• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of a Bacteriocin-Like Substance Produced from a Novel Isolated Strain of Bacillus subtilis SLYY-3

    2014-04-26 10:54:49LIJunfengLIHongfangZHANGYuanyuanDUANXiaohuiandLIUJie
    Journal of Ocean University of China 2014年6期

    LI Junfeng, LI Hongfang, ZHANG Yuanyuan, DUAN Xiaohui, and LIU Jie

    1) College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China

    2) Yantai Entry-Exit Inspection and Quarantine Bureau, Yantai 264000, P. R. China

    Characterization of a Bacteriocin-Like Substance Produced from a Novel Isolated Strain of Bacillus subtilis SLYY-3

    LI Junfeng1),*, LI Hongfang1), ZHANG Yuanyuan1), DUAN Xiaohui2), and LIU Jie1)

    1) College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China

    2) Yantai Entry-Exit Inspection and Quarantine Bureau, Yantai 264000, P. R. China

    In the present research, the strain SLYY-3 was isolated from sediments of Jiaozhou Bay, Qingdao, China. The strain SLYY-3, which produced a bacteriocin-like substance (BLS), was characterized to be a strain of Bacillus subtillis by biochemical profiling and 16S rDNA sequence analysis. It is the first time to report that Bacillus subtilis from Jiaozhou Bay sediments could produce a BLS. The BLS of B. subtillis SLYY-3 exhibited strong inhibitory activity against gram-positive bacteria (including Staphylococcus aureus and B. subtillis) and some fungi (including Penicillium glaucum, Aspergillus niger and Aspergillus flavus). The antimicrobial activity was detected from culture in the exponential growth phase and reached its maximum when culture entered into stationary growth phase. It was thermo-tolerant even when being kept at 100℃ for 60 min without losing any activity and stable over a wide pH range from 1.0 to 12.0 while being inactivated by proteolytic enzyme and trypsin, indicating the proteinaceous nature of the BLS. The BLS was purified by precipitation with hydrochloric acid (HCl) and gel filteration (Sephadex G-100). SDS-PAGE analysis of the extracellular peptides of SLYY-3 revealed a bacteriocin-like protein with a molecular mass of 66 kDa. Altogether, these characteristics indicate the potential of the BLS for food industry as a protection against pathogenic and spoilage microorganisms.

    bacteriocin-like substance; Bacillus subtillis SLYY-3; antimicrobial activity; food protection; purification

    1 Introduction

    Antimicrobial substances are widespread among bacteria. Bacteriocins and bacteriocin-like substances (BLS) are antimicrobial peptides produced by a number of different bacteria that are usually effective against closely related species (Baugher and Klaenhammer, 2011). Bacteriocins have received increasing attention due to their potential use as natural preservatives in food industry, as probiotics in the human health, and as therapeutic agents against pathogenic microorganisms (Riley and Wertz, 2002). Although most research efforts were mainly focused on bacteriocins produced by lactic acid bacteria, bacteriocins from other various species have also been characterized (Turgis et al., 2012; McAulife et al., 2001).

    Bacillus is a genus that has been investigated for antimicrobial activity since Bacillus species produce a large number of peptide antibiotics representing several different basic chemical structures (von D?hren, 1995). The production of bacteriocins or bacteriocin-like substances has been already described for B. thuringiensis, B. subtilis, B. amyloliquefaciens, B. licheniformis, B. megaterium and B. cereus (Balciunas, 2013; Gray et al., 2006; Liu et al., 2012; He et al., 2006; Senbagam et al., 2013).

    The objective of this study is to evaluate the potential antimicrobial activity of a bacteriocin-like substance produced by a Bacillus subtilis SLYY-3 isolated from sediments of Jiaozhou Bay, Qingdao, China. The antimicrobial spectrum and some properties of this bacteriocin-like substance are investigated.

    2 Materials and Methods

    2.1 Isolation of Microorganisms

    The samples (5 g moist weight) collected from Jiaozhou Bay sediments were mixed with sterile water (1:1 w/v), homogenized for 5 min, and 1 mL of this suspension was inoculated into 50 mL of nutrient medium. After microbial growth was observed by turbidity, aliquots were inoculated onto nutrient agar plates incubated at 28℃, and single colonies were isolated and screened for antimicrobial activity.

