• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On a Spectral Sequence for Twisted Cohomologies?

    2014-06-05 03:08:58WeipingLIXiuguiLIUHeWANG

    Weiping LI Xiugui LIU He WANG

    1 Introduction

    LetMbe a smooth compact closed manifold of dimensionn,and Ω?(M)be the space of smooth differential forms over R onM.We have the de Rham cochain complex(Ω?(M),d),whered:Ωp(M)→Ωp+1(M)is the exterior differentiation,and its cohomologyH?(M)(the de Rham cohomology).The de Rham cohomology with coefficients in a flat vector bundle is an extension of the de Rham cohomology.

    The twisted de Rham cohomology was first studied by Rohm and Witten[13]for the antisymmetric field in superstring theory.By analyzing the massless fermion states in the string sector,Rohm and Witten obtained the twisted de Rham cochain complex(Ω?(M),d+H3)for a closed 3-formH3,and mentioned the possible generalization to a sum of odd closed forms.A key feature in the twisted de Rham cohomology is that the theory is not integer-graded but(likeK-theory)is filtered with the grading mod 2.This has a close relation with the twistedK-theory and the Atiyah-Hirzebruch spectral sequence(see[1]).

    LetHbewhereis a closed(2i+1)-form.Then one can define a new operatorD=d+Hon Ω?(M),whereHis understood as an operator acting by exterior multiplication(for any differential formw,H(w)=H∧w).As in[1,13],there is a filtration on(Ω?(M),D)as follows:

    This filtration gives rise to a spectral sequence

    converging to the twisted de Rham cohomologyH?(M,H)with

    For convenience,we first fix some notations in this paper.The notation[r]denotes the greatest integer part ofr∈R.In the spectral sequence(1.2),for any∈,[yp]k+lrepresents its class to whichsurvives inIn particular,as in Proposition 3.2,for=represents the de Rham cohomology classrepresents a class inwhich survives to

    In[13,Appendix I],Rohm and Witten first gave a description of the differentialsd3andd5for the caseD=d+H3.Atiyah and Segal[1]showed a method about how to construct the differentials in terms of Massey products,and gave a generalization of Rohm and Witten’s result:The iterated Massey products withH3give(up to sign)all the higher differentials of the spectral sequence for the twisted cohomology(see[1,Proposition 6.1]).Mathai and Wu[9,p.5]considered the general case ofH=and claimed,without proof,thatd2=d4=···=0,whiled3,d5,···are given by the cup products withH3,H5,···and the higher Massey products with them.Motivated by the method in[1],we give an explicit description of the differentials in the spectral sequence(1.2)in terms of Massey products.

    We now describe our main results.LetAdenote a defining system for then-fold Massey productandc(A)denote its related cocycle(see Definition 5.1).Then

    by Definition 5.2.To obtain our desired theorems by specific elements of Massey products,we restrict the allowable choices of defining systems for Massey products(see[14]).By Theorems 4.1–4.2 in this paper,there are defining systems for the two Massey products that we need(see Lemma 5.1).The notationin Theorem 1.1 below denotes a cohomology class inH?(M)represented byc(A),whereAis a defining system obtained by Theorem 4.1(see Definition 5.3).Similarly,the notationin Theorem 1.2 below denotes a cohomology class inH?(M)represented byc(A),whereAis a defining system obtained by Theorem 4.2(see Definition 5.3).

    Theorem 1.1For H=and(t≥1),the differential of the spectral sequence(1.2),i.e.,is given by

    andis independent of the choice of the defining system A obtained from Theorem4.1.

    Specializing Theorem 1.1 to the caseH=we obtain

    Obviously,much information has been concealed in the above expression.In particular,we give a more explicit expression of differentials for this special case,which is compatible with Theorem 1.1(see Remark 5.6).

    Theorem 1.2For H=(s≥1)only and(t≥1),the differential of the spectral sequence(1.2),i.e.,:is given by

    andis independent of the choice of the defining system B obtained from Theorem4.2.

    Atiyah and Segal[1]gave the differential expression in terms of Massey products whenH=H3(see[1,Proposition 6.1]).Obviously,the result of Atiyah and Segal is a special case of Theorem 1.2.

    Some of the results above are known to experts in this field,but there is a lack of mathematical proof in the literature.

    This paper is organized as follows.In Section 2,we recall some backgrounds about the twisted de Rham cohomology.In Section 3,we consider the structure of the spectral sequence converging to the twisted de Rham cohomology,and give the differentialsdi(1≤i≤3)and(k≥1).With the formulas of the differentials inin Section 4,Theorems 1.1 and 1.2 are proved in Section 5.In Section 6,we discuss the indeterminacy of differentials of the spectral sequence(1.2).

    2 Twisted de Rham Cohomology

    For completeness,in this section,we recall some knowledge about the twisted de Rham cohomology.LetMbe a smooth compact closed manifold of dimensionn,and Ω?(M)be thespace of smooth differential forms onM.We have the de Rham cochain complex(Ω?(M),d)with the exterior differentiationd:and its cohomologyH?(M)(the de Rham cohomology).

    LetHdenotewhereis a closed(2i+1)-form.Define a new operatorD=d+Hon Ω?(M),whereHis understood as an operator acting by exterior multiplication(for any differential formw,H(w)=H∧w,also denoted byH∧).It is easy to show that

    However,Dis not homogeneous on the space of smooth differential forms Ω?(M)=

    Define Ω?(M)to be a new(mod 2)grading as follows:

    where

    ThenDis homogenous for this new(mod 2)grading,

    Define the twisted de Rham cohomology groups ofMas follows:

    Remark 2.1(i)The twisted de Rham cohomology groupsH?(M,H)(?=o,e)depend on the closed formHbut not just on its cohomology class.IfHandH′are cohomologous,thenH?(M,H)H?(M,H′)(see[1,Section 6]).

    (ii)The twisted de Rham cohomology is also an important homotopy invariant(see[9,Section 1.4]).

