高慧麗, 張廣宇, 段冉冉, 李燕飛, 王笑寒, 彭 濤, 關(guān)文娟, 賈延劼
(鄭州大學(xué)第一附屬醫(yī)院神經(jīng)內(nèi)科,河南鄭州 450052)
阿爾茨海默病小鼠模型中骨髓間充質(zhì)干細(xì)胞的神經(jīng)分化*
高慧麗, 張廣宇, 段冉冉, 李燕飛, 王笑寒, 彭 濤, 關(guān)文娟, 賈延劼△
(鄭州大學(xué)第一附屬醫(yī)院神經(jīng)內(nèi)科,河南鄭州 450052)
目的:探討淀粉樣前體蛋白(APP)轉(zhuǎn)基因小鼠(阿爾茨海默病小鼠模型)骨髓間充質(zhì)干細(xì)胞(MSCs)的神經(jīng)分化及其與參與調(diào)節(jié)干細(xì)胞分化的Notch1信號通路的關(guān)系,觀察分化的骨髓間充質(zhì)干細(xì)胞中自噬的變化。方法:實(shí)驗(yàn)分為APP轉(zhuǎn)基因小鼠組(APP組)和野生型小鼠組(WT組)。采用β-巰基乙醇誘導(dǎo)小鼠MSCs分化為神經(jīng)細(xì)胞;采用酶聯(lián)免疫吸附法(ELISA)檢測誘導(dǎo)后β淀粉樣蛋白40(Aβ40)和42(Aβ42)的水平;采用免疫細(xì)胞化學(xué)染色法和Western blotting檢測神經(jīng)元特異性烯醇化酶(NSE)和微管相關(guān)蛋白2(MAP-2)的表達(dá)變化; Western blotting檢測Notch1、Notch胞內(nèi)域(NICD)和Hes5的水平。結(jié)果:與野生型小鼠相比,APP轉(zhuǎn)基因小鼠的骨髓間充質(zhì)干細(xì)胞具有更強(qiáng)的神經(jīng)分化能力、更高的Aβ表達(dá)及更強(qiáng)的Notch1信號抑制。但是,自噬作為神經(jīng)細(xì)胞存活和神經(jīng)功能必不可少的條件,在分化后的APP轉(zhuǎn)基因小鼠來源的MSCs中受損。結(jié)論:過表達(dá)APP可能通過抑制Notch-1信號通路增強(qiáng)小鼠骨髓間充質(zhì)干細(xì)胞神經(jīng)分化的能力,而分化后的APP轉(zhuǎn)基因小鼠MSCs出現(xiàn)自噬通路異常。
淀粉樣前體蛋白;骨髓間充質(zhì)干細(xì)胞;Notch1蛋白;神經(jīng)元;自噬
阿爾茨海默病(Alzheimer disease,AD)是以進(jìn)行性認(rèn)知功能障礙和行為異常為特征的中樞神經(jīng)系統(tǒng)退行性病變,是癡呆的最常見類型。對于神經(jīng)退行性疾病的治療,除了增加內(nèi)源性的神經(jīng)元生成外[1],干細(xì)胞移植也為AD的治療帶來新的希望。已有研究表明,骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,MSCs)在一些神經(jīng)系統(tǒng)疾病如神經(jīng)退行性疾病的治療中發(fā)揮作用[2-3],其有效的機(jī)制可能是細(xì)胞替換、提供營養(yǎng)因子、免疫調(diào)節(jié)等[3-5]。自體骨髓間充質(zhì)干細(xì)胞,因具有易獲得和沒有免疫排斥反應(yīng)的特點(diǎn),可能成為細(xì)胞移植的極好選擇。為了探討對于AD患者自體骨髓間充質(zhì)干細(xì)胞的移植能否成功,有必要了解這些細(xì)胞在體外的神經(jīng)分化潛能并探討其機(jī)制。因此本研究選擇具有AD特性的淀粉樣前體蛋白(amyloid precursor protein,APP)轉(zhuǎn)基因小鼠[6]作為骨髓間充質(zhì)干細(xì)胞的來源。最近的研究表明,APP能夠促進(jìn)多能干細(xì)胞向神經(jīng)細(xì)胞的分化[7]。但是,APP的效果以及其在骨髓間充質(zhì)干細(xì)胞分化中的具體作用還有待于進(jìn)一步研究。Notch信號通路是在進(jìn)化過程中一種高度保守的信號轉(zhuǎn)導(dǎo)系統(tǒng),能夠直接調(diào)控干細(xì)胞的存活、增殖和分化[8]。Notch1信號通路通過抑制神經(jīng)干細(xì)胞的神經(jīng)分化從而維持神經(jīng)干細(xì)胞的未分化狀態(tài)。APP和Notch均由γ-分泌酶水解[9]。但是,APP和Notch1信號通路在骨髓間充質(zhì)干細(xì)胞的神經(jīng)分化過程中是否存在交互作用目前還不十分清楚。自噬是一種非選擇性溶酶體途徑的自我降解過程,已有研究發(fā)現(xiàn),在神經(jīng)炎性斑及AD患者腦組織細(xì)胞體中存在自噬泡,并且與Aβ的沉積有一定關(guān)系[10]。作為可能的AD治療方法,自體骨髓間充質(zhì)干細(xì)胞的神經(jīng)分化過程是否存在自噬缺陷仍未可知。因此本研究通過APP轉(zhuǎn)基因小鼠探討Notch1信號通路在其骨髓間充質(zhì)干細(xì)胞神經(jīng)分化中作用,并觀察分化的骨髓間充質(zhì)干細(xì)胞中自噬的變化。