    2.2 Indicator Bacterial Strains

    The indicator strains Enterobacter aerogenes, Proteus vulgaris and Pseudomonas aeruginosa were kindly offered by UNESCO Chinese Center of Marine Biotechnology. Bacillus subtilis, Escherichia coli, Staphylococcus aureus ATCC 6538, Penicillium glaucum, Aspergil-lus niger, and Aspergillus flavus were the collections of our laboratory.

    2.3 Taxonomical Studies

    Strain SLYY-3 was identified based on 16S rDNA sequence analyses and the characterization of bacteria recorded in Bergey’s Manual of Determinative Bacteriology. Genomic DNA of strain was isolated as described by Edwards et al. (1989), 16S rDNA gene was amplified via PCR and then amplicon was sequenced. The primers used for amplification were: F (5’-AGAGTTTGATCCTG GCTCAG-3’) and R (5’-ACGGCTACCTTGTTACG ACT-3’). Alignment of different 16S rDNA nucleotide sequences was carried out by CLUSTAL W program (Thompson et al., 1994). Phylogenetic trees for 16S rRNA genes were constructed by the NJ method (Saitou and Nei, 1987) using the MEGA4.0 program (Tamura et al., 2007).

    2.4 Activity Assay

    To determine the activity spectrum of BLS, strain SLYY-3 was cultured in LB broth for 24 h at 28℃ in a rotary shaker at 150 r min-1. The cells were harvested (10000 r min-1, 15 min, 4℃), and the cell-free supernatant (CFS) was obtained by filtering through a Milipore filtre with 0.22 μm pore size. Pre-poured agar media plates were spread with 107CFU of the respective indicator microorganism and allowed to dry. The sterile Oxford-cups (8 mm×10 mm) were placed on the plates. 200 μL of CFS was added to each cup and incubated at optimal temperature of the test organism for 24 h and the diameter of the inhibition zone was determined (Li et al., 2008).

    2.5 Characterization of Bacteriocin-Like Substances

    To determine the thermal stability, the BLS samples were heated at 100℃ for 0 (control), 10, 20, 30, 40, 50 and 60 min, cooled and assayed for activity. The effect of trypsin on activity of BLS was also tested by the following method: 0.2 mL phosphate buffer as Control I (C1); 0.1 mL CFS containing BLS + 0.1 mL phosphate buffer as Control II (C2); 1 mg of enzyme-Trypsin (Sigma Chemicals) was dissolved in 1 mL of 0.1 molL-1phosphate buffer, pH 7.0 and then added to CFS of B. subtilis in the ratio of 1:1 as Enzyme reaction (ER). The activities of enzyme reaction and control I and II were assayed on the indicator plates. To test the sensitivity of the BLS to pH, each of aliquots was adjusted to 1.0-12.0 with 0.1 mol L-1HCl or 0.1 mol L-1NaOH and incubated for 30 min at 37℃. Then each sample was adjusted back to pH 7.0 and assayed for the residual activity. After each treatment, the samples were tested for antibacterial activity against S. aureus ATCC 6538 using diffusion method.

    2.6 Purification of BLS and Molecular Weight Determination by SDS-PAGE

    Precipitation of the BLS was induced by acidification using 6 mol L-1hydrochloric acid (HCl). The BLS was extracted from the pellet with 100 mL methanol. After evaporation, the light brown viscous extract was resuspended in 20 mL of 10 mol L-1sodium phosphate. This extract was loaded on a Sephadex G-100 column (2.6 cm × 80 cm, Pharmacia, Uppsala Sweden), equilibrated with 10 mmol L-1sodium phosphate, pH 7.2 and eluted with the same phosphate buffer. The elution with bactericidal activity was used to determine the molecular size of BLS by SDS-PAGE according to the method described by Laemmli (1970). The apparent molecular masses of proteins were estimated by co-electrophoresis of marker proteins (Biorad, Hercules, CA, USA) with masses ranging from 14.4 to 116 kDa. One half of the gel was stained with Coomassie Blue R250, and the position of the active bacteriocin was determined on the other unstained gel. S. aureus ATCC 6538 (107CFU mL-1) suspended in 1% nutrient agar was used to overlay the gel and cleared zone due to inhibition was examined after overnight incubation at 37℃.