    LetEbe a flat vector bundle overM,and Ωi(M,E)be the space of smooth differentiali-forms onMwith values inE.A flat connection onEgives a linear map

    such that for any smooth functionfonMand anyω∈Ωi(M,E),

    Similarly,define Ω?(M,E)to be a new(mod 2)grading as follows:

    where

    Thenis homogenous for the new(mod 2)grading,

    Define the twisted de Rham cohomology groups ofEas follows:

    Results proved in this paper are also true for the twisted de Rham cohomology groupsH?(M,E,H)(?=o,e)with twisted coefficients inEwithout any change.

    3 A Spectral Sequence for Twisted de Rham Cohomology and Its Differentials di(1i3),(k1)

    RecallD=d+HandH=whereis a closed(2i+1)-form.Define the usual filtration on the graded vector space Ω?(M)to be

    andK=K0= Ω?(M).The filtration is bounded and complete,

    We haveD(Kp)?The differentialD(=d+H)does not preserve the grading of the de Rham complex.However,it does preserve the filtration

    The filtrationgives an exact couple(with bidegree)(see[12]).For eachp,Kpis a graded vector space with

    whereandThe cochain complex(Kp,D)is induced byD:Ω?(M)?→Ω?(M).In a way similar to(2.4),there are two well-defined cohomology groupsNote that a cochain complex with grading

    derives cohomology groupsandSinceD(we haveD=0 in the cochain complex

    Lemma 3.1For the cochain complexwe have

    ProofIfpis odd,then

    We have

    Similarly,for evenp,we have

    By the filtration(3.1),we obtain a short exact sequence of cochain complexes

    which gives rise to a long exact sequence of cohomology groups

    Note that in the exact sequence above,

    Let

    We get an exact couple from the long exact sequence(3.3)

    withi1of bidegree(?1,1),j1of bidegree(0,0)andk1of bidegree(1,0).

    We haved1=with bidegree(1,0),and=0.By(3.5),we have the derived couple

    by the following:

    (1)=i1D?,?1,E?,?2=Hd1(E?,?1).

    (2)i2=i1also denoted byi1.

    (3)Ifa2=define()=where[]d1denotes the cohomology class inHd1

    (4)For[b]d1∈=define

    The derived couple(3.6)is also an exact couple,andj2andk2are well defined(see[6,12]).

    Proposition 3.1(i)There exists a spectral sequencederived from the filtrationwhere=andThe bidegree of dris(r,1?r).

    (ii)The spectral sequenceconverges to the twisted de Rham cohomology

    ProofSince the filtration is bounded and complete,the proof follows from the standard algebraic topology method(see[12]).

    Remark 3.1(1)Note that

    Then we have thatare 2-periodic oni.Consequently,the spectral sequenceis 2-periodic onq.

    (2)There is also a spectral sequence converging to the twisted cohomologyH?(M,E,H)for a flat vector bundleEoverM.

    Proposition 3.2For the spectral sequence in Proposition3.1,

    (i)The-term is given by

    and d1xp=dxpfor any xp∈

    (ii)The -term is given by

    and d2=0.

    (iii)=and d3[xp]=

    Proof(i)By Lemma 3.1,we have the-term as desired,and by definition,we obtain:We only need to consider the case whenqis even,otherwised1=0.By(3.2)for oddp(the case,whenpis even,is similar),we have a large commutative diagram

    where the rows are exact and the columns are cochain complexes.

    Letxp∈Ωp(M)and

    be an(inhomogeneous)form,whereis a(p+2i)-form(0≤i≤Thenx∈jx=xpandDx∈AlsoDx∈By the definition of the homomorphismδin(3.3),we have

    where[]Dis the cohomology class inThe class[Dx]Dis well defined and independent of the choices of(1≤i≤(see[3,p.116]).

    Choose=0(1≤i≤[Then we have

    Thus,one obtains

    (ii)By the definition of the spectral sequence and(i),one obtains that(M)whenqis even,and=0 whenqis odd.Noted2:It follows thatd2=0 by degree reasons.

    (iii)Note thatimpliesdxp=0.Choosing=0 for 1≤i≤we get

    wherexis given in the proof of(i).Note

    It follows that

    where the first,second and fourth identities follow from the definitions ofd3,k3andj3,respectively,and the third and last identities follow from(3.10)and(3.11),respectively.By(ii),d2=0,soThen we have

    Corollary 3.1d2k=0for k≥1.Therefore,for k≥1,

    ProofNoteBy Proposition 3.2(ii),ifqis odd,then=0,which implies that=0.By degree reasons,we have=0 andfork≥1.

    The differentiald3for the caseH=H3is shown in[1,Section 6],and the-term is also known.

    4 Differentials( 1)in Terms of Cup Products

    In this section,we will show that the differentials(t≥1)can be given in terms of cup products.

    We first consider the general case ofH=we letx=∈(M)).Then we have

    Denotey=Dx=where

    Theorem 4.1For(t≥1),there exist(1≤i≤t),such that=0(0≤j≤t)and

    where the(p+2i)-formdepends on t.

    ProofThe theorem is shown by mathematical induction ont.

    Whent=1,implies thatdxp=0 and=0 by Proposition 3.2.Thus there exists a(p+2)-formv1,such thatWe can choose=v1to get+=0 from(4.2).Noting

    we obtain

    The reasons for the identities in(4.4)are similar to those of(3.12).Thus,we have

    where the first identity follows from(4.4)and the definition ofin(4.2),and the second one follows from the fact thatvanishes inHence the result holds fort=1.

    Suppose that the result holds fort≤m?1.Now we show that the theorem also holds fort=m.

    Fromwe haveand=0.By induction,there exist(1≤i≤m?1),such that

    Byd2m=0 and the last equation in(4.5),there exists a(p+2)-formsuch that

    By induction andthere exist(1≤i≤m?2),such that

    By(4.6)and the last equation in(4.7),we obtain

    Note that=0,and it follows that there exists a(p+4)-formsuch that

    Keeping the same iteration process as mentioned above,we have

    Byd6=0,it follows that there exists a(p+2(m?2))-formsuch that

    By induction andthere existssuch that

    By(4.8),the last equation in(4.9)andd4=0,it follows that there exists a(p+2(m?1))-formsuch that

    and==0.Thus there exists a(p+2m)-formsuch that

    Comparing(4.10)with(4.2),we choose at this time

    From(4.2),by a direct computation,we have

    Note

    By the similar reasons as in(3.12),the following identities hold:

    So we have

    showing that the result also holds fort=m.

