2 Some Lemmas

    The following are some useful lemmas.

    Lemma 2.1(see[10])Let A be a nonnegative symmetric matrix and x be a unit vector of.If(A)=Ax,then Ax=(A)x.

    Lemma 2.2(see[18])Let G be a simple connected weighted bipartite graph.Then(G)=(G).

    ProofLetG=(X∪Y,E)be a connected weighted bipartite graph withnvertices and suppose thatX=Y=LetU=()be then×ndiagonal matrix with=1 if 1≤i≤kand=?1 ifk+1≤i≤n.It is easy to see thatL(G)U=Q(G),which implies thatL(G)andQ(G)have the same spectrum.Henceμ1(G)=q1(G).

    Lemma 2.3(see[2])Let M=()be an n×n irreducible nonnegative matrix with the spectral radius ρ(M),and(M)be the i-th row sum of M for1≤i≤n.Then

    Moreover,either equality holds if and only if the row sums of M are all equal.

    By Lemma 2.3,the following result holds immediately.

    Lemma 2.4Let G be a simple connected weighted graph.Then

    Moreover,either equality holds if and only if G is a regular weighted graph.

    Lemma 2.5(see[5])Let G be a simple connected weighted graph.Then

    where the equality holds if and only if G is a regular weighted bipartite graph or a semiregular weighted bipartite graph.

    3 Lower Bounds of the Spectral Radius

    The following theorem is one of our main results.

    Theorem 3.1Let G be a simple connected weighted graph of order n.Then

    where the equality holds if and only if G is a pseudo-regular weighted graph or a pseudosemiregular weighted bipartite graph.

    ProofLetA(G)be the adjacency matrix ofGandX=be the unit positive eigenvector ofA(G)corresponding toλ1(A(G)).For short,we writeA(G)asAin the following proof.Take

    Noting thatCis a unit positive vector,we have

    Since

    we have

    If the equality holds,then

    By Lemma 2.1,C=C.If the multiplicity ofis one,thenX=C,which implies=(G)(1≤i≤n).HenceGis a pseudo-regular weighted graph.Otherwise,the multiplicity of(A2)=((A))2is two,which implies that?λ1(A)is also an eigenvalue ofG.ThenGis a connected bipartite graph by a theorem of Frobenius(see,for example,[3,Theorem 0.3]).Without loss of generality,we assume

    whereB=is ann1×n2matrix withn1+n2=n.Let

    and

    whereX1=X2=andC2=Since

    we have

    and

    Noting thatBBTandBTBhave the same nonzero eigenvalues,λ1(A2)is the spectral radius ofBBTand its multiplicity is one.Sois a constant),which implies(1≤i<j≤n1).Similarly,is a constant),which implies(n1+1≤i<j≤n).HenceGis a pseudo-semiregular weighted graph.

    Conversely,ifGis a pseudo-regular weighted graph,then=p(1≤i≤n)is a constant,which impliesAC=pC.By Perron-Frobenius Theorem(see[2]),for any positive eigenvector of a nonnegative matrix,the corresponding eigenvalue is the spectral radius of that matrix.

    Henceλ1(G)=p=

    IfGis a pseudo-semiregular weighted bipartite graph,we assume

    (1≤i≤n1)and(n1+1≤i≤n),whereB=)is ann1×n2matrix withn1+n2=n.LetC1=andC2=So for eachi(1≤i≤n1),thei-th element ofBBTC1is

    Similarly,rj(BTBC2)=for eachj(1≤j≤n2).HenceA2C=p1p2C,whereC=(w1,w2,···,wn)T.It is known that for any positive eigenvector of a nonnegative matrix,the corresponding eigenvalue is the spectral radius of that matrix.So

    From the equality(?),we have

    It follows that

    This completes the proof of Theorem 3.1.

    Corollary 3.1(1)Let G be a pseudo-regular weighted graph with γ(v)=pw(v)for each v∈V(G).Then(G)=p.

    (2)Let G be a pseudo-semiregular weighted bipartite graph with the bipartition(X,Y).If γ(v)=pxw(v)for each v∈X and γ(v)=pyw(v)for each v∈Y,then λ1(G)=

    Since a regular weighted graph must be a pseudo-regular weighted graph and a semiregular weighted bipartite graph must be a pseudo-semiregular weighted bipartite graph,we have the following results immediately from Corollary 3.1.

