趙帆, 楊澤
北京大學醫(yī)學部第五臨床醫(yī)學院, 衛(wèi)生部北京醫(yī)院老年醫(yī)學研究所, 北京 100730
前列腺癌的DNA甲基化及其臨床應用
趙帆, 楊澤
北京大學醫(yī)學部第五臨床醫(yī)學院, 衛(wèi)生部北京醫(yī)院老年醫(yī)學研究所, 北京 100730
目前認為惡性腫瘤的形成是遺傳和表觀遺傳機制共同作用的結果。表觀遺傳機制包括DNA甲基化、組蛋白修飾和 miRNA。DNA異常甲基化(高甲基化和低甲基化)是前列腺癌最具特征的表觀遺傳改變, 它能夠導致基因組不穩(wěn)定, 調控基因的異常表達, 在前列腺癌的形成和發(fā)展中起到重要作用。同時, DNA甲基化作為前列腺癌表觀遺傳研究的一個熱點, 為臨床前列腺癌的早期診斷、預后評估及藥物治療提供新的方法和途徑。文章根據前列腺癌的 DNA高甲基化和低甲基化的最新研究成果闡述了前列腺癌形成的表觀遺傳學機制, 并且討論了它們在前列腺癌臨床轉化方面的最新研究進展。
前列腺癌; DNA 高甲基化; DNA 低甲基化
前列腺癌是老年男性最常見的惡性腫瘤之一。目前, 前列腺癌已成為中老年男性癌癥發(fā)病的第 2大病因, 位居男性癌癥致死人數的第6位[1]。前列腺癌的發(fā)病機制較為復雜, 目前認為遺傳和表觀遺傳機制共同作用導致前列腺癌的發(fā)生、發(fā)展, 其中表觀遺傳在前列腺癌的形成中起到重要的作用。表觀遺傳是指在染色體 DNA序列不發(fā)生改變的情況下產生的一種可穩(wěn)定遺傳的表型[2]。表觀遺傳機制包括DNA甲基化、組蛋白修飾和miRNA, 它們分別通過轉錄前和轉錄后控制基因表達, 其中DNA甲基化在前列腺癌表觀遺傳機制研究中成果最多, 也最為引人注目。在哺乳動物基因組中, DNA甲基化通常發(fā)生在 CpG雙核苷酸的胞嘧啶上, 由硫-腺苷-甲硫氨酸(S-adenosylmethionine, SAM)提供甲基供體,在DNA甲基轉移酶(DNA mthyltransferase, DNMT)的催化下, 將甲基轉移到CpG雙核苷酸胞嘧啶的第5個碳原子上。CpG不是隨機分布的, 它最常見于基因組CpG島的位置, 哺乳動物中一半以上的基因都含有CpG島, 大部分CpG島位于基因啟動子、非編碼區(qū)和第一外顯子, 且在正常細胞內不發(fā)生甲基化[3,4]。前列腺癌中 DNA異常甲基化主要表現為基因組廣泛低甲基化和局部基因啟動子區(qū)域的高甲基化。DNA異常甲基化發(fā)生在前列腺癌的形成過程中, 且DNA甲基化能夠通過藥物發(fā)生逆轉, 因此, 前列腺癌 DNA甲基化的早期篩查及前列腺癌去甲基化藥物的臨床應用, 可能會為臨床早期診斷和治療前列腺癌提供新的思路。
本文主要闡述了前列腺癌表觀遺傳機制中 DNA異常甲基化的最新研究成果以及前列腺癌 DNA異常甲基化在臨床轉化中的應用及存在的問題。
基因組中 DNA高甲基化常發(fā)生于基因的啟動子區(qū)域, 即富含CpG的CpG島區(qū)域。這些區(qū)域在正常細胞中通常是非甲基化的。這些基因主要參與激素應答, 細胞增殖、遷移和侵襲, DNA修復及轉錄調控等(表1)?;騿幼覦NA高甲基化致使相關基因表達沉默是前列腺腫瘤形成的一個重要原因。根據它們的功能和信號通路不同, 主要包括以下相關基因:
1.1 激素應答相關基因
雄激素受體(Androgen receptor, AR)是類固醇激素受體家族的一個成員, 與雄激素結合后與輔助蛋白分離進入細胞核內, 刺激雄激素應答基因的轉錄。5-氮脫氧胞苷(5-aza-CdR)可逆轉前列腺癌干細胞由AR基因啟動子DNA高甲基化導致的表達沉默, AR表達上調可降低前列腺癌干細胞特性, 誘導癌細胞的增殖和分化[5]。視黃酸受體 β(Retinoic acid receptor beta, RARB)是甲狀腺類固醇激素受體家族成員之一, 它與具有生物活性的維生素 A-視黃酸結合, 參與細胞生長和分化及胚胎形成過程中的信號轉導。RARB基因啟動子區(qū)域DNA高甲基化可發(fā)生在多個腫瘤的形成過程中, 如前列腺癌[6,7]、乳腺癌[8]、肺癌[9]、食管癌[10]、甲狀腺癌[11]、膀胱癌[12]、結直腸癌[13]、惡性膠質瘤[14]、鼻咽癌[15]等。因此, 我們推斷該基因可能在多個腫瘤形成過程中參與調節(jié)腫瘤形成的共同傳導途徑。G蛋白偶聯受體(G protein coupling receptors, GPCRs)能夠刺激AR的雄激素非依賴性激活, 是導致激素難治性前列腺癌的發(fā)生的重要因素。G 蛋白信號調節(jié)因子 2 (Regulator of G-protein signaling 2, RGS2)是一種GTP酶激活蛋白,能夠抑制 GPCRs, 介導骨髓細胞分化, 可能參與白血病的形成。RGS2基因啟動子DNA高甲基化異常能夠導致雄激素非依賴性前列腺癌細胞生長, 表明RGS2基因可能通過調控GPCRs參與AR反式激活通路[16]。ATP結合盒亞家族成員 1(ATP-binding cassette, sub-family A, member 1, ABCA1)是存在于細胞膜表面的外流性轉運蛋白, 能夠轉運細胞內多余的膽固醇, 在維持細胞膽固醇穩(wěn)態(tài)方面起到重要作用。ABCA1基因啟動子DNA高甲基化導致基因表達沉默, 它能使前列腺細胞內的膽固醇升高, 雄激素合成增加, 后者通過AKT信號通路促進前列腺癌的惡性進展[17]。
1.2 抑癌基因