    The proof of the theorem is completed.

    Remark 4.1Note that(1≤i≤t)depend ont,and thatdepend on the conditiongenerally(1≤i≤t)are related to(1≤j≤t?1,j≤i).

    Now we consider the special case in whichH=(s≥1)only.For this special case,we will give a more explicit result which is stronger than Theorem 4.1.

    Forx=we have

    Denote

    ThenDx=

    Theorem 4.2For H=(s≥1)only and(t≥1),there exist==0and=0for1≤i≤1≤j≤s?1and1≤k≤t?s,such that=0(0≤u≤t)and

    where the(p+2is)-formdepend on

    ProofWe prove the theorem by mathematical induction ons.

    Whens=1,the result follows from Theorem 4.1.

    Whens≥2,we prove the result by mathematical induction ont.We first show that the result holds fort=1.Note thatimplies=0.Choose=0 and make=0.

    (i)Whens=2,by(4.4),we have

    (ii)Whens≥3,by(4.4),we have

    Combining(i)and(ii),we have that the theorem holds fort=1.

    Suppose that the theorem holds fort≤m?1.Now we show that the theorem also holds fort=m.

    Case 12≤m≤s?1.

    By induction,the theorem holds for 1≤t≤m?1.Choosing=0(1≤i≤m),from(4.15),we easily get that=0(0≤j≤m).By(4.14)–(4.15),we have

    Case 2m=ls?1(l≥2).

    By induction,the theorem holds fort=m?1=ls?2.Thus,there exist==0 and=0 for 1≤i≤l?1,1≤j≤s?1 and 1≤k≤s?2,such that=0(0≤u≤ls?2).Choosing=0,by(4.15),we get

    Then we have

    Case 3m=ls(l≥1).

    By induction,there exist=0 andxp+2(l?1)s+2k=0 for 1≤i≤l?1,1≤j≤s?1 and 1≤k≤s?1,such that=0(0≤u≤ls?1).By the same method as in Theorem 4.1,one has that there exist==0 and=0 for 1≤i≤l,1≤j≤s?1 and 1≤k≤s?1,such that=0(0≤u≤ls).By(4.14)–(4.15)and=0,we have

    Case 4ls<m<(l+1)s?1(l≥1).

    By induction,there exist===0 and=0 for 1≤i≤l,1≤j≤s?1 and 1≤k≤m?ls?1,such that=0(0≤u≤m?1).Choose=0 and make=0.By(4.14)–(4.15)and=0,we have

    Combining Cases 1–4,we have that the result holds fort=m,and the proof is completed.

    Remark 4.2(1)Theorems 4.1–4.2 show that the differentials in the spectral sequence(1.2)can be computed in terms of cup products withThe existence of’s in Theorems 4.1–4.2 plays an essential role in proving Theorems 1.1–1.2,respectively.Theorems 4.1–4.2 give a description of the differentials at the level offor the spectral sequence(1.2),which was ignored in the previous studies of the twisted de Rham cohomology in[1,9].

    (2)Note that Theorem 4.2 is not a corollary of Theorem 4.1,and it can not be obtained from Theorem 4.1 directly.

    5 Differentials (t ≥ 1)in Terms of Massey Products

    The Massey product is a cohomology operation of higher order introduced in[8],which generalizes the cup product.May[10]showed that the differentials in the Eilenberg-Moore spectral sequence associated with the path-loop fibration of a path connected,simply connected space are completely determined by higher order Massey products.Kraines and Schochet[5]also described the differentials in Eilenberg-Moore spectral sequence by Massey products.Inorder to describe the differentials(t≥1)in terms of Massey products,we first recall brief l y the definition of Massey products(see[4,10–12]).Then the main theorems in this paper will be shown.

    Because of different conventions in the literature used to define Massey products,we present the following definitions.Ifx∈Ωp(M),the symbolwill denoteWe first define the Massey triple product.

    Letbe closed differential forms onMof degreeswith=0 and=0,where[]denotes the de Rham cohomology class.Thus,there are differential formsv1of degreer1+r2?1 andv2of degreer2+r3?1,such thatandDefine the?1)-form

    Thenωsatisfies

    Hence a set of all the cohomology classes[ω]obtained by the above procedure is defined to be the Massey triple productofx1,x2andx3.Due to the ambiguity ofvi,i=1,2,the Massey triple productis a representative of the quotient group

    Definition 5.1Let(Ω?(M),d)be de Rham complex,and···,xnbe closed differential forms on M with(M).A collection of forms,A=for1≤i≤j≤k andis said to be a defining system for the n-fold Massey product〉if

    The(r1+···+rn?n+2)-dimensional cocycle,c(A),defined by

    is called the related cocycle of the defining system A.

    Remark 5.1There is a unique matrix associated to each defining systemAas follows:

    Definition 5.2The n-fold Massey product〉is said to be defined,if there is a defining system for it.If it is defined,thenconsists of all classes w∈for which there exists a defining system A,such that c(A)represents w.

    Remark 5.2There is an inherent ambiguity in the definition of the Massey product arising from the choices of defining systems.In general,then-fold Massey product may or may not be a coset of a subgroup,but its indeterminacy is a subset of a matrix Massey product(see[10,Section 2]).

    Based on Theorems 4.1–4.2,we have the following lemma on defining systems for the two Massey products we consider in this paper.

    Lemma 5.1(1)For(t≥1),there are defining systems forxp〉obtained from Theorem4.1.

    (2)Forwhen t=ls?1(l≥2),there are defining systems forobtained from Theorem4.2.

    Proof(1)From Theorem 4.1,there exist(1≤j≤t),such that=0(0≤i≤t)and=+By Theorem 4.1 and(4.2),there exists a defining systemA=(ai,j)for〉as follows:

    to which the matrix associated is given by

    The desired result follows.