    Corollary 3.2(1)Let G be a regular weighted graph with w(v)=a for each v∈V(G).Then λ1(G)=a.

    (2)Let G be a semiregular weighted bipartite graph with the bipartition(X,Y).If w(v)=a for each v∈X and w(v)=b for each v∈Y,then λ1(G)=

    Corollary 3.3Let G be a simple connected weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted graph or a semiregular weighted bipartite graph.

    ProofBy Theorem 3.1 and the Cauchy-Schwarz inequality,

    Since

    we have

    If the equality holds,Gis a pseudo-regular weighted graph or a pseudo-semiregular weighted bipartite graph(by Theorem 3.1)withγi=γjfor all 1≤i<j≤n.ThusGis a regular weighted graph or a semiregular weighted bipartite graph.Conversely,ifGis a regular weighted graph,the equality holds immediately.IfGis a semiregular weighted bipartite graph,weassume thatw(v1)=···=w(vn1)=aand=···=w()=b.Sincea=(n?)b,By Corollary 3.2,we have(G)=Thus the equality holds.

    Corollary 3.4Let G be a simple connected weighted graph of order n.Then

    ProofBy Corollary 3.3 and the Cauchy-Schwarz inequality,

    Remark 3.1IfGis a simple connected unweighted graph of ordernwith the degree sequenced1,d2,···,dn,the minimum degreeδ,andti=then the inequalities(3.1),(3.2)and(3.3)become

    respectively.The inequality(3.4)is one of the main results in[20],and the inequality(3.5)is one of the main results in[9].

    4 Lower Bounds of the(Signless)Laplacian Spectral Radius

    Theorem 4.1Let G be a simple connected weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted graph or a semiregular weighted bipartite graph.

    ProofLetW(G)+A(G)be the signless Laplacian matrix ofGandX=be the unit positive eigenvector ofW(G)+A(G)corresponding toq1(G).For short,we writeW(G)+A(G)asW+Ain the following proof.Take

    Then

    Since

    we have

    If the equality holds,then

    which implies that(W+A)2C=((W+A)2)C(by Lemma 2.1).SinceW+Ais a nonnegative irreducible positive semidefinite matrix,all eigenvalues ofW+Aare nonnegative.By Perron-Frobenius Theorem,the multiplicity of(W+A)is one.Since((W+A)2)=((W+A))2,we have the multiplicity ofλ1((W+A)2)is one.Hence,if the equality holds,thenX=C.Byλ1(W+A)C=(W+A)C,we haveλ1(W+A)wi=+γifori=1,2,···,n.Thus+=+for alli/j.Assume,without loss of generality,thatw1=a=max{wi:1≤i≤n},w2=b=min{wi:1≤i≤n}andab.Then we have

    Sinceγ1≥abandγ2≤ab,

    Thus we must haveγ1=ab=γ2.This impliesw(v)=aorw(v)=bfor allv∈V(G),sinceGis a connected weighted graph.HenceGis a regular weighted graph or a semiregular weighted bipartite graph.

    Conversely,ifGis a regular weighted graph withw(v)=afor eachv∈V,then

    By Lemma 2.4,q1(G)=2aand so the equality holds.

    IfGis a semiregular connected bipartite graph withw(v1)=···=w(vn1)=aand=···=w(vn)=b,noting thatn1a=(n?n1)b,we have

    By Lemmas 2.2 and 2.5,q1(G)=μ1(G)=a+band so the equality holds.

    Corollary 4.1Let G be a simple connected weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted graph.

    ProofBy Theorem 4.1 and the Cauchy-Schwarz inequality,we have

    If the equality holds,Gis a regular weighted graph or a semiregular bipartite weighted graph(by Theorem 4.1)withfor 1≤i<j≤n.IfGis a semiregular bipartite weighted graph,without loss of generality,we assume thatw1=a=max{wi:1≤i≤n}andw2=b=min{wi:1≤i≤n}.Then we have+ab,which impliesa=b.HenceGis a regular bipartite weighted graph.Conversely,ifGis a regular weighted graph,by Lemma 2.4,the equality holds immediately.