在前列腺癌DNA高甲基化研究中, 最常見的是抑癌基因啟動子 DNA高甲基化。癌甲基化蛋白 1 (Hypermethylated in cancer 1, HIC1)基因表達一種轉錄阻抑蛋白, 在細胞中發(fā)揮生長調控和抑癌基因的作用。前列腺癌細胞系、前列腺組織和血漿中均發(fā)現HIC1基因啟動子DNA高甲基化, 在前列腺癌細胞異種移植的小鼠體內誘導表達沉默的 HIC1基因激活, 可以觀察到它具有抑制前列腺腫瘤生長、遷移和侵襲的作用[18,19]。結腸腺瘤性息肉 (Adeno-matous polyposis coli, APC) 基因表達一種WNT信號通路拮抗劑, 它參與細胞的遷移、侵襲、轉錄激活和細胞凋亡, 是一種常見的抑癌基因, 該基因突變常導致家族性結腸腺瘤性息肉病。APC基因啟動子區(qū)域 DNA高甲基化在前列腺患者組織中常見[20],且甲基化程度與前列腺癌腫瘤分期和Glison評分呈正相關[21]。WNT抑制因子1(WNT inhibitory factor 1, WIF1) 基因編碼一種胞外信號分子, 能夠抑制WNT蛋白, 參與胚胎發(fā)育。該基因啟動子DNA高甲基化發(fā)生在大多數前列腺癌細胞系中, 體外誘導PC-3細胞系表達 WIF1, 可降低細胞遷移和侵襲能力, 上調E-鈣粘素(E-cadherin, CDH1)、角蛋白-8,18 (Keratin-8 and-18, KRT8,18)的表達, 從而抑制上皮細胞向間充質細胞轉化。在異種移植小鼠模型發(fā)現WIF1表達升高能夠抑制前列腺腫瘤生長[22]。原鈣粘附蛋白10(Protocadherin 10, PCDH10)基因屬于原鈣黏蛋白家族成員, 為抑癌基因, 編碼鈣粘素相關蛋白受體, 參與腦內特定細胞粘附及其功能聯系, 也參與前列腺癌的發(fā)生、發(fā)展[23]。
表1 前列腺癌中啟動子區(qū)域發(fā)生DNA高甲基化的基因
1.3 信號轉導基因
WNT信號通路過度激活與腫瘤發(fā)生和腫瘤侵襲相關, 分泌性卷曲相關蛋白 2(Secreted frizzledrelated protein 2, SFRP2)基因在WNT信號通路中能夠抑制該信號通路過度激活。SFRP2基因啟動子DNA高甲基化在前列腺癌組織中的發(fā)生率明顯高于癌旁、高分級前列腺上皮內瘤和前列腺增生組織[18,24]。Ras相關域家族蛋白 1(Ras association domain family member1, RASSF1)基因編碼一種與Ras效應蛋白相似的蛋白, 該基因啟動子DNA 高甲基化可在多個腫瘤組織中檢測到, 如前列腺癌[21]、乳腺癌[25]、膀胱癌[26]、肝癌[27]、非小細胞肺癌[28]、卵巢癌[29]等, 該基因同 RARB基因一樣, 在腫瘤形成過程中參與其共同通路的調節(jié)。配對樣同源域轉錄因子 2(Paired-like homeodomain 2, PITX2)基因表達一種轉錄因子, 調控原骨膠原賴氨酸羥化酶(Procollagenlysyl hydroxylase)基因的表達, 在促生長激素細胞和催乳素細胞的末端分化中發(fā)揮作用,同時也參與眼、牙齒和腹部器官的發(fā)育。在前列腺癌細胞系P69和M12中PITX2基因啟動子區(qū)域均被甲基化, 它可能作為AR和IGF-1R基因上游的調節(jié)因子, 通過異常調節(jié)AR和IGF1-R通路, 影響前列腺細胞的正常生長[30]。胰島素樣生長因子蛋白7(Insulin-like growth factor binding protein 7, IGFBP7)能夠與胰島素生長因子(Insulin-like growth factor, IGF)結合, 參與前列環(huán)素的合成及細胞粘附。IGFBP7基因啟動子DNA高甲基化在多種前列腺癌細胞系和組織中檢測到[31], 但目前其作用機制尚不清楚。
1.4 DNA修復基因
谷胱甘肽 S-轉移酶 1(Glutathione S-transferase pi 1, GSTP1)基因, 屬于谷胱甘肽S-轉移酶基因家族成員, 它通過催化疏水性和親電性基團與還原型谷胱甘肽結合發(fā)揮細胞解毒作用。在對25例行前列腺切除術的前列腺癌、癌旁基因甲基化水平評估后,發(fā)現GSTP1基因的甲基化水平在癌組織中明顯高于癌旁組織[20]。研究發(fā)現:前列腺癌細胞內GSTP1基因啟動子 DNA甲基化所致的表達沉默使胞內活性氧物質(ROS)聚集, DNA損傷標記物——胞內羥基脫氧鳥苷(8-oxo-2′-deoxogunosine, 8-OHdG)增加, GSTP1基因表達缺失可增加正常前列腺細胞對氧化應激誘導的DNA損傷的敏感性, 從而導致前列腺癌形成[32]。
1.5 miRNA
miRNA是內源性非編碼的 RNA, 能夠與靶mRNA3′-UTR(Untranslated region)部分互補結合抑制其翻譯或誘導特定的靶mRNA降解。前列腺癌中部分miRNA的異常調控也是因為表達miRNA的基因啟動子區(qū)域發(fā)生DNA高甲基化。在前列腺癌中啟動子區(qū)域DNA高甲基化導致miR-31表達沉默, AR表達升高, 可能是前列腺癌的惡性進展病因學機制之一[33]。miR-34b和miR-23b都具有抑制細胞增殖、遷移和侵襲, 以及 EMT(上皮間質轉化)的作用, miR-34b和 miR-23b基因高甲基化導致其表達降低,原癌基因 Scr激酶表達升高, 前列腺腫瘤細胞惡性增殖, 導致患者復發(fā)生存期縮短[34,35]。此外, miR-205、miR-29a、miR-1256、miR-124、miR-26a、miR-132、miR-145基因高甲基化也參與前列腺癌形成[36~41]。
1.6 其他