    (2)By Theorem 4.2,there exist=0 and=0 for 1≤i≤l?1,1≤j≤s?1 and 1≤k≤s?1,such that=0(0≤i≤t)andBy Theorem 4.2 and(4.15),there also exists a definingsystemA=foras follows:

    to which the matrix associated is given by

    The desired result follows.

    To obtain our desired theorems by specific elements of Massey products,we restrict the allowable choices of defining systems for the two Massey products in Lemma 5.1(see[14]).By Lemma 5.1,we give the following definitions.

    Definition 5.3(1)Given a class(t≥1),a specific element of(t+2)-fold Massey productdenoted byis a class in(M)represented by c(A),where A is a defining system obtained from Theorem4.1.We define the(t+2)-fold allowable Massey productto be the set of all the cohomology classes w∈(M)for which there exists a defining system A obtained from Theorem4.1,such that c(A)represents w.

    (2)Similarly,given a class(t≥1),when t=ls?1(l≥2),we definethe specific element of(l+1)-fold Massey product〉and the(l+1)-foldallowable Massey productby replacing Theorem4.1by Theorem4.2in(1).

    Remark 5.3(1)From Definition 5.3,we can get the following:

    (2)The allowable Massey productis less ambiguous than the general Massey productTakein Definition 5.3 for example.SupposeH=By Theorem 4.1 and(4.2),there existsuch that=0(0≤i≤1)and=By Lemma 5.1,we get a defining systemAforand its related cocyclec(A)=?Thus,we have

    Obviously,the indeterminacy of the allowable Massey product(M).However,in the general case,the indeterminacy of the Massey product〉is(M)+

    Similarly,the allowable Massey productis less ambiguous than the general Massey product

    Now we begin to prove our main theorems.

    Proof of Theorem 1.1By Lemma 5.1(1),there exist defining systems forgiven by Theorem 4.1.For any defining systemA=(ai,j)given by Theorem 4.1,by(5.4),we have

    By Definition 5.3,we have

    Then by Theorem 4.1,we have

    Thus,we have

    By the arbitrariness ofA,we have thatis independent of the choice of the defining systemAobtained by Theorem 4.1.

    Example 5.1For formal manifolds,which are manifolds with vanishing Massey products,it is easy to get

    by Theorem 1.1.Note that simply connected compact Khler manifolds are an important class of formal manifolds(see[2]).

    Remark 5.4(1)From the proof of Theorem 1.1,we have that the specific element

    represents a class inFor two different defining systemsA1andA2given by Theorem 4.1,we have

    generally.However,in the spectral sequence(1.2),we have

    (2)Since the indeterminacy ofdoes not affect our results,we will not analyze the indeterminacy of Massey products in this paper.

    (3)By Theorem 1.1,fort≥1,which is expressed only byH3andxp.From the proof of Theorem 1.1,we know that the above expression conceals some information,because the otheraffect the result implicitly.

    We have the following corollary(see[1,Proposition 6.1]).

    Corollary 5.1For H=H3only and(t≥1),we have that in the spectral sequence(1.2),

    and[is independent of the choice of the defining system A obtained from Theorem4.1.

    Remark 5.5(1)Because the definition of Massey products is different from the definition in[1],the expression of differentials in Corollary 5.1 differs from the one in[1,Proposition 6.1].

    (2)The two specific elements of〉in Theorem 1.1 and Corollary 5.1 are completely different,and equal[c(A1)]and[c(A2)],respectively,wherec(Ai)(i=1,2)are related cocycles of the defining systemsAi(i=1,2)obtained from Theorem 4.1.The matrices associated to the two defining systems are given by

    and

    respectively.Here(1≤i≤t)in the first matrix are different from those in the second one.

    ForH=(s≥2)only(i.e.,in the caseHi=0,i2s+1)and(t≥1),we make use of Theorem 1.1 to get

    Obviously,some information has been concealed in the expression above.Another description of the differentials for this special case is shown in Theorem 1.2.

    Proof of Theorem 1.2Whent=s?1,the result follows from Theorem 4.2.

    Whent=ls?1(l≥2),from Lemma 5.1(2),we know that there exist defining systems forobtained from Theorem 4.2.For any defining systemBgiven by Theorem 4.2,by(5.6),we getc(B)=(?1By Definition 5.3,

    Then by Theorem 4.2,we have

    Thus

    By the arbitrariness ofB,we have thatis independent of the choice of the defining systemBobtained from Theorem 4.2.

    For the rest cases oft,the results follow from Theorem 4.2.

    The proof of this theorem is completed.

    Remark 5.6We now use the special caseH=H5andto illustrate the compatibility between Theorems 1.1 and 1.2 fors=2 andt=3.

    Note that in this case,we haveH3=0 andHi=0 fori>5.By Theorem 1.1,we get the corresponding matrix associated to the defining systemAfor

    and

    By Theorem 1.2,in this case,the matrix associated to the defining systemBfor

    and

    We claim that=For any defining systemBabove,there is a defining system

    forwhich can be obtained from Theorem 4.1,such that

    HenceOn the other hand,for any defining systemAabove,there also exists a defining system

    forwhich can be obtained from Theorem 4.2,such that

    Thereforeand thus the claim follows.

    By Theorem 1.1 and Remark 5.3,we have

    By Theorem 1.2,By Proposition 3.4,=0.It follows that

    By Theorems 1.1 and 4.1,we have

    whereis an arbitrary(p+2)-form satisfying=0∧zp.By Remark 5.4(2),we take=0.Then we have=0,i.e.,0.At the same time,we also have=0 from Theorem 1.2.Thus=0.

    Byfor 1≤i≤7 and=we can conclude that=from(5.12)and(5.14).

    6 The Indeterminacy of Differentials in the Spectral Sequence(1.2)

    LetThe indeterminacy of[xp]is a normal subgroupGofH?(M),which means that if there is another element[yp]∈Hp(M),which also represents the classthen

    In this section,we will show that forH=the indeterminacy of the differential∈is a normal subgroup ofH?(M).