    Corollary 4.2Let G be a simple connected weighted graph.Then

    ProofBy Corollary 4.1 and the Cauchy-Schwarz inequality,

    Remark 4.1LetGbe a simple connected unweighted graph with the degree sequenced1,d2,···,dn,the minimum degreeδ,andti=Then the inequalities(4.1),(4.2)and(4.3)become

    respectively.

    By Lemma 2.2,for a simple connected weighted bipartite graphG,its Laplacian spectral radiusμ1(G)is equal to its signless Laplacian spectral radiusq1(G).So by Theorem 4.1 and Corollaries 4.1–4.2,the following results hold immediately.

    Theorem 4.2Let G be a simple connected bipartite weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted bipartite graph or a semiregular weighted bipartite graph.

    Corollary 4.3Let G be a simple connected bipartite weighted graph of order n.Then

    where the equality holds if and only if G is a regular weighted bipartite graph.

    Corollary 4.4Let G be a simple connected bipartite weighted graph.Then

    Remark 4.2LetGbe a simple connected unweighted graph with the degree sequenced1,d2,···,dn,the minimum degreeδ,andti=Then the inequalities(4.4),(4.5)and(4.6)become

    respectively.The inequality(4.7)is one of the main results in[20],and the inequality(4.8)is one of the main results in[10].

    [1]Anderson,W.N.and Morley,T.D.,Eigenvalues of the Laplacian of a graph,Linear and Multilinear Algebra,18,1985,141–145.

    [2]Bapat,R.B.and Raghavan,T.E.S.,Nonnegative Matrix and Applications,Cambridge University Press,Cambridge,1997.

    [3]CvetkoviD.,Doob,M.and Sachs,H.,Spectra of Graphs–Theory and Application,Academic Press,New York,1980.

    [4]Das,K.C.,Extremal graph characterization from the upper bound of the Laplacian spectral radius of weighted graphs,Linear Algebra and Its Applications,427,2007,55–69.

    [5]Das,K.C.and Bapat,R.B.,A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs,Linear Algebra and Its Applications,409,2005,153–165.

    [6]Das,K.C.and Bapat,R.B.,A sharp upper bound on the spectral radius of weighted graphs,Discrete Mathematics,308,2008,3180–3186.

    [7]Das,K.C.and Kumar,P.,Some new bounds on the spectral radius of graphs,Discrete Mathematics,281,2004,149–161.

    [8]Guo,J.M.,A new upper bounds for the Laplacian spectral radius of graphs,Linear Algebra and Its Applications,400,2005,61–66.

    [9]Hofmeister,M.,Spectral radius and degree sequence,Math.Nachr.,139,1988,37–44.

    [10]Hong,Y.and Zhang,X.D.,Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees,Discrete Mathematics,296,2005,187–197.

    [11]Li,J.S.and Zhang,X.D.,On the Laplacian eigenvalues of a graph,Linear Algebra and Its Applications,285,1998,305–307.

    [12]Liu,H.Q.,Lu,M.and Tian,F.,On the Laplacian spectral radius of a graph,Linear Algebra and Its Applications,376,2004,135–141.

    [13]Merris,R.,Laplacian matrices of graphs:A survey,Linear Algebra and Its Applications,197-198,1994,143–176.

    [14]Rojo,O.,A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs,Linear Algebra and Its Applications,420,2007,625–633.

    [15]Rojo,O.,Soto,R.and Rojo,H.,An always nontrivial upper bound for Laplacian graph eigenvalues,Linear Algebra and Its Applications,312,2000,155–159.

    [16]Shu,J.L.,Hong,Y.and Kai,W.R.,A sharp bound on the largest eigenvalue of the Laplacian matrix of a graph,Linear Algebra and Its Applications,347,2002,123–129.

    [17]Sorgun,S.and Bykkse,S.,The new upper bounds on the spectral radius of weighted graphs,Applied Mathematics and Computation,218,2012,5231–5238.

    [18]Tan,S.W.,On the Laplacian spectral radius of weighted trees with a positive weight set,Discrete Mathematics,310,2010,1026–1036.

    [19]Yang,H.Z.,Hu,G.Z.and Hong,Y.,Bounds of spectral radii of weighted trees,Tsinghua Science and Technology,8,2003,517–520.