互作蛋白1樣細絲蛋白A(Filamin A interacting protein 1-like, FILIP1L)基因表達一種細胞血管內皮活性調控因子, FILIP1L基因啟動子高甲基化在前列腺癌中常見, 可能與前列腺癌形成過程中腫瘤血管的形成相關[42]。甲基胞嘧啶雙加氧酶 TET1(Tetmethylcytosinedioxygenase 1, TET1)基因表達參與胞嘧啶脫甲基的脫甲基酶。TET1基因啟動子DNA高甲基化, 其 mRNA表達降低, 能夠下調金屬蛋白酶抑制劑1、2(Tissue inhibitor of metalloproteinase 1 and 2, TIMP1、TIMP2)表達, 從而促進前列腺癌轉移、侵襲[43]。死亡相關蛋白激酶1(Death-associated protein kinase1, DAPK1)基因參與γ干擾素(INF-γ)誘導的程序性細胞凋亡。DAPK1基因啟動子區(qū)域DNA甲基化在前列腺癌組織中的發(fā)生率明顯高于正常前列腺組織[18]。泛素羧基末端水解酶L1(Ubiquitin carboxyl-terminal esterase L1, UCHL1)基因參與泛素化過程, 能夠水解泛素羧基末端的甘氨酸, 同時參與細胞增殖和分化。UCHL1基因啟動子DNA甲基化在前列腺癌組織中的發(fā)生率為90%, 癌旁組織為15%,差異明顯[44]。此外, 激肽釋放酶 6、10(Kallikreinrelated peptidase 6,10, KLK6,10)、DNA結合蛋白抑制因子4(Inhibitor of DNA binding 4, ID4)、鋅指蛋白132(Zinc finger protein 132, ZNF132)、A型激酶鉚釘蛋白12(A-kinase anchor protein 12, AKAP12)、纖維蛋白樣表皮生長因子細胞外基質蛋白 1(EGF containing fibulin-like extracellular matrix protein 1, EFEMP1)等基因在前列腺癌細胞中也發(fā)生 DNA高甲基化, 可能通過其他途徑參與前列腺癌的發(fā)生、發(fā)展[45~47], 具體機制目前尚不清楚。
盡管前列腺癌基因組中的部分基因啟動子區(qū)域DNA常發(fā)生CpG高甲基化, 但是在前列腺癌基因組中, CpG 位點低甲基化卻占明顯優(yōu)勢[62], 在前列腺癌基因組內呈現廣泛的低甲基化, 而且DNA低甲基化并非隨機的, 這些CpG位點在正常前列腺組織中為低甲基化, 它們常位于印記基因、逆轉錄轉座子、內源性病毒序列、基因組的內含子、基因間區(qū)以及基因組中散在分布的重復序列或端粒的重復序列內[63]。基因組中該位置的CpG位點低甲基化會導致印記基因過表達、染色質結構改變、表觀遺傳重組及基因組不穩(wěn)定, 在前列腺癌的發(fā)病機制中同樣發(fā)揮重要作用。目前對前列腺癌DNA低甲基化的研究相對較少, 可能由于DNA低甲基化通常發(fā)生在重復元件內, 且DNA序列會有部分重疊, 因此較難在實驗中研究。
長散在核重復序列(Long interspersed nuclear element1, LINE1)為基因組內散在分布的重復序列,在正常細胞基因組內通常是高甲基化的。在前列腺癌樣本中發(fā)生低甲基化, 且更常見于轉移性前列腺癌[64]。此外, 胰島素樣生長因子(Insulin-like growth factor 2, IGF2)基因為印記基因, 其父源等位基因表達相應蛋白, 參與機體的生長和發(fā)育。IGF2基因低甲基化導致兩個等位基因同時表達, 前列腺癌中IGF2基因印記控制區(qū)尤其是CTCF結合域的甲基化水平與前列腺增生組織有顯著性差異[65,66]。三葉因子(Trefoil factor, TFF)基因在胃黏膜中表達一種穩(wěn)定的分泌性蛋白。前列腺癌細胞系中TFF1、3基因甲基化水平明顯低于正常前列腺細胞, 但它們在前列腺腫瘤的形成中的作用尚不清楚[67]。
表觀遺傳標記物, 尤其是DNA甲基化, 可能會成為未來臨床檢測和診斷前列腺癌的新的方法和手段, 主要因為表觀遺傳改變在前列腺癌中普遍存在,而且在前列腺腫瘤形成前期就已經發(fā)生, 有利于臨床早期篩查和檢測。其次, 相較于 RNA檢測來說,基因組DNA的檢測相對穩(wěn)定, 而且檢測方法多樣。再次, 隨著DNA甲基化檢測技術的不斷發(fā)展, 標準化的高通量檢測平臺的建立能夠用于多個樣本DNA 甲基化多個位點的檢測, 有利于臨床開展DNA甲基化檢測。另外, DNA甲基化作為標志物檢測手段多樣, 不僅在腫瘤組織中檢測, 還可以在體液(如尿液、血液)中檢測。
目前, 很多研究致力于相關基因啟動子DNA高甲基化作為前列腺癌生物標志物的臨床檢測。定量焦磷酸測序的方法對52例前列腺增生組織和97例前列腺癌組織中APC基因和GSTP1基因兩種DNA甲基化水平進行分析, 發(fā)現區(qū)分前列腺癌和前列腺增生的敏感性為92.8%, 特異性為100%[68], 在對30多個前列腺癌GSTP1基因啟動子DNA高甲基化研究進行Meta分析, 發(fā)現GSTP1基因啟動子DNA甲基化檢測能夠提高臨床前列腺癌診斷特異性[69]。APC基因 DNA甲基化檢測可以作為首次活檢陰性的前列腺癌高危人群再次活檢的指標[70]。對34例早期前列腺癌的患者的尿沉渣進行 DNA甲基化分析發(fā)現, RARB和RASSF1基因啟動子DNA高甲基化的檢出率分別為71%和44%[6]。此外, 聯合檢測EVX1和成纖維細胞生長因子1(Fibroblast growth factor 1, FGF1)基因啟動子DNA高甲基化可進一步鑒別出前列腺穿刺活檢結果為陰性的前列腺癌患者, 減少檢查者不必要的痛苦, 也能夠降低檢測成本和穿刺后并發(fā)癥[71]。