    3 Results and Discussion

    3.1 Isolation and Identification of BLS-Producing Strain

    In this study strain SLYY-3 was isolated from sediments which produced the highest inhibition zones using B. subtilis and S. aureus as indicator strains. The microorganism is Gram-positive, aerobic, endospore forming and strongly catalase positive. The morphological and physiological characteristics (data not shown) and the phylogenetic analysis of strain SLYY-3 confirmed that the strain belonged to B. subtillis. The 16S rDNA sequence of SLYY-3 showed a high similarity (99%) to B. subtillis. The cluster formed by SLYY-3 and B. subtillis was supported by high bootstrap values (Fig.1).

    Fig.1 Phylogenetic tree of the SLYY-3 and related type species based on the 16S rDNA domain sequences.

    3.2 Bacteriocin-Like Substances Production

    SLYY-3 was grown in flasks with 50 mL LB medium at 28℃ on a rotary shaker. The optical density (OD) of the culture was determined at 600 nm at an interval of 2 h with a Hitachi U-1100 spectrophotometer (Hitachi, Tokyo, Japan). Cells reached the stationary phase after 12 h ofcultivation (Fig.2). Kinetics of BLS production showed that its synthesis and ? or secretion started at the early exponential phase, and reached to its maximum antibacterial activity at the stationary phase. Afterward, the inhibitory activity slowly decreased (Fig.2). Similar results have been reported with other bacteriocins (Samy et al., 2010; Cladera-Olivera et al., 2004), the antibacteria activity was detected at the middle exponential growth phase and the maximum activity was obtained at the early stage of the stationary growth phase.

    Fig.2 Growth and BLS of SLYY-3: (◆) OD600 and (■) inhibitory zone diameter.

    The cell-free supernatant of SLYY-3 exhibited a broad spectrum of antagonistic activities against all indicator strains of Gram-positive bacteria and some fungal pathogens, but not against the strains of Gram-negative bacteria (Table 1). These findings are consistent with bacteriocins or BLS by other Bacillus species reported. Although some bacteriocin are active against a narrow spectrum of bacteria (Lee et al., 2001), several strains produce bacteriocins with a broad range of activity against important pathogens (Khochamit et al., 2013, Cherif et al., 2001). The BLS produced by SLYY-3 was able to inhibit the growth of A. flavus, a very important pathogen in food safety. Therefore, the BLS may be useful for controlling several important pathogenic and spoilage microorganisms.

    3.3 Characterization of Bacteriocin-Like Substances

    3.3.1 Effect of temperature on BLS activity

    Cell-free supernatant of SLYY-3 was assayed for the thermal stability. The activity of BLS produced from SLYY-3 showed 100% activity even after exposure to 100℃ for 60 min (Fig.3), the same as reported for the low-molecular-weight bacteriocin from B. licheniformis MKU3 (Kayalvizhi and Gunasekaran, 2008). The results are characteristic of other bacteriocins reported, such as thuricin 7, being stable after exposure to 90℃ for 30 min, and losing all activity after exposure to 121℃ for 20 min (Cherif et al., 2001). The bacteriocin produced from Bacillus sp. strain 8 A was reported to be heat-stable only up to 80℃ and the activity disappeared dramatically after incubation at 100℃ only for 15 min (Bizani and Brandelli, 2002). Therefore, this superior thermostability of BLS from B. subtillis SLYY-3 is a remarkable property for biopreservation of food.

    Fig.3 Effect of temperature on activity of BLS of SLYY-3.

    3.3.2 Effect of pH on BLS activity

    Taking S. aureus as indicator strain, BLS produced from B. subtillis SLYY-3 retained its activity between pH 1.0 to 12.0. There was a very small difference in the zone of inhibitions formed after interaction of indicators with different pH treated BLS (Fig.4). Similar studies have been reported for bacteriocin of Bacillus sp., such as thuricin 7, which was stable between pH 3.0 and 9.0 (Cherif et al., 2001). The bacteriocin from strain 8A remained active between pH 5.0 and 8.0 (Bizani and Brandelli, 2002). When the pH was higher than 9.25, the biological activity of thuricin 17 disappeared (Gray et al., 2006). The activity of low molecular weight bacteriocin from the strain MKU3 was found to be stable under a pH range of 3.0-10.0 (Kayalvizhi and Gunasekaran, 2008). As a result, this wide range pH property of BLS in our study further recommends its application in biopreservation of acidic and alkaline food.