    From the long exact sequence(3.3),we have a commutative diagram

    in which any sequence consisting of a vertical mapfollowed by two horizontal mapsandδand then a vertical mapi?followed again by,δ,and iteration of this is exact.From this diagram,there is a spectral sequence,in whichand forr≥2,isdefined to be the quotientwhere

    We also have a sequence of inclusions

    By[6–7],thedefined above is the same as the one in the spectral sequence(1.2).A similar argument about a homology spectral sequence is given in[15,p.472–473].

    Theorem 6.1Let H=(r≥3).Then the indeterminacy ofis the following normal subgroup of Hp(M):

    where d is just the exterior differentiation,and δ is the connecting homomorphism of the long exact sequence induced by the short exact sequence of cochain complexes

    ProofFrom the above tower(6.3),we get a tower of subgroups of

    Note

    It follows that the indeterminacy of[xp]is the normal subgroupofHp(M).

    From the short exact sequences of cochain complexes

    we can get the following long exact sequence of cohomology groups:

    whereandare the connecting homomorphisms.

    Combining(3.3)and(6.4),we have the following commutative diagram of long exact sequences:

    Using the above commutative diagram and the fact thatwe have

    Whenr=2,from(6.5),we have

    From(3.4),it follows that=d1.By Proposition 3.2,=d.Thus,we have

    The desired result follows.

    By Theorem 6.1,we obtain the following corollary.

    Corollary 6.1In Theorem1.1,forwe have that the indeterminacy ofis a normal subgroup of(M)

    where d is just the exterior differentiation,and δ is the connecting homomorphism of the long exact sequence induced by the short exact sequence of cochain complexes

    ProofIn Theorem 6.1,r,pandqare replaced by 2t+3,p+2t+3 andq?2t?2,respectively.Then the desired result follows.

    AcknowledgementsThe authors would like to express gratitude to Professor Jim Stashefffor his helpful comments,and thank the referees for their suggestions.

    [1]Atiyah,M.and Segal,G.B.,TwistedK-Theory and Cohomology,Inspired by S.S.Chern,Nankai Tracts Math.,11,World Sci.Publ.,Hackensack,NJ,2006,5–43.

    [2]Deligne,P.,Griffiths,P.,Morgan,J.and Sullivan,D.,Real homotopy theory of Khler manifolds,Invent.Math.,29(3),1975,245–274.

    [3]Hatcher,A.,Algebraic Topology,Cambridge University Press,Cambridge,2002.

    [4]Kraines,D.,Massey higher products,Trans.Amer.Math.Soc.,124,1966,431–449.

    [5]Kraines,D.and Schochet,C.,Differentials in the Eilenberg-Moore spectral sequence,J.Pure Appl.Algebra,2(2),1972,131–148.

    [6]Massey,W.S.,Exact couples in algebraic topology,I,II,Ann.of Math.(2),56,1952,363–396.

    [7]Massey,W.S.,Exact couples in algebraic topology,III,IV,V,Ann.of Math.(2),57,1953,248–286.

    [8]Massey,W.S.,Some higher order cohomology operations,1958 Symposium Internacional de Topologa Algebraica International Symposium on Algebraic Topology,Universidad Nacional Autnoma de M′exico and Unesco,Mexico,1958,145–154.

    [9]Mathai,V.and Wu,S.,Analytic torsion for twisted de Rham complexes,J.Diff.Geom.,88(2),2011,297–332.

    [10]May,J.P.,Matric Massey products,J.Algebra,12,1969,533–568.

    [11]May,J.P.,The cohomology of augmented algebras and generalized Massey products for DGA-algebras,Trans.Amer.Math.Soc.,122,1966,334–340.

    [12]McCleary,J.,A User’s Guide to Spectral Sequences,2nd Edition,Cambridge University Press,Cambridge,2001.

    [13]Rohm,R.and Witten,E.,The antisymmetric tensor field in superstring theory,Ann.Physics,170(2),1986,454–489.

    [14]Sharif i,R.T.,Massey products and ideal class groups,J.Reine Angew.Math.,603,2007,1–33.

    [15]Spanier,E.W.,Algebraic Topology,Springer-Verlag,New York,Berlin,1981.