基因 DNA甲基化檢測作為臨床前列腺癌的早期診斷, 可以提高前列腺癌診斷特異性, 為首次活檢陰性的前列腺癌患者是否二次活檢提供臨床診斷參考。但前列腺癌DNA甲基化檢測作為新的診斷方法也有需要待解決的問題:一是如何選擇前列腺癌特異性的DNA異常甲基化基因, 有利于提高診斷特異性; 二是如何提高前列腺癌特異性的DNA異常甲基化基因檢測的敏感性。
與常見的遺傳改變不同, 表觀遺傳學的改變不涉及到DNA序列中堿基的改變。這種表觀遺傳學的可行性使它們有望成為潛在的藥物治療靶。目前主要的DNMT抑制劑分為兩大類:核苷類似物和非核苷類似物。它們通過抑制DNMT來恢復相關基因的表達功能, 從而達到治療前列腺癌的目的。前者主要有 5-氮雜胞苷、5-氮脫氧胞苷和 zebularine(Zeb,化學名 1-(β-D-呋喃核糖苷)-1,2-二氫嘧啶-2-酮), 前兩種藥物已經被美國FDA批準用于治療骨髓異常增生綜合征(MDS)。Zebularine能夠使LNCaP和DU145前列腺癌細胞系GSTP1基因發(fā)生去甲基化, 提高其他化療藥物的抗腫瘤活性[72]。
后者主要包括從植物中提取化學物質如大豆異黃酮、姜黃素、茶多酚[73]、mahanine[74]、kazinol Q[75]、disulfiram[76]等, 最新合成的甲基化抑制劑RG108[77]及其他化學物質如反式維甲酸等。大豆異黃酮能夠抑制前列腺癌細胞系中的 DNMT, 使多個基因啟動子DNA發(fā)生去甲基化, 抑制前列腺癌細胞生長和侵襲的作用[37,78,79]。在TRAMP小鼠前列腺癌表觀遺傳學的研究中發(fā)現, 姜黃素可以使啟動子高甲基化的Nrf2基因發(fā)生去甲基化[80]。全反式維甲酸能夠使R陰性的前列腺細胞系 DU145中表達沉默的HOXB13基因的甲基化水平降低, 從而抑制細胞增殖[81]。
上述DNMT抑制劑在前列腺癌甲基化的研究中主要應用于細胞系, 之所以沒有應用于臨床, 一是目前體外研究結果還未對DNMT抑制劑在抑制前列腺癌 DNA高甲基化方面提供一個可靠且公認的生物學機制; 二是目前還沒有一種DNMT抑制劑為靶向治療, DNMT抑制劑的應用可能會干擾正常組織及細胞功能, 這種長期作用的結果是未知的; 三是在臨床前期實驗中, 這些藥物對實體腫瘤細胞的細胞毒性較大及反應率較低, 存在的藥物副作用遠遠大于藥物的治療作用, 因此限制了DNMT抑制劑在前列腺癌臨床治療中的應用。
DNA甲基化檢測對前列腺癌經臨床治療后疾病的預后預測也同樣重要。對267例根治性前列腺癌切除術患者和 111例前列腺癌保守治療患者組織APN基因啟動子區(qū)域甲基化分析、免疫組化分析及隨訪研究發(fā)現, APN基因啟動子區(qū)域高甲基化明顯縮短前列腺癌患者的復發(fā)生存期和腫瘤生存期[57]。經根治性前列腺癌切除術患者通過使用 RT-PCR方法檢測PIX2基因高甲基化, 能夠預測前列腺癌患者PSA 復發(fā), 是一個潛在的前列腺癌預后標志物[82]。低Gleason評分患者中HSPB1基因甲基化可以作為不良預后的生物標志物[61]。此外, 術前PSA水平低的前列腺癌患者 miR-205基因啟動子高甲基化可能與PSA復發(fā)相關[36]。EVX1基因在前列腺癌中能夠預測PSA復發(fā)[55]。
表觀遺傳改變, 尤其是基因啟動子區(qū)域的DNA高甲基化是前列腺癌的常見特征, 在前列腺癌的發(fā)生和發(fā)病機制的進展中起到重要作用。但是, 前列腺癌 DNA異常甲基化研究還存在很多問題。第一,大部分研究只是針對前列腺癌中某個特定基因啟動子區(qū)域中的一個或幾個 CpG位點進行甲基化分析,整個基因啟動子區(qū)域的甲基化水平研究不夠充分;第二, 現存的技術手段很難對前列腺癌DNA異常甲基化進行精確的定量研究; 第三, 需要更多的前列腺癌組織樣本進行大樣本的重復驗證; 第四, 表觀遺傳中DNA甲基化、組蛋白修飾及miRNA三者在癌癥的發(fā)生、發(fā)展中是相互作用的, 因此需要更多更廣泛的研究全面的闡述前列腺癌表觀遺傳機制;此外, 遺傳和表觀遺傳共同作用導致前列腺癌的發(fā)生, 因此, 如何將遺傳和表觀遺傳結合起來共同解釋前列腺癌發(fā)病機制也是前列腺癌研究需解決的一個問題。
隨著科學技術及研究水平的不斷提高, 我們相信通過獲得大量的前列腺腫瘤特異性的遺傳和表觀遺傳學改變, 尤其是前列腺癌DNA甲基化的改變, 從而對前列腺癌的發(fā)病機制進行更全面的闡述, 并以此作為生物學標志物, 可能會為前列腺癌的臨床早期檢測、診斷、預后評估及隨訪提供新的方法和手段。
[1] Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, De Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R,Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, Macintyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, Mcanulty JH, Mcdermott MM, Mcgrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, 3rd, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De Leon FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, Almazroa MA, Memish ZA. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859): 2095–2128.