    [20]Yu,A.M.,Lu,M.and Tian,F.,On the spectral radius of graphs,Linear Algebra and Its Applications,387,2004,41–49.

    [21]Zhang,X.D.,Two sharp upper bound for the Laplacian eigenvalues,Linear Algebra and Its Applications,376,2004,207–213.

    丝袜人妻中文字幕| 天堂√8在线中文| 欧美另类亚洲清纯唯美| 国产成人精品无人区| 他把我摸到了高潮在线观看| 91av网一区二区| 亚洲无线观看免费| 精品一区二区三区视频在线观看免费| 国产欧美日韩一区二区三| 欧美成人性av电影在线观看| 又爽又黄无遮挡网站| 美女被艹到高潮喷水动态| 亚洲熟女毛片儿| avwww免费| 性色av乱码一区二区三区2| 狂野欧美白嫩少妇大欣赏| 精品一区二区三区av网在线观看| 动漫黄色视频在线观看| 国产伦精品一区二区三区视频9 | 亚洲精品色激情综合| 国产成人精品久久二区二区91| 免费在线观看成人毛片| 脱女人内裤的视频| 老熟妇仑乱视频hdxx| 深夜精品福利| 亚洲国产色片| 看片在线看免费视频| 动漫黄色视频在线观看| 美女高潮喷水抽搐中文字幕| 国产精品久久视频播放| 亚洲国产精品久久男人天堂| 日韩精品中文字幕看吧| 少妇丰满av| 性色av乱码一区二区三区2| 日本黄色片子视频| 特级一级黄色大片| 免费看a级黄色片| 成人特级av手机在线观看| 麻豆成人午夜福利视频| 看片在线看免费视频| 午夜福利高清视频| 国产精品爽爽va在线观看网站| 国产真实乱freesex| 国产在线精品亚洲第一网站| 我的老师免费观看完整版| 欧美黄色片欧美黄色片| 午夜精品久久久久久毛片777| xxx96com| 国产精品综合久久久久久久免费| www.999成人在线观看| 91久久精品国产一区二区成人 | 国产精品1区2区在线观看.| 日本熟妇午夜| 国产av麻豆久久久久久久| 国产av麻豆久久久久久久| 日日摸夜夜添夜夜添小说| 国产精品乱码一区二三区的特点| 在线十欧美十亚洲十日本专区| 国产 一区 欧美 日韩| 少妇的丰满在线观看| 午夜激情福利司机影院| 国产精品美女特级片免费视频播放器 | 白带黄色成豆腐渣| 看黄色毛片网站| 人妻夜夜爽99麻豆av| 天堂动漫精品| 久久久久性生活片| 韩国av一区二区三区四区| 午夜福利在线在线| 最近视频中文字幕2019在线8| 无人区码免费观看不卡| 色综合婷婷激情| 日韩人妻高清精品专区| 免费看美女性在线毛片视频| 精品久久久久久成人av| 亚洲中文字幕日韩| 国产一区二区在线av高清观看| 国产真实乱freesex| 一级毛片女人18水好多| 日本免费一区二区三区高清不卡| 国产蜜桃级精品一区二区三区| 亚洲av日韩精品久久久久久密| 无遮挡黄片免费观看| 99re在线观看精品视频| 久久精品aⅴ一区二区三区四区| 热99在线观看视频| 亚洲av美国av| 亚洲九九香蕉| 国产精品久久视频播放| 免费在线观看成人毛片| 亚洲av片天天在线观看| 免费看a级黄色片| 日本免费a在线| 首页视频小说图片口味搜索| 欧美日韩精品网址| 波多野结衣高清作品| 99精品久久久久人妻精品| 日日摸夜夜添夜夜添小说| 久久欧美精品欧美久久欧美| 亚洲黑人精品在线| 亚洲av成人精品一区久久| 国产极品精品免费视频能看的| 欧美黑人欧美精品刺激| 亚洲欧美日韩高清专用| 在线观看舔阴道视频| 日韩欧美精品v在线| 51午夜福利影视在线观看| www.