1 動物
APP轉(zhuǎn)基因小鼠,即過表達(dá)人 APP695的K670N/M671L雙突變轉(zhuǎn)基因小鼠,由中國醫(yī)學(xué)科學(xué)院實(shí)驗(yàn)動物科學(xué)研究所提供;野生型小鼠是與APP轉(zhuǎn)基因鼠具有相同遺傳背景的同窩小鼠。本研究中所有動物的使用均經(jīng)過鄭州大學(xué)動物保護(hù)委員會同意。
2 主要試劑
DMEM液體培養(yǎng)基、胎牛血清、neurobasal-A培養(yǎng)基和人 β淀粉樣蛋白40(amyloid β protein 40,Aβ40)和42(Aβ42)酶聯(lián)免疫吸附測定試劑盒購自Invitrogen;神經(jīng)元特異性烯醇化酶(neuron-specific enolase,NSE)、微管相關(guān)蛋白2(microtubule-associated protein 2,MAP-2)、Notch1抗體、Notch胞內(nèi)域(Notch intracellular domain,NICD)抗體、Hes5抗體和β-actin抗體購自Santa Cruz;微管相關(guān)蛋白1輕鏈3 (microtubule-associated protein 1 light chain 3,LC3)抗體和p62抗體購自Cell Signaling;Cy3標(biāo)記山羊抗兔IgG購自上海碧云天公司;多聚賴氨酸購自Sigma;其它生化試劑均為進(jìn)口分裝或國產(chǎn)分析純。
3 主要方法
3.1 MSCs分離培養(yǎng) MSCs從小鼠的脛骨和股骨中分離提取,應(yīng)用含10%胎牛血清DMEM培養(yǎng)基將其培養(yǎng)于37℃、5%CO2培養(yǎng)箱內(nèi)。當(dāng)細(xì)胞融合度達(dá)到80%~90%時(shí),用0.25%胰蛋白酶+0.04% EDTA消化。將細(xì)胞傳代培養(yǎng)至5代備用。
3.2 實(shí)驗(yàn)分組及體外誘導(dǎo)MSCs分化為神經(jīng)細(xì)胞
將獲得的MSCs分為2組:APP組(即MSCs取自APP轉(zhuǎn)基因小鼠),WT組(即MSCs取自野生型小鼠)。當(dāng)細(xì)胞融合度達(dá)到50%~70%時(shí),加入預(yù)誘導(dǎo)液(即DMEN培養(yǎng)基+20%胎牛血清+1 mmol/L β-巰基乙醇)置于37℃、5%CO2條件下培養(yǎng)24 h,預(yù)誘導(dǎo)后將細(xì)胞轉(zhuǎn)移至含10 mmol/L β-巰基乙醇的無胎牛血清培養(yǎng)基中并置于37℃、5%CO2條件下培養(yǎng)5d。
3.3 Aβ的檢測 應(yīng)用人Aβ40和Aβ42酶聯(lián)免疫吸附測定試劑盒(Invitrogen),參照實(shí)驗(yàn)操作說明來檢測誘導(dǎo)后Aβ40和Aβ42的水平。
3.4 免疫細(xì)胞化學(xué)染色法 去除DMEM培養(yǎng)基后,PBS清洗,-20℃ 下在100%甲醇中固定10 min,在含10%正常山羊血清的1%BSA和含0.3 mol/L的0.1%PBST中封閉1 h。加入Ⅰ抗(包括MAP-2抗體、NSE抗體和LC3抗體)4℃過夜。移出Ⅰ抗,PBS清洗3遍,加入Ⅱ抗(Cy3標(biāo)記山羊抗兔IgG)室溫下進(jìn)行標(biāo)記染色2 h。應(yīng)用倒置熒光顯微鏡觀察細(xì)胞情況。在隨機(jī)、雙盲的原則下進(jìn)行統(tǒng)計(jì)分析。
3.5 Western blotting 從2組中取等量樣品經(jīng)SDSPAGE分離,轉(zhuǎn)移到PVDF膜上,含5%脫脂牛奶的TBST室溫封閉2 h,加入MAP-2抗體、NSE抗體、Notch1抗體、NICD抗體、Hes5抗體、β-actin抗體、LC3抗體和p62抗體4℃封閉過夜,洗膜后加入辣根過氧化物酶標(biāo)記的Ⅱ抗,室溫孵育2 h后ECL顯影。