[2] Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev, 2009, 23(7): 781–783.
[3] Bird AP. CpG-rich islands and the function of DNA methylation. Nature, 1986, 321(6067): 209–213.
[4] Cooper DN, Krawczak M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Genet, 1989, 83(2): 181–188.
[5] Tian J, Lee SO, Liang L, Luo J, Huang CK, Li L, Niu YJ, Chang C. Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2′-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem, 2012, 287(47): 39954–39966.
[6] Daniūnaite K, Berezniakovas A, Jankevi?ius F, Laurinavi?ius A, Lazutka JR, Jarmalaite S. Frequent methylation of RASSF1 and RARB in urine sediments from patients with early stage prostate cancer. Medicina (Kaunas), 2011, 47(3): 147–153.
[7] Tang DL, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, Trudeau S, Rundle A, Belinsky SA, Rybicki BA. Methylation of the RARB gene increases prostate cancer risk in black Americans. J Urol, 2013, 190(1): 317–324.
[8] Mirza S, Sharma G, Parshad R, Srivastava A, Gupta SD, Ralhan R. Clinical significance of promoter hypermethylation of ERbeta and RARbeta2 in tumor and serum DNA in Indian breast cancer patients. Ann Surg Oncol, 2012, 19(9): 3107–3115.
[9] Feng QH, Hawes SE, Stern JE, Wiens L, Lu H, Dong ZM, Jordan CD, Kiviat NB, Vesselle H. DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev, 2008, 17(3): 645–654.
[10] 王長春, 毛偉敏, 凌志強. 維甲酸受體 β2和 p16INK4α基因甲基化在食管鱗癌患者腫瘤組織和外周血中的表達. 中華腫瘤雜志, 2012, 34(6): 441–445.
[11] Brait M, Loyo M, Rosenbaum E, Ostrow KL, Markova A, Papagerakis S, Zahurak M, Goodman SM, Zeiger M, Sidransky D, Umbricht CB, Hoque MO. Correlation between BRAF mutation and promoter methylation of TIMP3, RARbeta2 and RASSF1A in thyroid cancer. Epigenetics, 2012, 7(7): 710–719.
[12] Chan MW, Chan LW, Tang NL, Tong JH, Lo KW, Lee TL, Cheung HY, Wong WS, Chan PS, Lai FM, To KF. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res, 2002, 8(2): 464–470.
[13] Miladi-Abdennadher I, Abdelmaksoud-Damak R, Ayadi L, Khabir A, Frikha F, Kallel L, Amouri A, Frikha M, Sellami-Boudawara T, Gargouri A, Mokdad-Gargouri R. Hypermethylation of RARbeta2 correlates with high COX-2 expression and poor prognosis in patients with colorectal carcinoma. Tumour Biol, 2010, 31(5): 503–511.
[14] Piperi C, Themistocleous MS, Papavassiliou GA, Farmaki E, Levidou G, Korkolopoulou P, Adamopoulos C, Papavassiliou AG. High incidence of MGMT and RARbeta promoter methylation in primary glioblastomas: association with histopathological characteristics, inflammatory mediators and clinical outcome. Mol Med, 2010, 16(1–2): 1–9.
[15] Fendri A, Masmoudi A, Khabir A, Sellami-Boudawara T, Daoud J, Frikha M, Ghorbel A, Gargouri A, Mokdad-Gargouri R. Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates withlymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther, 2009, 8(5): 444–451.
[16] Wolff DW, Xie Y, Deng CS, Gatalica Z, Yang MJ, Wang B, Wang JC, Lin MF, Abel PW, Tu YP. Epigenetic repression of regulator of G-protein signaling 2 promotes androgenindependent prostate cancer cell growth. Int J Cancer, 2012, 130(7): 1521–1531.
[17] Lee BH, Taylor MG, Robinet P, Smith JD, Schweitzer J, Sehayek E, Falzarano SM, Magi-Galluzzi C, Klein EA, Ting AH. Dysregulation of cholesterol homeostasis in human prostate cancer through loss of ABCA1. Cancer Res, 2013, 73(3): 1211–1218.
[18] Kilinc D, Ozdemir O, Ozdemir S, Korgali E, Koksal B, Uslu A, Gultekin YE. Alterations in promoter methylation status of tumor suppressor HIC1, SFRP2, and DAPK1 genes in prostate carcinomas. DNA Cell Biol, 2012, 31(5): 826–832.
[19] Zheng JH, Wang JL, Sun XQ, Hao MG, Ding T, Xiong D, Wang XM, Zhu Y, Xiao G, Cheng GC, Zhao MZ, Zhang J, Wang JH. HIC1 modulates prostate cancer progression by epigenetic modification. Clin Cancer Res, 2013, 19(6): 1400–1410.
[20] Steiner I, Jung K, Schatz P, Horns T, Wittschieber D, Lein M, Dietel M, Erbersdobler A. Gene promoter methylation and its potential relevance in early prostate cancer diagnosis. Pathobiology, 2010, 77(5): 260–266.
[21] Liu LY, Kron KJ, Pethe VV, Demetrashvili N, Nesbitt ME, Trachtenberg J, Ozcelik H, Fleshner NE, Briollais L, Van Der Kwast TH, Bapat B. Association of tissue promoter methylation levels of APC, TGFbeta2, HOXD3 and RASSF1A with prostate cancer progression. Int J Cancer, 2011, 129(10): 2454–2462.