    Fig.4 Effect of pH on activity of BLS of SLYY-3.

    3.3.3 Effect of Proteolytic Enzyme-Trypsin on BLS Activity

    Cell free supernatant containing the BLS from SLYY-3 pretreated with trypsin (ER) did not show any zone of inhibition against the S. aureus, with the sample as similar as the negative control by using phosphate bufferalone (C1), whereas the CFS mixed with phosphate buffer (C2) resulted in an inhibition zone at a diameter of 22 mm (Fig.5). This result showed that enzyme trypsin had completely inactivated the BLS of B. subtillis SLYY-3. This sensitivity to proteolytic enzyme trypsin reveals its proteinaceous nature and further supports its use as food biopreservative since it can be easily degraded in the digestive system of human beings.

    Fig.5 Effect of trypsin on activity of bacteriocin-like substances of SLYY-3.

    3.3.4 Partial Purification and Molecular Weight Determination of BLS

    The inhibitory antibacterial component was isolated from the cell free culture supernatant by a combination of acid precipitation and gel filtration chromatography as shown by the results presented in Fig.6. Gel filtration resulted in fractions exhibiting antibacterial activity corresponding to peak II. Since antibacterial activity was present over a wide range of elution tube (Nos.15-19) and proteins in these fractions were not well resolved, it was difficult to determine precisely the elution tube for proteins having antibacterial activity. However, as the maximum zone of inhibition (23 mm) was observed at No.18 tube of elution, this point was considered arbitrary for determination of molecular weight of the antibacterial protein. SDS-PAGE followed by Coomassie blue R250 staining indicated that the peak consisted of a single peptide with an estimated molecular mass of 66 kDa (Fig.7) that exhibited antibacterial activity against S. aureus ATCC 6538. Some other bacteriocins with high (>10 kDa) molecular weight produced by Bacillus spp. had been previously studied in detail, such as bacteriocins (150 and 20 kDa) from B. licheniformis P40 (Cladera-Olivera et al., 2004); entomocin 9 (12.4 kDa) from B. thuringiensis ssp. entomocidus HD9 (Cherif et al., 2003); and thuricin 7 (11.6 kDa) from B. Thuringiensis BMG17 (Cherif et al., 2001). However, no bacteriocins with the same characteristics as the peptide described here have been reported from B. subtilis SLYY-3.

    Fig.6 Elution profile of BLS from gel-filtration column.

    Fig.7 Molecular weight of BLS estimated by SDS-PAGE.

    4 Conclusion

    In this study, we have successfully isolated a strain Bacillus subtilis SLYY-3 from sediments of Jiaozhou Bay, Qingdao, China. It is the first time to report the production of bacteriocin-like substance of Bacillus subtilis from this source. The bacteriocin-like substance (66 kDa) from B. subtilis SLYY-3 shows strong antimicrobial activity against most challenging and serious food pathogens such as Aspergillus flavus and S. Aureus. It is active over a wide range of temperatures and pH, which is a common characteristic of a number of bacteriocins produced by Lactobacilli (Anacarso et al., 2014). In addition, this BLS is more heat-stable when compared with other antimicrobial proteins produced by different species of Bacillus and Lactobacillus. As B. subtilis SLYY-3 produces a higher activity of BLS with a broad spectrum of activity and stability, this BLS can effectively be used as a biopreservative to prevent the growth of spoilage bacteria. It could also be proposed as a potential product used as medicine, natural biopreservative in the food processing industry, and pesticide for plant diseases control.

    Acknowledgements

    This work was supported by the National Science and Technology Support Program (No. 2011BAD14B04), Project of Shandong Province Higher Educational Science and Technology Program (J14LE59), Applied & Basic Research Foundation of Qingdao (No. 12-1-4-3-(3)-jch), and Science & Technology Project of AQSIQ (No. 2012IK176).