精华液| av天堂中文字幕网| 国产精品九九99| 久久这里只有精品19| 亚洲国产日韩欧美精品在线观看 | 99国产综合亚洲精品| 人妻久久中文字幕网| 成年版毛片免费区| 免费高清视频大片| 首页视频小说图片口味搜索| 亚洲中文字幕日韩| 国产黄a三级三级三级人| 狂野欧美白嫩少妇大欣赏| 一本综合久久免费| 久久中文看片网| 麻豆成人午夜福利视频| 成人高潮视频无遮挡免费网站| av欧美777| 高清毛片免费观看视频网站| 亚洲av成人一区二区三| 成人三级黄色视频| 好男人在线观看高清免费视频| 看黄色毛片网站| 国产成人系列免费观看| 好男人在线观看高清免费视频| 色综合婷婷激情| 丁香欧美五月| 免费观看的影片在线观看| 国产欧美日韩精品一区二区| 一区福利在线观看| 在线观看日韩欧美| 国语自产精品视频在线第100页| 久久久久久久久久黄片| 国产成人aa在线观看| 好看av亚洲va欧美ⅴa在| 日韩 欧美 亚洲 中文字幕| 亚洲五月天丁香| 男女那种视频在线观看| 日韩精品青青久久久久久| 免费观看人在逋| 午夜福利成人在线免费观看| 悠悠久久av| 99国产综合亚洲精品| 日韩欧美在线二视频| 亚洲成人免费电影在线观看| 欧美性猛交黑人性爽| 少妇的丰满在线观看| 精品不卡国产一区二区三区| 久久久国产精品麻豆| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 老汉色av国产亚洲站长工具| 精品无人区乱码1区二区| 婷婷亚洲欧美| 久久久久久大精品| 高清在线国产一区| 亚洲自拍偷在线| 色精品久久人妻99蜜桃| 亚洲av片天天在线观看| 欧美黄色片欧美黄色片| 成人三级做爰电影| 身体一侧抽搐| 99国产精品一区二区蜜桃av| 精品久久久久久久人妻蜜臀av| 在线视频色国产色| 精品一区二区三区视频在线 | 亚洲自拍偷在线| 欧美成人一区二区免费高清观看 | 18禁美女被吸乳视频| 色尼玛亚洲综合影院| 两个人的视频大全免费| 香蕉丝袜av| 制服人妻中文乱码| 婷婷精品国产亚洲av在线| 黄色视频,在线免费观看| 国产成人aa在线观看| svipshipincom国产片| 一个人看视频在线观看www免费 | 国产三级中文精品| 久久天堂一区二区三区四区| 99国产精品一区二区蜜桃av| 99久久精品国产亚洲精品| 久久久久久久久免费视频了| 少妇的逼水好多| 黄色 视频免费看| 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 亚洲电影在线观看av| 久久中文字幕人妻熟女| 国产成人av激情在线播放| 久久久久亚洲av毛片大全| 国产久久久一区二区三区| 欧美日韩国产亚洲二区| 一二三四社区在线视频社区8| 国产视频内射| 午夜福利在线观看免费完整高清在 | 欧美中文综合在线视频| 99国产精品一区二区三区| 日本与韩国留学比较| 老汉色av国产亚洲站长工具| 十八禁人妻一区二区| 最近最新中文字幕大全电影3| 欧美一级a爱片免费观看看| 国语自产精品视频在线第100页| 国产av在哪里看| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美在线一区二区| 禁无遮挡网站| 国产成人aa在线观看| 熟女少妇亚洲综合色aaa.| 亚洲专区字幕在线| 99热只有精品国产| 99在线视频只有这里精品首页| 国产aⅴ精品一区二区三区波| 色哟哟哟哟哟哟| 午夜免费观看网址| 国内精品久久久久久久电影| 成人特级黄色片久久久久久久| 成年女人永久免费观看视频| 精品久久久久久久久久久久久| 精品电影一区二区在线| 欧美在线一区亚洲| 亚洲一区二区三区不卡视频| 国产精品免费一区二区三区在线| 特大巨黑吊av在线直播| 亚洲av成人不卡在线观看播放网| 俺也久久电影网| 亚洲专区字幕在线| 成人特级av手机在线观看| 伦理电影免费视频| 美女免费视频网站| 两人在一起打扑克的视频| 