3.6 自噬流檢測 誘導(dǎo)完成后,將分化的APP組MSCs和WT組MSCs移至神經(jīng)細(xì)胞培養(yǎng)基(neuro-basal-A培養(yǎng)液+2 mmol/L GlutaMAXTM-I+2%B27 +1×105U/L青霉素+100 mg/L鏈霉素),并加入10 μmol/L雷帕霉素誘導(dǎo)自噬。用Western blotting分析在不同時(shí)點(diǎn)(0 h,6 h,12 h)P62的水平。
4 統(tǒng)計(jì)學(xué)處理
采用SPSS 17.0統(tǒng)計(jì)軟件分析。數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,組間比較采用t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1APP組MSCs較WT組MSCs的神經(jīng)分化效率高
β-巰基乙醇誘導(dǎo)24 h后,MSCs的形態(tài)開始發(fā)生變化。誘導(dǎo)5 d后,部分細(xì)胞胞體收縮呈圓形、錐形,伸出細(xì)長突起,多數(shù)細(xì)胞發(fā)生神經(jīng)元樣改變。
免疫細(xì)胞化學(xué)法和Western blotting檢測誘導(dǎo)5 d后神經(jīng)元標(biāo)志物NSE和MAP-2在各組間的表達(dá)。免疫細(xì)胞化學(xué)法結(jié)果顯示APP組細(xì)胞NSE和MAP-2的表達(dá)顯著高于WT組,見圖1A。Western blotting得到相似結(jié)果,見圖1B。
2 已分化MSCs Aβ40和Aβ42的生成
酶聯(lián)免疫吸附測定結(jié)果顯示誘導(dǎo)5 d后APP組誘導(dǎo)培養(yǎng)液中Aβ40和Aβ42的濃度分別是(23.2± 3.5)ng/L和(3.3±0.6)ng/L。而在WT組的誘導(dǎo)培養(yǎng)液中未檢測到Aβ40和Aβ42。
3 在MSCs分化過程中Notch1信號通路受到抑制
NICD是Notch受體釋放的胞內(nèi)活性部分,Hes5是其下游的靶基因,能夠下調(diào)原神經(jīng)基因的表達(dá),從而抑制神經(jīng)分化[11]。Western blotting結(jié)果顯示,在誘導(dǎo)前APP組MSCs中Notch1、NICD和Hes5的表達(dá)低于WT組,誘導(dǎo)5 d后兩組Notch1、NICD和Hes5的表達(dá)均顯著下降,而已分化的APP組MSCs中Notch1、NICD和Hes5的表達(dá)仍低于WT組,見圖2。以上結(jié)果表明,在MSCs神經(jīng)分化過程中Notch1信號通路受到抑制。
4 自噬流檢測
Western blotting結(jié)果顯示,在分化后的 APP MSCs較WT MSCs有更高的LC3-II表達(dá)(圖3B)。免疫熒光結(jié)果也顯示在分化后的APP MSCs中有LC3陽性熒光點(diǎn)的聚集(圖3A)。在APP MSCs誘導(dǎo)過程中p62水平未減少(圖3C),這說明分化后的APP MSCs自噬體成熟障礙。
Figure 1.APP MSCs had higher neural differentiation efficiency than the wild-type(WT)MSCs.The expression of NSE and MAP-2 in MSCs after 5 d of induction by β-ME was measured by immunocytochemical staining(A) and Western blotting(B).Scale bar:20 μm.Mean± SD.n=30.*P<0.05 vs WT.圖1 與野生型小鼠相比,APP轉(zhuǎn)基因小鼠的骨髓間充質(zhì)干細(xì)胞具有更強(qiáng)的神經(jīng)分化能力
Figure 2.Notch1 signaling was inhibited during neural differentiation of MSCs from APP mice.Mean±SD.n=30.*P<0.05 vs WT(before induction);#P<0.05 vs WT (after induction).圖2 在MSCs神經(jīng)分化過程中Notch1信號通路受到抑制