    Anacarso, I., Messi, P., Condò, C., Iseppi, R., Bondi, M., Sabia, C., and de Niederh?usern, S., 2014. A bacteriocin-like substance produced from Lactobacillus pentosus 39 is a natural antagonist for the control of Aeromonas hydrophila and Listeria monocytogenes in fresh salmon fillets. Food Science and Technology, 55: 604-611.

    Balciunas E. M., Martinez, F. A. C., Todorov, S. D., de Melo Franco, B. D. G., Converti, A., and de Souza Oliveira, R. P., 2013. Novel biotechnological applications of bacteriocins: A review. Food Control, 32: 134-142.

    Baugher, J. L., and Klaenhammer, T. R., 2011. Application of omics tools to understanding probiotic functionality. Journal of Dairy Science, 94: 4753-4765.

    Bizani, D., and Brandelli, A., 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8A. Journal of Applied Microbiology, 93: 512-519.

    Cherif, A., Ouzari, H., Daffonchio, D., Cherif, H., Ben Slama, K., Hassen, A., Jaoua, S., and Boudabous, A., 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG17, a new strain isolated from soil. Letters in Applied Microbiology, 32: 243-247.

    Cherif, A., Chehimi, S., Limen, F., Hansen, B. M., Hendriksen, N. B., Daffonchio, D., and Boudabous, A., 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. Journal of Applied Microbiology, 95: 990-1000.

    Cladera-Olivera, F., Caron, G. R., and Brandelli, A., 2004. Bacteriocin-like peptide production by Bacillus licheniformis strain P40. Letters in Applied Microbiology, 38: 251-256.

    Edwards, U., Rogall, T., Bocker, H., Emde, M., and Bottger, E., 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal DNA. Nucleic Acids Research, 17: 7843-7853.

    Gray, E. J., Lee, K. D., Souleimanov, A. M., Di Falco, M. R., Zhou, X., Ly, A., Charles, T. C., Driscoll, B. T., and Smith, D. L., 2006. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation and classification. Journal of Applied Microbiology, 100: 545-554.

    He, L. L., Chen, W. L., and Liu, L., 2006. Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12. Microbiological Research, 161: 321-326.

    Kayalvizhi, N., and Gunasekaran, P., 2008. Production and characterization of a low molecular weight bacteriocin from Bacillus licheniformis MKU3. Letters in Applied Microbiology, 47: 600-607.

    Khochamit, N., Siripornadulsil, S., Sukon, P., and Siripor nadulsil, W., 2013. Characterization of bacteriocin-producing Bacillus subtilis KKU213 and its potential as a probiotic strain. Current Opinion in Biotechnology, 24: S36.

    Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

    Lee, K. H., Jun, K. D., Kim, W. S., and Paik, H. D., 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Letters in Applied Microbiology, 32: 146-151.

    Li, J. F., Chi, Z. M., Li, H. F., and Wang, X. H., 2008. Characterization of a mutant of Alteromonas aurantia A18 and its application in mariculture. Journal of Ocean University of China, 7 (1): 55-59.

    Liu, Q. L., Gao, G., Xu, H. J., and Qiao, M. Q., 2012. Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Research in Microbiology, 163: 470-478.

    McAulife, O., Ross, R. P., and Hill, C., 2001. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 25: 285-308.

    Riley, M. A., and Wertz, J. E., 2002. Bacteriocins: Evolution, ecology and application. Annual Review of Microbiology, 56: 117-137.

    Saitou, N., and Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425.

    Samy, R. P., Gopalakrishnakone, P., Bow, H., Puspharaj, P. N., and Chow, V. T. K., 2010. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities. Biochimie, 92: 1854-1866.

    Senbagam, D., Gurusamy, R., and Senthilkumar, B., 2013. Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pacific Journal of Tropical Medicine, 12: 934-941

    Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24: 1596-1599.

    Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673-4680.

    Turgis, M., Vu, K. D., Dupont, C., and Lacroix, M., 2012. Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Research International, 48: 696-702.

    von D?hren, H., 1995. Peptides. In: Genetics and Biochemistry of Antibiotic Production. Vining, L. C., and Stuttard, C., eds., Studtard, Boston, 129-171.