亚洲专区国产一区二区| 亚洲av熟女| 国产激情欧美一区二区| 亚洲av美国av| 国产高清videossex| 男人舔奶头视频| a在线观看视频网站| 特级一级黄色大片| 中文字幕熟女人妻在线| 成人欧美大片| 久久婷婷人人爽人人干人人爱| 99久久精品国产亚洲精品| 国产午夜福利久久久久久| 国产黄色小视频在线观看| 淫妇啪啪啪对白视频| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 白带黄色成豆腐渣| 亚洲av第一区精品v没综合| 日韩大尺度精品在线看网址| 久久99热这里只有精品18| 夜夜夜夜夜久久久久| 亚洲电影在线观看av| 成人午夜高清在线视频| 国产亚洲精品av在线| 美女黄网站色视频| 成人18禁在线播放| 国产av在哪里看| 精品欧美国产一区二区三| 亚洲国产精品合色在线| 嫩草影院精品99| 久久久久久久久免费视频了| 午夜免费观看网址| 丰满人妻熟妇乱又伦精品不卡| 无遮挡黄片免费观看| 久99久视频精品免费| 国产视频一区二区在线看| 免费大片18禁| 91九色精品人成在线观看| 亚洲18禁久久av| 欧洲精品卡2卡3卡4卡5卡区| 国产又色又爽无遮挡免费看| 99久久精品国产亚洲精品| 黄色 视频免费看| 国模一区二区三区四区视频 | 日韩高清综合在线| 手机成人av网站| 叶爱在线成人免费视频播放| 波多野结衣巨乳人妻| 日本精品一区二区三区蜜桃| 国产久久久一区二区三区| 日韩成人在线观看一区二区三区| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看 | 精品一区二区三区av网在线观看| 国产精品免费一区二区三区在线| av黄色大香蕉| 亚洲成人中文字幕在线播放| 欧美乱妇无乱码| 午夜精品一区二区三区免费看| 国内精品美女久久久久久| 国产一区二区在线av高清观看| 女警被强在线播放| 特级一级黄色大片| 国产私拍福利视频在线观看| a级毛片在线看网站| bbb黄色大片| 免费看光身美女| 久久精品夜夜夜夜夜久久蜜豆| 这个男人来自地球电影免费观看| 中文字幕av在线有码专区| 亚洲成人中文字幕在线播放| 99riav亚洲国产免费| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 神马国产精品三级电影在线观看| 欧美性猛交黑人性爽| 狂野欧美白嫩少妇大欣赏| 亚洲国产欧美网| 午夜两性在线视频| 最近最新中文字幕大全电影3| 婷婷亚洲欧美| 18禁观看日本| 成年女人永久免费观看视频| 最新在线观看一区二区三区| 在线十欧美十亚洲十日本专区| 亚洲真实伦在线观看| 国产伦人伦偷精品视频| 日韩欧美国产在线观看| 动漫黄色视频在线观看| 一进一出好大好爽视频| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产99精品国产亚洲性色| 国产亚洲精品av在线| 亚洲欧美日韩无卡精品| 在线观看午夜福利视频| 男女那种视频在线观看| 三级男女做爰猛烈吃奶摸视频| 午夜福利成人在线免费观看| 一本精品99久久精品77| av天堂中文字幕网| 亚洲精品色激情综合| 精品久久久久久久久久久久久| 亚洲成人免费电影在线观看| АⅤ资源中文在线天堂| 成人性生交大片免费视频hd| 中文字幕av在线有码专区| 午夜免费成人在线视频| 极品教师在线免费播放| 久久久久国产一级毛片高清牌| 欧美高清成人免费视频www| 日韩欧美国产一区二区入口| 亚洲精品美女久久av网站| 国产视频内射| 99视频精品全部免费 在线 | 日韩精品中文字幕看吧| 亚洲国产精品成人综合色| 熟妇人妻久久中文字幕3abv| 国产黄色小视频在线观看| 亚洲国产欧美网| 国产三级黄色录像| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 