MSCs是一種具有多向分化潛能的非造血干細(xì)胞,如向骨細(xì)胞[12]、軟骨細(xì)胞、脂肪細(xì)胞分化[13]。我們既往的研究發(fā)現(xiàn)在體外MSCs能夠分化為神經(jīng)細(xì)胞[14-15]。而本研究發(fā)現(xiàn)APP轉(zhuǎn)基因小鼠來源的MSCs比野生型MSCs具有更大的向神經(jīng)元分化的潛能。我們進(jìn)一步發(fā)現(xiàn)在MSCs分化過程中,Notch1、NICD和Hes5表達(dá)下降,在APP組MSCs分化過程中下降得更明顯。近來有研究發(fā)現(xiàn)Hes5是Notch-1信號通路的關(guān)鍵靶基因,而 Notch通路抑制神經(jīng)分化的作用也依賴于Hes1和Hes5[11,16]。我們的研究進(jìn)一步確認(rèn)了Notch1信號通路在MSCs分化為神經(jīng)元的抑制作用,而APP MSCs較高的神經(jīng)分化潛能可能與Notch1信號通路抑制有關(guān)。
Figure 3.Autophagy flux was impaired in the differentiated APP MSCs.Differentiated APP MSCs and differentiated WT MSCs were cultured in neural culture medium plus 10 μmol/L rapamycin for 0 h,6 h and 12 h.A:LC3-positive staining(red)in MSCs(scale bar:20 μm);B: autophagy-dependent expression of LC3-II in MSCs analyzed using Western blotting;C:p62 expression levels at 0 h,6 h and 12 h were analyzed by Western blotting.Mean±SD.n=30.#P<0.05 vs WT(6 h).圖3 在APP小鼠MSCs神經(jīng)分化過程中自噬流受損
有研究發(fā)現(xiàn)APP胞內(nèi)域(APP intracellular domain,AICD)通過與胞漿內(nèi)配體蛋白Numb和Numblike(Nbl)結(jié)合抑制 Notch信號通路[17]。Kim等[18]發(fā)現(xiàn)AICD能夠加速Notch1-IC及RBP-Jk的降解。AICD也可通過分解 Notch1-IC-RBP-Jk復(fù)合物進(jìn)一步抑制Notch1的轉(zhuǎn)錄活性。因此AICD作為Notch1信號通路的負(fù)向調(diào)節(jié)因子,可能與MSCs分化過程中APP組Notch1通路較WT組通路抑制明顯有關(guān)。
Aβ生成及在老年斑中的沉積是AD的早期病理改變[19]。然而最新研究發(fā)現(xiàn)Aβ可能還有積極的作用[20]。Jin等[21]發(fā)現(xiàn)聚集的Aβ1-40或Aβ1-42和寡聚的Aβ1-42能夠促進(jìn)MSCs神經(jīng)分化。本研究發(fā)現(xiàn)APP組的誘導(dǎo)液中能夠檢測到Aβ,而在WT組中不能檢測到Aβ。因此,高水平的Aβ表達(dá)可能與APP MSCs較高的神經(jīng)分化能力有關(guān)。
盡管APP MSCs較高的神經(jīng)分化潛能為通過自體干細(xì)胞移植治療AD帶來希望,但首先要在體外評估分化后的神經(jīng)元的風(fēng)險(xiǎn)。本研究發(fā)現(xiàn),分化后的APP MSCs中有自噬泡聚集而p62蛋白在分化過程中卻沒有降解,這提示分化后的APP MSCs自噬體成熟障礙,最終導(dǎo)致自噬途徑紊亂。自噬是神經(jīng)元中蛋白質(zhì)代謝的主要質(zhì)控機(jī)制,是維持神經(jīng)元生理功能的必備條件[22]。自噬也涉及到AD的神經(jīng)退行性變及再生過程。在AD病人的腦中,在神經(jīng)元突觸及突觸末端有大量自噬泡聚集[23]。而AD腦中神經(jīng)元內(nèi)自噬泡的聚集與淀粉樣斑聚集有關(guān)[10]。而在分化后的APP MSCs自噬通路異常,因此AD病人不適宜進(jìn)行MSCs自體移植。
綜上所述,本研究發(fā)現(xiàn)過表達(dá) APP通過抑制Notch1信號通路從而促進(jìn)APP MSCs神經(jīng)分化,而分化后的APP MSCs自噬通路異常。本研究對AD患者進(jìn)行MSCs自體移植的研究有一定的指示作用,有待于進(jìn)一步深入研究。