    (Edited by Ji Dechun)

    (Received December 4, 2013; revised March 28, 2014; accepted April 11, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-84023030

    E-mail: lijf1999@qust.edu.cn

    国产伦在线观看视频一区| 精品日产1卡2卡| 国产亚洲欧美在线一区二区| 国产一区在线观看成人免费| 国产99白浆流出| 亚洲国产精品合色在线| 校园春色视频在线观看| 免费观看的影片在线观看| 麻豆国产97在线/欧美| 国产精品香港三级国产av潘金莲| 女人高潮潮喷娇喘18禁视频| 波野结衣二区三区在线 | 级片在线观看| 内地一区二区视频在线| 国产97色在线日韩免费| 久久亚洲真实| 欧美+亚洲+日韩+国产| 欧美日韩精品网址| 亚洲中文日韩欧美视频| 黑人欧美特级aaaaaa片| 毛片女人毛片| av在线天堂中文字幕| 中文字幕人成人乱码亚洲影| 亚洲 国产 在线| 国产午夜精品论理片| 亚洲精品456在线播放app | 精品久久久久久久久久久久久| 美女 人体艺术 gogo| 综合色av麻豆| 久久精品国产亚洲av香蕉五月| 少妇人妻一区二区三区视频| 日本五十路高清| av天堂在线播放| 嫩草影视91久久| 欧美日韩精品网址| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成av人片免费观看| 天天躁日日操中文字幕| 国产精品久久久久久人妻精品电影| 91麻豆精品激情在线观看国产| 麻豆久久精品国产亚洲av| 9191精品国产免费久久| 蜜桃亚洲精品一区二区三区| 一级黄片播放器| 99久久无色码亚洲精品果冻| 88av欧美| 午夜a级毛片| 国产主播在线观看一区二区| 美女免费视频网站| 日韩免费av在线播放| 天天一区二区日本电影三级| 精品久久久久久久人妻蜜臀av| 亚洲成a人片在线一区二区| 欧美激情在线99| 在线观看美女被高潮喷水网站 | 美女被艹到高潮喷水动态| 日本撒尿小便嘘嘘汇集6| 久久久久九九精品影院| 黄片大片在线免费观看| 青草久久国产| 天天躁日日操中文字幕| 精品国产美女av久久久久小说| av在线蜜桃| 精品人妻偷拍中文字幕| 国内精品美女久久久久久| 一区二区三区高清视频在线| 波多野结衣高清无吗| 特级一级黄色大片| av黄色大香蕉| av片东京热男人的天堂| 一边摸一边抽搐一进一小说| 久久精品综合一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲美女久久久| 国产aⅴ精品一区二区三区波| 亚洲人成伊人成综合网2020| 18美女黄网站色大片免费观看| 成年女人永久免费观看视频| 久久精品国产亚洲av香蕉五月| 久久精品国产自在天天线| 亚洲 国产 在线| 大型黄色视频在线免费观看| 12—13女人毛片做爰片一| 中文字幕av成人在线电影| 夜夜看夜夜爽夜夜摸| 欧美激情久久久久久爽电影| 在线国产一区二区在线| 99久久成人亚洲精品观看| 国产高清videossex| 久久人妻av系列| 精品一区二区三区av网在线观看| 国产69精品久久久久777片| 午夜精品久久久久久毛片777| 男人和女人高潮做爰伦理| 免费观看的影片在线观看| 亚洲五月婷婷丁香| 亚洲性夜色夜夜综合| 久久中文看片网| 亚洲精品日韩av片在线观看 | 久久婷婷人人爽人人干人人爱| 欧美激情久久久久久爽电影| netflix在线观看网站| 色av中文字幕| 久久人妻av系列| 久久草成人影院| 麻豆国产av国片精品| 啪啪无遮挡十八禁网站| 亚洲无线在线观看| 丰满的人妻完整版| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久久久毛片| 特级一级黄色大片| 午夜视频国产福利| 