波多野结衣巨乳人妻| 欧美日韩中文字幕国产精品一区二区三区| 国产1区2区3区精品| 亚洲精品美女久久av网站| 怎么达到女性高潮| 日韩三级视频一区二区三区| 人人妻人人看人人澡| 欧美黑人欧美精品刺激| 一级毛片精品| 90打野战视频偷拍视频| 91在线观看av| 亚洲欧美一区二区三区黑人| 日韩精品中文字幕看吧| 久久精品91无色码中文字幕| 熟女电影av网| 麻豆成人午夜福利视频| 国产精品综合久久久久久久免费| 美女 人体艺术 gogo| 亚洲专区中文字幕在线| 狂野欧美白嫩少妇大欣赏| 嫩草影视91久久| 亚洲人成伊人成综合网2020| 2021天堂中文幕一二区在线观| 国产69精品久久久久777片 | 亚洲在线自拍视频| 久久精品影院6| 国产av麻豆久久久久久久| 国产亚洲欧美在线一区二区| 亚洲无线观看免费| 最近最新中文字幕大全免费视频| 免费av不卡在线播放| 一边摸一边抽搐一进一小说| 国产一区二区三区视频了| 青草久久国产| 国产高潮美女av| 18禁黄网站禁片午夜丰满| 久久欧美精品欧美久久欧美| 亚洲精品456在线播放app | 真实男女啪啪啪动态图| 久久久水蜜桃国产精品网| 国产精品电影一区二区三区| 嫩草影院精品99| 亚洲专区字幕在线| 一个人观看的视频www高清免费观看 | 少妇丰满av| 欧美国产日韩亚洲一区| 丰满人妻一区二区三区视频av | 国产伦在线观看视频一区| 香蕉丝袜av| 又黄又爽又免费观看的视频| 最近最新免费中文字幕在线| 全区人妻精品视频| 欧美色视频一区免费| 成人av一区二区三区在线看| 欧美色欧美亚洲另类二区| 欧美av亚洲av综合av国产av| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品综合一区在线观看| 日韩欧美免费精品| 婷婷亚洲欧美| 免费观看的影片在线观看| 一区二区三区激情视频| 91在线精品国自产拍蜜月 | 欧美精品啪啪一区二区三区| 欧美黄色片欧美黄色片| 麻豆国产av国片精品| 精品国产乱子伦一区二区三区| 一二三四在线观看免费中文在| 变态另类丝袜制服| 一本精品99久久精品77| 久久久久亚洲av毛片大全| 香蕉国产在线看| 国产黄片美女视频| 国产一区二区激情短视频| 国产人伦9x9x在线观看| 老熟妇仑乱视频hdxx| 最近视频中文字幕2019在线8| 91麻豆av在线| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲| 国内久久婷婷六月综合欲色啪| 在线免费观看的www视频| 国产精品电影一区二区三区| 久久中文字幕一级| 亚洲欧美日韩东京热| 久久精品91无色码中文字幕| 国产高潮美女av| 日本撒尿小便嘘嘘汇集6| 中文字幕人成人乱码亚洲影| 97超级碰碰碰精品色视频在线观看| 国产三级中文精品| 成人亚洲精品av一区二区| 国产精品,欧美在线| 免费观看精品视频网站| 亚洲av电影在线进入| www日本在线高清视频| 欧美激情在线99| 国产精品久久久久久久电影 | 亚洲在线观看片| 亚洲中文av在线| 特级一级黄色大片| www.www免费av| 日韩免费av在线播放| 国产成人欧美在线观看| 宅男免费午夜| 国产亚洲精品综合一区在线观看| 啪啪无遮挡十八禁网站| 12—13女人毛片做爰片一| 国产69精品久久久久777片 | 欧美高清成人免费视频www| 国产高清有码在线观看视频| 午夜福利在线观看免费完整高清在 | 国产一区二区在线av高清观看| 一本综合久久免费| 一边摸一边抽搐一进一小说| 亚洲 国产 在线| 久久久国产成人精品二区| 久久亚洲精品不卡| 精品国内亚洲2022精品成人| 香蕉丝袜av| 欧美日韩综合久久久久久 | 亚洲成人免费电影在线观看| 