[1]Abbott AC,Calderon Toledo C,Aranguiz FC,et al.Tetrahydrohyperforin increases adult hippocampal neurogenesis in wild-type and APPswe/PS1ΔE9 mice[J].J Alzheimers Dis,2013,34(4):873-885.
[2]Lee HJ,Lee JK,Lee H,et al.The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease[J].Neurosci Lett,2010,481 (1):30-35.
[3]Yano S,Kuroda S,Lee JB,et al.In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord[J].J Neurotrauma,2005,22(8):907-918.
[4]Lee HJ,Lee JK,Lee H,et al.Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer's disease mouse model through modulation of neuroinflammation[J].Neurobiol Aging,2012,33(3):588-602.
[5]Sadan O,Melamed E,Offen D.Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases[J].Expert Opin Biol Ther,2009,9(12):1487-1497.
[6]Balducci C,F(xiàn)orloni G.APP transgenic mice:their use and limitations[J].Neuromolecular Med,2011,13(2): 117-137.
[7]Freude KK,Penjwini M,Davis JL,et al.Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells[J].J Biol Chem,2011,286 (27):24264-24274.
[8]Tang Y,Wang Y,Chen L,et al.Cross talk between the Notch signaling and noncoding RNA on the fate of stem cells[J].Prog Mol Biol Transl Sci,2012,111:175-193.
[9]Fischer DF,van Dijk R,Sluijs JA,et al.Activation of the Notch pathway in Down syndrome:cross-talk of Notch and APP[J].FASEB J,2005,19(11):1451-1458.
[10]Yu WH,Kumar A,Peterhoff C,et al.Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities:implications for beta-amyloid peptide over-production and localization in Alzheimer's disease[J].Int J Biochem Cell Biol,2004,36(12):2531-2540.
[11]Ohtsuka T,Ishibashi M,Gradwohl G,et al.Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation[J].EMBO J,1999,18(8):2196-2207.
[12]張?jiān)戚x,劉成成,祝愛珍,等.木通皂苷D通過絲裂原活化蛋白激酶信號通路促進(jìn)大鼠骨髓間充質(zhì)干細(xì)胞分化為成骨細(xì)胞[J].中國病理生理雜志,2012,28(8): 1455-1460.
[13]Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284(5411):143-147.
[14]Woodbury D,Schwarz EJ,Prockop DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons[J].J Neurosci Res,2000,61(4):364-370.