    五月伊人婷婷丁香| 午夜福利影视在线免费观看| 日韩人妻精品一区2区三区| 精品视频人人做人人爽| 久热久热在线精品观看| 曰老女人黄片| 久久综合国产亚洲精品| 亚洲美女视频黄频| 亚洲激情五月婷婷啪啪| 欧美日韩综合久久久久久| 精品国产一区二区三区四区第35| 亚洲精品456在线播放app| 在线免费观看不下载黄p国产| 国产视频首页在线观看| 国产成人精品婷婷| 国产一区二区在线观看日韩| 丝袜人妻中文字幕| 香蕉丝袜av| 成人亚洲精品一区在线观看| 深夜精品福利| 九九爱精品视频在线观看| 老司机影院成人| 18禁在线无遮挡免费观看视频| 国产精品一区二区在线不卡| 国产精品人妻久久久影院| av免费观看日本| 久久99蜜桃精品久久| 亚洲四区av| xxx大片免费视频| 精品国产一区二区久久| 午夜福利网站1000一区二区三区| 少妇高潮的动态图| videos熟女内射| 亚洲国产日韩一区二区| 亚洲图色成人| 国产精品久久久久久精品电影小说| 最近2019中文字幕mv第一页| 国产 精品1| 久久久久国产精品人妻一区二区| 婷婷色综合www| 国产精品国产三级国产av玫瑰| 国产欧美日韩一区二区三区在线| 日韩人妻精品一区2区三区| 日本黄大片高清| 久久精品人人爽人人爽视色| 在线天堂最新版资源| 亚洲少妇的诱惑av| 老熟女久久久| 国国产精品蜜臀av免费| 另类精品久久| 亚洲中文av在线| 大香蕉97超碰在线| 大香蕉97超碰在线| 男女无遮挡免费网站观看| 一级a做视频免费观看| 性色avwww在线观看| 久久久久精品性色| 9色porny在线观看| 狠狠精品人妻久久久久久综合| 天天躁夜夜躁狠狠久久av| 亚洲一区二区三区欧美精品| 国产精品国产三级国产av玫瑰| 咕卡用的链子| 日韩av不卡免费在线播放| 有码 亚洲区| 成人黄色视频免费在线看| 日日撸夜夜添| 欧美成人午夜免费资源| 日韩大片免费观看网站| 高清视频免费观看一区二区| 一级毛片电影观看| 人体艺术视频欧美日本| 18禁在线无遮挡免费观看视频| 在线天堂中文资源库| 久久精品久久精品一区二区三区| 少妇熟女欧美另类| 热99久久久久精品小说推荐| 日韩av在线免费看完整版不卡| 18禁裸乳无遮挡动漫免费视频| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区国产| 亚洲人成网站在线观看播放| 亚洲精品乱码久久久久久按摩| 国产男人的电影天堂91| 老司机亚洲免费影院| 久久久久久久国产电影| 大香蕉久久网| 日韩伦理黄色片| 亚洲国产精品一区三区| 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区国产| 国产精品国产av在线观看| 亚洲欧美精品自产自拍| xxx大片免费视频| 成人无遮挡网站| 中文字幕制服av| 国产成人一区二区在线| 91aial.com中文字幕在线观看| √禁漫天堂资源中文www| 大香蕉97超碰在线| 亚洲精品久久成人aⅴ小说| 99精国产麻豆久久婷婷| 最新中文字幕久久久久| 嫩草影院入口| 乱码一卡2卡4卡精品| 色94色欧美一区二区| 婷婷色综合大香蕉| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| 99国产精品免费福利视频| 婷婷色麻豆天堂久久| 色哟哟·www| www日本在线高清视频| 91成人精品电影| 亚洲av电影在线进入| 99香蕉大伊视频| 青青草视频在线视频观看| 国产乱来视频区| 午夜免费男女啪啪视频观看| 亚洲精品视频女| 亚洲欧洲日产国产| 久久99热6这里只有精品| 80岁老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 久久久精品94久久精品| 亚洲欧美日韩另类电影网站| 国产精品不卡视频一区二区| 亚洲美女黄色视频免费看| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产鲁丝片午夜精品| av有码第一页| 日本vs欧美在线观看视频| av国产久精品久网站免费入址| 日韩制服丝袜自拍偷拍| 人体艺术视频欧美日本| 一级片'在线观看视频| 99九九在线精品视频| 国产深夜福利视频在线观看| 全区人妻精品视频| 午夜激情久久久久久久| 狂野欧美激情性bbbbbb| 人妻一区二区av| 一区二区三区精品91| 搡老乐熟女国产| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 久久免费观看电影| 欧美日韩视频高清一区二区三区二| 国产乱来视频区| 欧美激情国产日韩精品一区| 久久精品久久久久久噜噜老黄| 久久青草综合色| 飞空精品影院首页| 亚洲,欧美,日韩| 免费av不卡在线播放| 久久99一区二区三区| 国产精品偷伦视频观看了| 亚洲欧美成人综合另类久久久| 亚洲成国产人片在线观看| 男女边吃奶边做爰视频| 久久精品国产综合久久久 | 香蕉丝袜av| 欧美精品一区二区大全| 日韩伦理黄色片| 亚洲精品乱久久久久久| 久久99热这里只频精品6学生| 成人无遮挡网站| 亚洲人与动物交配视频| av线在线观看网站| 国产精品人妻久久久久久| 看十八女毛片水多多多| 婷婷色麻豆天堂久久| 少妇人妻 视频| 高清av免费在线| 国产综合精华液| 久久韩国三级中文字幕| 中文乱码字字幕精品一区二区三区| 国产69精品久久久久777片| 老熟女久久久| 欧美+日韩+精品| 99精国产麻豆久久婷婷| 国产熟女午夜一区二区三区| 美女xxoo啪啪120秒动态图| 婷婷色av中文字幕| 亚洲一码二码三码区别大吗| 校园人妻丝袜中文字幕| 美女视频免费永久观看网站| 日本黄大片高清| 久久影院123| 亚洲成人一二三区av| 成人亚洲精品一区在线观看| 男女边吃奶边做爰视频| 精品亚洲乱码少妇综合久久| 日产精品乱码卡一卡2卡三| 黄色怎么调成土黄色| 女人久久www免费人成看片| 国产精品成人在线| 午夜91福利影院| 国产色婷婷99| 五月伊人婷婷丁香| av女优亚洲男人天堂| 久久久久久久久久成人| xxx大片免费视频| 