在线免费观看不下载黄p国产 | 脱女人内裤的视频| 黄频高清免费视频| 亚洲电影在线观看av| 精品一区二区三区四区五区乱码| 久久这里只有精品中国| 国产精品野战在线观看| 欧美在线一区亚洲| 国产高清视频在线播放一区| 成年女人毛片免费观看观看9| 91麻豆精品激情在线观看国产| 真人做人爱边吃奶动态| 亚洲黑人精品在线| 国产爱豆传媒在线观看| 99久久综合精品五月天人人| www.999成人在线观看| 一级毛片高清免费大全| 一个人免费在线观看电影 | 无人区码免费观看不卡| 国产主播在线观看一区二区| 一级毛片精品| 色播亚洲综合网| 国产一级毛片七仙女欲春2| 免费在线观看亚洲国产| 在线永久观看黄色视频| 日韩欧美在线乱码| 欧美成人一区二区免费高清观看 | 美女扒开内裤让男人捅视频| 国产成人福利小说| 天天一区二区日本电影三级| 亚洲欧美日韩高清专用| 欧美在线黄色| 天堂网av新在线| 黄频高清免费视频| 日本黄大片高清| 久久草成人影院| 亚洲,欧美精品.| 亚洲午夜理论影院| 久久精品91无色码中文字幕| 男人舔奶头视频| 欧美国产日韩亚洲一区| 露出奶头的视频| 三级男女做爰猛烈吃奶摸视频| 无人区码免费观看不卡| 99re在线观看精品视频| 日韩大尺度精品在线看网址| 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 日本撒尿小便嘘嘘汇集6| 他把我摸到了高潮在线观看| 国产激情偷乱视频一区二区| 成在线人永久免费视频| 又黄又粗又硬又大视频| 一个人观看的视频www高清免费观看 | 动漫黄色视频在线观看| 99精品久久久久人妻精品| 欧美+亚洲+日韩+国产| 免费在线观看亚洲国产| 美女免费视频网站| 国内久久婷婷六月综合欲色啪| 国产精品免费一区二区三区在线| 中文字幕久久专区| 综合色av麻豆| 国产午夜精品论理片| 两个人视频免费观看高清| 婷婷亚洲欧美| 嫁个100分男人电影在线观看| 色哟哟哟哟哟哟| 18禁黄网站禁片午夜丰满| 女人高潮潮喷娇喘18禁视频| 亚洲欧美精品综合久久99| 国内揄拍国产精品人妻在线| 日本三级黄在线观看| 99热只有精品国产| 国产伦精品一区二区三区四那| 精品久久久久久久毛片微露脸| 国产精品99久久久久久久久| 免费人成视频x8x8入口观看| 亚洲人成网站在线播放欧美日韩| 久久久国产成人免费| 好男人电影高清在线观看| 女人被狂操c到高潮| 一区福利在线观看| 国产在线精品亚洲第一网站| 国产精品日韩av在线免费观看| 国产亚洲精品一区二区www| 91在线精品国自产拍蜜月 | 国内少妇人妻偷人精品xxx网站 | 日本五十路高清| www国产在线视频色| 男女做爰动态图高潮gif福利片| 级片在线观看| 亚洲精品美女久久久久99蜜臀| 99久久精品一区二区三区| 亚洲九九香蕉| 一个人看的www免费观看视频| 国产亚洲精品久久久com| av在线蜜桃| av片东京热男人的天堂| 99re在线观看精品视频| 国产又黄又爽又无遮挡在线| 观看美女的网站| 国产精品综合久久久久久久免费| 国内久久婷婷六月综合欲色啪| 亚洲九九香蕉| 每晚都被弄得嗷嗷叫到高潮| 99热这里只有精品一区 | 怎么达到女性高潮| 99久久无色码亚洲精品果冻| 久久香蕉精品热| 狂野欧美白嫩少妇大欣赏| 美女午夜性视频免费| 日韩欧美国产在线观看| 国产精品九九99| 亚洲自偷自拍图片 自拍| 午夜免费激情av| 亚洲精品一区av在线观看| 欧美极品一区二区三区四区| 九九久久精品国产亚洲av麻豆 | 午夜视频精品福利| 美女高潮的动态| 国产伦精品一区二区三区视频9 | 在线看三级毛片| 日本 av在线| 国产在线精品亚洲第一网站| 亚洲狠狠婷婷综合久久图片| 欧美日韩精品网址| 久久久国产成人免费| 2021天堂中文幕一二区在线观|