[22] Yee DS, Tang YX, Li XS, Liu ZB, Guo Y, Ghaffar S, Mcqueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi XL. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer, 2010, 9: 162.
[23] Li ZS, Li WJ, Xie J, Wang Y, Tang AF, Li XX, Ye JX, Gui YT, Cai ZM. Epigenetic inactivation of PCDH10 in human prostate cancer cell lines. Cell Biol Int, 2011, 35(7): 671–676.
[24] Perry AS, O'hurley G, Raheem OA, Brennan K, Wong S, O'grady A, Kennedy AM, Marignol L, Murphy TM, Sullivan L, Barrett C, Loftus B, Thornhill J, Hewitt SM, Lawler M, Kay E, Lynch T, Hollywood D. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. Int J Cancer, 2013, 132(8): 1771–1780.
[25] Xu J, Shetty PB, Feng WW, Chenault C, Bast RC Jr, Issa JP, Hilsenbeck SG, Yu YH. Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome. BMC Cancer, 2012, 12: 243.
[26] Gao TY, Wang SK, He BS, Pan YQ, Song GQ, Gu L, Chen LP, Nie ZL, Xu YQ, Li R. The association of RAS association domain family Protein1A (RASSF1A) methylation states and bladder cancer risk: a systematic review and meta-analysis. PLoS ONE, 2012, 7(11): e48300.
[27] Feng Y, Xue WJ, Li P, Sha ZY, Huang H, Rui L, Li HX, Mao QS. RASSF1A hypermethylation is associated with aflatoxin B1 and polycyclic aromatic hydrocarbon exposure in hepatocellular carcinoma. Hepatogastroenterology, 2012, 59(118): 1883–1888.
[28] Wang J, Wang BC, Chen X, Bi JW. The prognostic value of RASSF1A promoter hypermethylation in non-small cell lung carcinoma: a systematic review and meta-analysis. Carcinogenesis, 2011, 32(3): 411–416.
[29] Bondurant AE, Huang ZQ, Whitaker RS, Simel LR, Berchuck A, Murphy SK. Quantitative detection of RASSF1A DNA promoter methylation in tumors and serum of patients with serous epithelial ovarian cancer. Gynecol Oncol, 2011, 123(3): 581–587.
[30] Schayek H, Bentov I, Jacob-Hirsch J, Yeung C, Khanna C, Helman LJ, Plymate SR, Werner H. Global methylation analysis identifies PITX2 as an upstream regulator of the androgen receptor and IGF-I receptor genes in prostate cancer. Horm Metab Res, 2012, 44(7): 511–519.
[31] Sullivan L, Murphy TM, Barrett C, Loftus B, Thornhill J, Lawler M, Hollywood D, Lynch T, Perry AS. IGFBP7 promoter methylation and gene expression analysis in prostate cancer. J Urol, 2012, 188(4): 1354–1360.
[32] Kanwal R, Pandey M, Bhaskaran N, Maclennan GT, Fu PF, Ponsky LE, Gupta S. Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1. Mol Carcinog, 2014, 53(1): 8–18.
[33] Lin PC, Chiu YL, Banerjee S, Park K, Mosquera JM, Giannopoulou E, Alves P, Tewari AK, Gerstein MB, Beltran H, Melnick AM, Elemento O, Demichelis F, Rubin MA. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res, 2013, 73(3): 1232–1244.
[34] Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, Deng GR, Dahiya R. miRNA-34b inhibits prostate cancerthrough demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res, 2013, 19(1): 73–84.
[35] Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, Chang I, Yamamura S, Tanaka Y, Deng G, Dahiya R. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res, 2012, 72(24): 6435–6446.
[36] Hulf T, Sibbritt T, Wiklund ED, Patterson K, Song JZ, Stirzaker C, Qu W, Nair S, Horvath LG, Armstrong NJ, Kench JG, Sutherland RL, Clark SJ. Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene, 2013, 32(23): 2891–2899.
[37] Li YW, Kong DJ, Ahmad A, Bao B, Dyson G, Sarkar FH. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics, 2012, 7(8): 940–949.
[38] Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, Devere White RW. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene, 2013, 32(35): 4130–4138.
[39] Borno ST, Fischer A, Kerick M, Falth M, Laible M, Brase JC, Kuner R, Dahl A, Grimm C, Sayanjali B, Isau M, Rohr C, Wunderlich A, Timmermann B, Claus R, Plass C, Graefen M, Simon R, Demichelis F, Rubin MA, Sauter G, Schlomm T, Sultmann H, Lehrach H, Schweiger MR. Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov, 2012, 2(11): 1024–1035.
[40] Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, Croce N, Vandesompele J, Mestdagh P, Finazzi-Agro E, Levine AJ, Melino G, Bernardini S, Candi E. DNA methylation silences miR-132 in prostate cancer. Oncogene, 2013, 32(1): 127–134.
[41] Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng GR, Tanaka Y, Dahiya R. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis, 2011, 32(5): 772–778.
[42] Desotelle J, Truong M, Ewald J, Weeratunga P, Yang B, Huang W, Jarrard D. CpG island hypermethylation frequently silences FILIP1L isoform 2 expression in prostate cancer. J Urol, 2013, 189(1): 329–335.
[43] Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, Tsai CH, Chu CS, Jeng YM, Chen YT, Lin FM, Huang HD, Lu YY, Teng YC, Lin ST, Lin RK, Tang FM, Lee SB, Hsu HM, Yu JC, Hsiao PW, Juan LJ. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep, 2012, 2(3): 568–579.
[44] Ummanni R, Jost E, Braig M, Lohmann F, Mundt F, Barett C, Schlomm T, Sauter G, Senff T, Bokemeyer C, Sultmann H, Meyer-Schwesinger C, Brummendorf TH, Balabanov S. Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation. Mol Cancer, 2011, 10: 129.