韩国高清视频一区二区三区| 国产在线视频一区二区| 亚洲欧洲日产国产| 男女午夜视频在线观看 | 欧美成人午夜精品| 人妻一区二区av| 亚洲av.av天堂| 午夜老司机福利剧场| av线在线观看网站| 午夜日本视频在线| 欧美人与性动交α欧美软件 | 免费观看性生交大片5| 亚洲国产毛片av蜜桃av| 亚洲成人av在线免费| 国产亚洲欧美精品永久| 男人舔女人的私密视频| 男女边摸边吃奶| 日韩中文字幕视频在线看片| 18禁观看日本| 亚洲精品日韩在线中文字幕| 国产在视频线精品| 国产探花极品一区二区| 九色成人免费人妻av| 美女视频免费永久观看网站| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 天天影视国产精品| 国产欧美日韩综合在线一区二区| a 毛片基地| 欧美日本中文国产一区发布| 男女国产视频网站| 亚洲欧美色中文字幕在线| 汤姆久久久久久久影院中文字幕| 午夜福利影视在线免费观看| 十八禁网站网址无遮挡| 国产男女内射视频| 亚洲少妇的诱惑av| 最黄视频免费看| 欧美国产精品va在线观看不卡| 欧美激情 高清一区二区三区| 一级毛片 在线播放| 亚洲欧美日韩另类电影网站| 美女脱内裤让男人舔精品视频| 成人影院久久| 亚洲第一av免费看| 视频区图区小说| 下体分泌物呈黄色| 亚洲成人av在线免费| 黄色毛片三级朝国网站| 18+在线观看网站| 日本vs欧美在线观看视频| 一边摸一边做爽爽视频免费| 欧美xxⅹ黑人| av国产久精品久网站免费入址| 18禁国产床啪视频网站| 中文精品一卡2卡3卡4更新| 亚洲成人一二三区av| 高清黄色对白视频在线免费看| 中文字幕av电影在线播放| 日韩电影二区| 草草在线视频免费看| 最近2019中文字幕mv第一页| 香蕉丝袜av| 黄色怎么调成土黄色| 男女无遮挡免费网站观看| 国产国语露脸激情在线看| 97精品久久久久久久久久精品| 久久久国产精品麻豆| 中国国产av一级| 精品亚洲成国产av| 日韩伦理黄色片| 侵犯人妻中文字幕一二三四区| 最近中文字幕2019免费版| 成人18禁高潮啪啪吃奶动态图| 91成人精品电影| 亚洲天堂av无毛| 久久久久精品性色| 免费观看在线日韩| 嫩草影院入口| 大香蕉久久网| 久久99热这里只频精品6学生| 在线观看免费视频网站a站| 亚洲国产av影院在线观看| 99热全是精品| 天天躁夜夜躁狠狠久久av| videossex国产| 色5月婷婷丁香| 久久久久视频综合| av线在线观看网站| 国产极品粉嫩免费观看在线| 国产69精品久久久久777片| 满18在线观看网站| 人妻人人澡人人爽人人| 波野结衣二区三区在线| av国产精品久久久久影院| 亚洲精品久久成人aⅴ小说| 少妇人妻 视频| 在线观看www视频免费| 人成视频在线观看免费观看| 亚洲欧美清纯卡通| 90打野战视频偷拍视频| 久久精品久久精品一区二区三区| 深夜精品福利| 亚洲精品国产色婷婷电影| 免费黄频网站在线观看国产| 亚洲综合色惰| 亚洲美女搞黄在线观看| 一区在线观看完整版| 熟女人妻精品中文字幕| 大话2 男鬼变身卡| 日韩免费高清中文字幕av| 欧美激情极品国产一区二区三区 | 女性生殖器流出的白浆| 欧美日韩视频高清一区二区三区二| 久久精品aⅴ一区二区三区四区 | 国产视频首页在线观看| 国产淫语在线视频| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成国产av| 国产成人免费观看mmmm| 久久精品国产亚洲av天美| 亚洲天堂av无毛| 一边摸一边做爽爽视频免费| 亚洲精品日韩在线中文字幕| 少妇人妻精品综合一区二区| 男的添女的下面高潮视频| 国产在视频线精品| 国产av码专区亚洲av| 日本爱情动作片www.在线观看| 国产av一区二区精品久久| 少妇的丰满在线观看| 精品99又大又爽又粗少妇毛片| 街头女战士在线观看网站| 久久久久精品性色| av网站免费在线观看视频| 午夜福利视频精品| 亚洲精品美女久久久久99蜜臀 | 国产精品不卡视频一区二区| 激情五月婷婷亚洲| 两个人免费观看高清视频| 一本—道久久a久久精品蜜桃钙片| 女人被躁到高潮嗷嗷叫费观| 日本色播在线视频| 婷婷成人精品国产| 大香蕉久久成人网| 人妻系列 视频| 亚洲av欧美aⅴ国产| 国产成人精品福利久久| av又黄又爽大尺度在线免费看| 中文字幕免费在线视频6| 成人手机av| 51国产日韩欧美| 满18在线观看网站| 五月天丁香电影| 香蕉丝袜av| 欧美日韩国产mv在线观看视频| 看免费成人av毛片| 一二三四中文在线观看免费高清| 看免费成人av毛片| 一二三四中文在线观看免费高清| videosex国产| av卡一久久| 免费大片黄手机在线观看| 黄片播放在线免费| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 精品少妇黑人巨大在线播放| 在线观看美女被高潮喷水网站| 国产又色又爽无遮挡免| 制服人妻中文乱码| 欧美激情国产日韩精品一区| 精品少妇久久久久久888优播| 亚洲欧美成人精品一区二区| 久久影院123| 蜜桃在线观看..| 国产在线视频一区二区| 啦啦啦啦在线视频资源| 婷婷色麻豆天堂久久| 丝袜脚勾引网站| 中文字幕人妻丝袜制服| 2021少妇久久久久久久久久久| 免费观看av网站的网址| 精品国产国语对白av| 看十八女毛片水多多多| 最后的刺客免费高清国语| 国产精品一区二区在线观看99| av卡一久久| 波野结衣二区三区在线| 亚洲精品国产av成人精品| 日本免费在线观看一区| av女优亚洲男人天堂| 欧美精品一区二区大全| 一级黄片播放器| 日韩av不卡免费在线播放| 97精品久久久久久久久久精品| 亚洲精品自拍成人| 免费看av在线观看网站| 久久久久精品久久久久真实原创| 久久精品国产亚洲av天美| 少妇人妻久久综合中文| 高清在线视频一区二区三区| 色婷婷av一区二区三区视频| tube8黄色片| 日韩不卡一区二区三区视频在线| 乱人伦中国视频| 一区二区av电影网| 乱人伦中国视频| 