[15]李映紅,吳正治,吳偉康,等.天然腦活素定向誘導(dǎo)大鼠骨髓間充質(zhì)干細(xì)胞向神經(jīng)元樣細(xì)胞分化的實(shí)驗(yàn)研究[J].中國病理生理雜志,2009,25(8):1548-1553.
[16]Justice NJ,Jan YN.Variations on the Notch pathway in neural development[J].Curr Opin Neurobiol,2002,12(1):64-70.
[17]Roncarati R,Sestan N,Scheinfeld MH,et al.The gammasecretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling[J].Proc Natl Acad Sci U S A,2002,99(10):7102-7107.
[18]Kim MY,Mo JS,Ann EJ,et al.Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk[J].J Cell Sci,2011,124(Pt 11):1831-1843.
[19]Lu DC,Rabizadeh S,Chandra S,et al.A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor[J].Nat Med,2000,6(4):397-404.
[20]López-Toledano MA,Shelanski ML.Neurogenic effect of beta-amyloid peptide in the development of neural stem cells[J].J Neurosci,2004,24(23):5439-5444.
[21]Jin HK,Bae JS,F(xiàn)uruya S,et al.Amyloid beta-derived neuroplasticity in bone marrow-derived mesenchymal stem cells is mediated by NPY and 5-HT2B receptors via ERK1/2 signalling pathways[J].Cell Prolif,2009,42 (5):571-586.
[22]Harris H,Rubinsztein DC.Control of autophagy as a therapy for neurodegenerative disease[J].Nat Rev Neurol,2011,8(2):108-117.
[23]Nixon RA,Wegiel J,Kumar A,et al.Extensive involvement of autophagy in Alzheimer disease:an immuno-electron microscopy study[J].J Neuropathol Exp Neurol,2005,64(2): 113-122.
Neural differentiation of bone marrow mesenchymal stem cells from an Alzheimer disease mouse model
GAO Hui-li,ZHANG Guang-yu,DUAN Ran-ran,LI Yan-fei,WANG Xiao-han,PENG Tao,GUAN Wen-juan,JIA Yan-jie
(Department of Neurology,The First Affiliated Hospital,Zhengzhou University,Zhengzhou 450052,China.E-mail: jiayanjie1971@yahoo.com.cn)
AIM:To estimate the neural differentiation efficiency of bone marrow mesenchymal stem cells (MSCs)derived from amyloid precursor protein(APP)transgenic mice and to investigate the correlation with Notch1 signaling and the autophagy activity during the differentiation.METHODS:The MSCs were divided into APP group(MSCs from APP transgenic mice)and WT group(MSCs from wild-type mice).MSCs were treated with β-mercaptoethanol as an inducer for differentiating into neurons.The levels of Aβ40 and Aβ42 were measured using enzyme-linked immunosorbent assay kits.The expression of neural cell-specific markers,neuron-specific enolase(NSE)and microtubule-associated protein 2(MAP-2),was measured by immunocytochemistry and Western blotting.The expression levels of Notch1,Notch intracellular domain(NICD),Hes5,LC3 and p62(a selective substrate of autophagy)were also detected by Western blotting.RESULTS:The neural differentiation capacity and the Aβ expression level of the MSCs in APP group were higher than those in WT group,and stronger inhibition of Notch1 signaling pathway in the MSCs from APP group was observed.However,the process of autophagy,which is essential for the survival and function of the neural cells,was impaired in the neural differentiated counterpart of the MSCs in APP group.CONCLUSION:Over-expression of APP might contribute to the high neural differentiation capacity of MSCs by inhibiting Notch1 signaling pathway in vitro.However,autophagy is impaired in the differentiated MSCs from APP transgenic mice.
Amyloid precursor protein;Bone marrow mesenchymal stem cells;Notch1 protein;Neurons;Autophagy
R329.21
A
10.3969/j.issn.1000-4718.2014.03.015
1000-4718(2014)03-0467-06
2013-11-04
2014-01-09
國家自然科學(xué)基金資助項(xiàng)目(No.81071114;No.81371385)
△通訊作者Tel:0371-66862102;E-mail:jiayanjie1971@yahoo.com.cn