[45] Olkhov-Mitsel E, Van Der Kwast T, Kron KJ, Ozcelik H, Briollais L, Massey C, Recker F, Kwiatkowski M, Fleshner NE, Diamandis EP, Zlotta AR, Bapat B. Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer. Epigenetics, 2012, 7(9): 1037–1045.
[46] Kim YJ, Yoon HY, Kim SK, Kim YW, Kim EJ, Kim IY, Kim WJ. EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling. Clin Cancer Res, 2011, 17(13): 4523–4530.
[47] Vinarskaja A, Goering W, Ingenwerth M, Schulz WA. ID4 is frequently downregulated and partially hypermethylated in prostate cancer. World J Urol, 2012, 30(3): 319–325.
[48] Gao TY, He BS, Pan YQ, Li R, Xu YQ, Chen LP, Nie ZL, Gu L, Wang SK. The association of retinoic acid receptor beta2(RARbeta2) methylation status and prostate cancer risk: a systematic review and meta-analysis. PLoS ONE, 2013, 8(5): e62950.
[49] Dumache R, Puiu M, Minciu R, Bardan R, David D, Tudor A, Bumbacila B. Retinoic acid receptor beta2 (RARbeta2): nonivasive biomarker for distinguishing malignant versus benign prostate lesions from bodily fluids. Chirurgia (Bucur), 2012, 107(6): 780–784.
[50] Yoon HY, Kim YW, Kang HW, Kim WT, Yun SJ, Lee SC, Kim WJ, Kim YJ. Pyrosequencing analysis of APC methylation level in human prostate tissues: A molecular marker for prostate cancer. Korean J Urol, 2013, 54(3): 194–198.
[51] Sharma P, Chinaranagari S, Patel D, Carey J, Chaudhary J. Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer. Cancer Med, 2012, 1(2): 176–186.
[52] Yaqinuddin A, Qureshi SA, Pervez S, Bashir MU, Nazir R, Abbas F. Frequent DNA hypermethylation at the RASSF1A and APC gene loci in prostate cancer patients of pakistani origin. ISRN Urol, 2013, 627249.
[53] 劉崗, 殷波, 宋永勝. 前列腺癌組織 RASSF2基因甲基化及蛋白表達的檢測及意義. 中華男科學雜志, 2013, 19(2): 107–110.
[54] Dansranjavin T, Wagenlehner F, Gattenloehner S, Steger K, Weidner W, Dammann R, Schagdarsurengin U. Epigenetic down regulation of RASSF10 and its possible clinical implication in prostate carcinoma. Prostate, 2012, 72(14): 1550–1558.
[55] Truong M, Yang B, Wagner J, Kobayashi Y, Rajamanickam V, Brooks J, Jarrard DF. Even-skipped homeobox 1 is frequently hypermethylated in prostate cancer and predicts PSA recurrence. Br J Cancer, 2012, 107(1): 100–107.
[56] Liu WW, Gong J, Hu J, Hu TH, Sun YF, Du JH, Sun CY, Guan M, Jiang HW, Lu Y. Quantitative assessment of AKAP12 promoter methylation in human prostate cancer using methylation-sensitive high-resolution melting: correlation with Gleason score. Urology, 2011, 77(4): 1006.e1–1006.e7.
[57] S?rensen KD, Abildgaard MO, Haldrup C, Ulh?i BP, Kristensen H, Strand S, Parker C, H?yer S, Borre M, ?rntoft TF. Prognostic significance of aberrantly silenced ANPEP expression in prostate cancer. Br J Cancer, 2013, 108(2): 420–428.
[58] Chiam K, Centenera MM, Butler LM, Tilley WD, Bianco-Miotto T. GSTP1 DNA methylation and expression status is indicative of 5-aza-2'-deoxycytidine efficacy in human prostate cancer cells. PLoS ONE, 2011, 6(9): e25634.
[59] Wu T, Giovannucci E, Welge J, Mallick P, Tang WY, Ho SM. Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br J Cancer, 2011, 105(1): 65–73.
[60] Mitsui Y, Shiina H, Hiraki M, Arichi N, Hiraoka T, Sumura M, Honda S, Yasumoto H, Igawa M. Tumor suppressor function of PGP9. 5 is associated with epigenetic regulation in prostate cancer--novel predictor of biochemical recurrence after radical surgery. Cancer Epidemiol Biomarkers Prev, 2012, 21(3): 487–496.
[61] Vasiljevi? N, Ahmad AS, Beesley C, Thorat MA, Fisher G, Berney DM, M?ller H, Yu Y, Lu YJ, Cuzick J, Foster CS, Lorincz AT. Association between DNA methylation of HSPB1 and death in low Gleason score prostate cancer. Prostate Cancer Prostatic Dis, 2013, 16(1): 35–40.
[62] Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene, 2002, 21(35): 5400–5413.
[63] De Smet C, Loriot A. DNA hypomethylation in cancer: Epigenetic scars of a neoplastic journey. Epigenetics, 2010, 5(3):
[64] Yegnasubramanian S, Haffner MC, Zhang YG, Gurel B, Cornish TC, Wu ZJ, Irizarry RA, Morgan J, Hicks J, Deweese TL, Isaacs WB, Bova GS, De Marzo AM, Nelson WG. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res, 2008, 68(21): 8954–8967.
[65] Paradowska A, Fenic I, Konrad L, Sturm K, Wagenlehner F, Weidner W, Steger K. Aberrant epigenetic modifications in the CTCF binding domain of the IGF2/H19 gene in prostate cancer compared with benign prostate hyperplasia. Int J Oncol, 2009, 35(1): 87–96.
[66] Bhusari S, Yang B, Kueck J, Huang W, Jarrard DF. Insulin-like growth factor-2 (IGF2) loss of imprinting marks a field defect within human prostates containing cancer. Prostate, 2011, 71(15): 1621–1630.