国产成人免费观看mmmm| 精品国产一区二区三区四区第35| 少妇的逼好多水| 久久久精品免费免费高清| 一级a做视频免费观看| 欧美变态另类bdsm刘玥| 天堂8中文在线网| 99re6热这里在线精品视频| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| 国产白丝娇喘喷水9色精品| 啦啦啦中文免费视频观看日本| 国产精品不卡视频一区二区| 免费久久久久久久精品成人欧美视频 | 免费大片18禁| h视频一区二区三区| 国产麻豆69| 三级国产精品片| 国产成人精品久久久久久| 久久韩国三级中文字幕| 欧美人与善性xxx| 日韩av免费高清视频| 狠狠精品人妻久久久久久综合| 亚洲精品日韩在线中文字幕| av电影中文网址| 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 欧美精品亚洲一区二区| 成人亚洲欧美一区二区av| 国产精品免费大片| 亚洲av在线观看美女高潮| 纵有疾风起免费观看全集完整版| 视频中文字幕在线观看| 一级爰片在线观看| 国产欧美日韩综合在线一区二区| 免费黄色在线免费观看| 成年美女黄网站色视频大全免费| xxxhd国产人妻xxx| 国产又爽黄色视频| 亚洲色图 男人天堂 中文字幕 | 超碰97精品在线观看| 99视频精品全部免费 在线| 精品第一国产精品| 国产日韩欧美在线精品| 哪个播放器可以免费观看大片| 99久国产av精品国产电影| 久久av网站| 成人国语在线视频| 中文字幕制服av| 亚洲一区二区三区欧美精品| 亚洲欧美一区二区三区国产| freevideosex欧美| 热re99久久精品国产66热6| 亚洲美女黄色视频免费看| 日韩av不卡免费在线播放| 9热在线视频观看99| 中文天堂在线官网| a 毛片基地| 高清黄色对白视频在线免费看| www日本在线高清视频| 高清黄色对白视频在线免费看| 在线 av 中文字幕| 日韩av不卡免费在线播放| 曰老女人黄片| av在线观看视频网站免费| 97人妻天天添夜夜摸| 国产女主播在线喷水免费视频网站| 高清欧美精品videossex| 一区二区日韩欧美中文字幕 | 色视频在线一区二区三区| 久久久久久久久久成人| www.熟女人妻精品国产 | 国产视频首页在线观看| 国产不卡av网站在线观看| 人人妻人人添人人爽欧美一区卜| 日韩成人伦理影院| 美女xxoo啪啪120秒动态图| 亚洲欧美成人精品一区二区| 在线观看美女被高潮喷水网站| 亚洲精品,欧美精品| 三级国产精品片| 香蕉国产在线看| 欧美日韩亚洲高清精品| 一级毛片 在线播放| 在线观看一区二区三区激情| 成人国产av品久久久| 日韩欧美一区视频在线观看| 日本av手机在线免费观看| 90打野战视频偷拍视频| 9热在线视频观看99| 国产一区二区三区av在线| 十八禁高潮呻吟视频| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久| 国产亚洲欧美精品永久| 99国产精品免费福利视频| 咕卡用的链子| 国产黄色免费在线视频| 丝瓜视频免费看黄片| 2018国产大陆天天弄谢| 伦精品一区二区三区| 男男h啪啪无遮挡| 欧美xxⅹ黑人| 超碰97精品在线观看| 日日撸夜夜添| 蜜桃在线观看..| 男男h啪啪无遮挡| 边亲边吃奶的免费视频| 飞空精品影院首页| 亚洲国产欧美在线一区| 蜜桃在线观看..| 热re99久久国产66热| 肉色欧美久久久久久久蜜桃| 黄网站色视频无遮挡免费观看| 国产欧美日韩综合在线一区二区| 亚洲三级黄色毛片| 伦理电影免费视频| 久久久久国产网址| 国产片特级美女逼逼视频| 亚洲激情五月婷婷啪啪| 晚上一个人看的免费电影| 中国三级夫妇交换| 午夜福利,免费看| 精品少妇内射三级| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品古装| 99热网站在线观看| 欧美变态另类bdsm刘玥| 毛片一级片免费看久久久久| 男女下面插进去视频免费观看 | 色吧在线观看| 国产伦理片在线播放av一区| 一本久久精品| 国产黄频视频在线观看| 亚洲国产精品国产精品| 国产精品一区二区在线不卡| 亚洲国产日韩一区二区| 国内精品宾馆在线| 国产熟女午夜一区二区三区| 成人综合一区亚洲| 日韩成人av中文字幕在线观看| 中文字幕人妻丝袜制服| 妹子高潮喷水视频| 国产精品人妻久久久影院| 午夜福利,免费看| 亚洲欧美清纯卡通| 制服诱惑二区| 国产高清三级在线| 日韩成人av中文字幕在线观看| 欧美xxⅹ黑人| 亚洲国产欧美日韩在线播放| 中国三级夫妇交换| 在线精品无人区一区二区三| 色婷婷久久久亚洲欧美| 波多野结衣一区麻豆| 欧美97在线视频| 亚洲精品av麻豆狂野| 国产精品久久久久久久电影| 国产无遮挡羞羞视频在线观看| 十分钟在线观看高清视频www| 人妻一区二区av| 热99国产精品久久久久久7| 黄片无遮挡物在线观看| 欧美成人午夜免费资源| 成人影院久久| 中文字幕人妻丝袜制服| 久热久热在线精品观看| 亚洲综合色网址| 日本欧美视频一区| 日本av手机在线免费观看| 男女下面插进去视频免费观看 | 啦啦啦在线观看免费高清www| 久久鲁丝午夜福利片| 精品一区二区三区视频在线| 视频区图区小说| 亚洲精品一二三| 欧美人与性动交α欧美软件 | av在线老鸭窝| 91在线精品国自产拍蜜月| 久久久久久久久久久久大奶| 久久精品国产鲁丝片午夜精品| 伦理电影免费视频| 全区人妻精品视频| 国产精品久久久久久久久免| 亚洲综合色网址| 性高湖久久久久久久久免费观看| 99热6这里只有精品| 亚洲成国产人片在线观看| 欧美+日韩+精品| 下体分泌物呈黄色| 极品人妻少妇av视频| 人妻一区二区av| av女优亚洲男人天堂| 精品一区二区三区四区五区乱码 | 亚洲成国产人片在线观看| 日本黄色日本黄色录像| 国产精品99久久99久久久不卡 | 久久99精品国语久久久| 国产成人精品一,二区| 卡戴珊不雅视频在线播放| 国产福利在线免费观看视频| 女人被躁到高潮嗷嗷叫费观| 777米奇影视久久| 欧美激情国产日韩精品一区|