[67] Vestergaard EM, Nex? E, Torring N, Borre M, ?rntoft TF, S?rensen KD. Promoter hypomethylation and upregulation of trefoil factors in prostate cancer. Int J Cancer, 2010, 127(8): 1857–1865.
[68] Yoon HY, Kim SK, Kim YW, Kang HW, Lee SC, Ryu KH, Shon HS, Kim WJ, Kim YJ. Combined hypermethylation of APC and GSTP1 as a molecular marker for prostate cancer: quantitative pyrosequencing analysis. J Biomol Screen, 2012, 17(7): 987–992.
[69] Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W. The epigenetic promise for prostate cancer diagnosis. Prostate, 2012, 72(11): 1248–1261.
[70] Trock BJ, Brotzman MJ, Mangold LA, Bigley JW, Epstein JI, Mcleod D, Klein EA, Jones JS, Wang S, Mcaskill T, Mehrotra J, Raghavan B, Partin AW. Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU Int, 2012, 110(1): 56–62.
[71] Truong M, Yang B, Livermore A, Wagner J, Weeratunga P, Huang W, Dhir R, Nelson J, Lin DW, Jarrard DF. Using the epigenetic field defect to detect prostate cancer in biopsy negative patients. J Urol, 2013, 189(6): 2335–2341.
[72] Sabatino MA, Geroni C, Ganzinelli M, Ceruti R, Broggini M. Zebularine partially reverses GST methylation in prostate cancer cells and restores sensitivity to the DNA minor groove binder brostallicin. Epigenetics, 2013, 8(6): 656–665.
[73] Pandey M, Shukla S, Gupta S. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer, 2010, 126(11): 2520–2533.
[74] Agarwal S, Amin KS, Jagadeesh S, Baishay G, Rao PG, Barua NC, Bhattacharya S, Banerjee PP. Mahanine restoresRASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol Cancer, 2013, 12(1): 99.
[75] Weng JR, Lai IL, Yang HC, Lin CN, Bai LY. Identification of Kazinol Q, a Natural Product from Formosan Plants, as an Inhibitor of DNA Methyltransferase. Phytother Res, 2014, 28(1): 49–54.
[76] Lin JQ, Haffner MC, Zhang YG, Lee BH, Brennen WN, Britton J, Kachhap SK, Shim JS, Liu JO, Nelson WG, Yegnasubramanian S, Carducci MA. Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate, 2011, 71(4): 333–343.
[77] Graca I, Sousa E, Baptista T, Almeida M, Ramalho-Carvalho J, Palmeira C, Henrique R, Jerónimo C. Antitumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr Pharm Des, 2013.
[78] Rabiau N, Trraf HK, Adjakly M, Bosviel R, Guy L, Fontana L, Bignon YJ, Bernard-Gallon DJ. miRNAs differentially expressed in prostate cancer cell lines after soy treatment. In Vivo, 2011, 25(6): 917–921.
[79] Adjakly M, Bosviel R, Rabiau N, Boiteux JP, Bignon YJ, Guy L, Bernard-Gallon D. DNA methylation and soy phytoestrogens: quantitative study in DU-145 and PC-3 human prostate cancer cell lines. Epigenomics, 2011, 3(6): 795–803.
[80] Khor TO, Huang Y, Wu TY, Shu LM, Lee J, Kong AN. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol, 2011, 82(9): 1073–1078.
[81] Liu ZW, Ren GL, Shangguan CY, Guo LJ, Dong ZX, Li YY, Zhang WN, Zhao L, Hou PF, Zhang Y, Wang XL, Lu J, Huang BQ. ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene. PLoS ONE, 2012, 7(7): e40943.
[82] Dietrich D, Hasinger O, Ba?ez LL, Sun L, Van Leenders GJ, Wheeler TM, Bangma CH, Wernert N, Perner S, Freedland SJ, Corman JM, Ittmann MM, Lark AL, Madden JF, Hartmann A, Schatz P, Kristiansen G. Development and clinical validation of a real-time PCR assay for PITX2 DNA methylation to predict prostate-specific antigen recurrence in prostate cancer patients following radical prostatectomy. J Mol Diagn, 2013, 15(2): 270–279.
(責任編委: 朱衛(wèi)國)
DNA methylation of prostate cancer and clinical application
Fan Zhao, Ze Yang
The 5th Medical College of Peking University, Institute of Geriatrics, Chinese Ministry of Health, Beijing Hospital, Beijing 100730, China
It is well-known that the interation of both genetic and epigenetic mechanisms results in the formation of malignant tumor. Epigenetic mechanism includes DNA methylation, histone modifications, and miRNA regulation. DNA aberrant methylation (hypermethylation and hypomethylation), which leads to genomic instability and inappropriate gene expression, is the best-characterized alteration in prostate cancer. It plays an important role in the initiation and development of prostate cancer. Meanwhile, DNA methylation, as a hotspot in researches of epigenetics, would provide a new methodology and approach for early clinical diagnosis, prognosis and medication treatment of prostate cancer. According to recent studies on DNA hypermethylation and DNA hypomethylation, this review highlights the potential epigenetic mechanism of prostate cancer and discusses the latest research progress in clinical translation.
prostate cancer; DNA hypermethylation; DNA hypomethylation
2013-12-09;
2014-01-14
國家自然科學基金項目(編號:30972709, 81061120527, 81241082), 北京醫(yī)院重大基金項目(編號:BJ-2010-30), 衛(wèi)生部部屬醫(yī)院臨床學科重點項目(編號:01020101), 衛(wèi)生部行業(yè)基金項目(編號:201302008)和科技部十二五支撐計劃項目(編號:2012BAI10B01)資助
趙帆, 碩士研究生, 專業(yè)方向:醫(yī)學遺傳學。E-mail: zhaofan1219@163.com
楊澤, 研究員, 博士生導師, 研究方向:醫(yī)學遺傳學。E-mail: yang_ze@sina.com
10.3724/SP.J.1005.2014.0420
時間: 2014-3-20 14:48:59
URL: http://www.cnki.net/kcms/detail/11.1913.R.20140320.1448.001.html