黑人欧美特级aaaaaa片| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩一级在线毛片| 亚洲精品影视一区二区三区av| 久久久久久大精品| 88av欧美| 国产蜜桃级精品一区二区三区| 免费看a级黄色片| 午夜两性在线视频| 久久精品亚洲精品国产色婷小说| 9191精品国产免费久久| 乱人视频在线观看| av欧美777| 老汉色av国产亚洲站长工具| 黄色视频,在线免费观看| 天天添夜夜摸| 免费搜索国产男女视频| av女优亚洲男人天堂| 一边摸一边抽搐一进一小说| 欧美一区二区国产精品久久精品| 日本精品一区二区三区蜜桃| 色综合站精品国产| 日日干狠狠操夜夜爽| 久久午夜亚洲精品久久| 最近最新免费中文字幕在线| 精品久久久久久久毛片微露脸| 岛国视频午夜一区免费看| 岛国视频午夜一区免费看| 亚洲av日韩精品久久久久久密| 宅男免费午夜| www日本黄色视频网| 2021天堂中文幕一二区在线观| 99国产极品粉嫩在线观看| 午夜福利欧美成人| 波多野结衣高清作品| 99久久精品热视频| 中文字幕人成人乱码亚洲影| 国产伦精品一区二区三区视频9 | eeuss影院久久| 国产一区在线观看成人免费| 嫩草影视91久久| 国产99白浆流出| 久久欧美精品欧美久久欧美| 色哟哟哟哟哟哟| 久久精品人妻少妇| 无限看片的www在线观看| 国产免费男女视频| 免费av观看视频| 国产精品野战在线观看| 人妻丰满熟妇av一区二区三区| 九色国产91popny在线| 国产精品永久免费网站| 老司机福利观看| 99热6这里只有精品| 美女 人体艺术 gogo| 黄色片一级片一级黄色片| 国产亚洲欧美98| 特大巨黑吊av在线直播| 特大巨黑吊av在线直播| 天堂影院成人在线观看| 免费av观看视频| 99视频精品全部免费 在线| 一个人看的www免费观看视频| 99久久九九国产精品国产免费| 亚洲av五月六月丁香网| 久久精品国产亚洲av涩爱 | 丁香欧美五月| 在线免费观看的www视频| 久久久成人免费电影| av国产免费在线观看| 精品国产三级普通话版| 国产成年人精品一区二区| 深爱激情五月婷婷| 亚洲黑人精品在线| 18禁在线播放成人免费| 黄色视频,在线免费观看| 深爱激情五月婷婷| 色精品久久人妻99蜜桃| 最后的刺客免费高清国语| 成人无遮挡网站| 最后的刺客免费高清国语| 禁无遮挡网站| 一级作爱视频免费观看| 免费在线观看亚洲国产| 亚洲欧美激情综合另类| 午夜福利成人在线免费观看| 黑人欧美特级aaaaaa片| 国内精品一区二区在线观看| 精品人妻偷拍中文字幕| 国产精品久久久人人做人人爽| or卡值多少钱| 欧美成狂野欧美在线观看| 欧美一级毛片孕妇| 国产激情欧美一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕久久专区| 内地一区二区视频在线| av黄色大香蕉| 亚洲一区二区三区不卡视频| 国内少妇人妻偷人精品xxx网站| 怎么达到女性高潮| 日韩欧美国产在线观看| 欧美日韩福利视频一区二区| 免费在线观看亚洲国产| 精品人妻偷拍中文字幕| 男人舔奶头视频| 国产av在哪里看| 欧美又色又爽又黄视频| 最新中文字幕久久久久| 3wmmmm亚洲av在线观看| 国产av不卡久久| 嫩草影院入口| 99久久精品国产亚洲精品| 老司机福利观看| 尤物成人国产欧美一区二区三区| 国产熟女xx| 99久久九九国产精品国产免费| 人妻夜夜爽99麻豆av| 亚洲欧美日韩无卡精品| 午夜a级毛片| 美女高潮喷水抽搐中文字幕| 亚洲av日韩精品久久久久久密| а√天堂www在线а√下载| 欧美xxxx黑人xx丫x性爽| 一本一本综合久久| 国产aⅴ精品一区二区三区波| 无限看片的www在线观看| 悠悠久久av| 99久久九九国产精品国产免费| 国语自产精品视频在线第100页| 欧美三级亚洲精品| 久久久久久九九精品二区国产| 99国产极品粉嫩在线观看| 国产真人三级小视频在线观看| 国产免费av片在线观看野外av| 十八禁网站免费在线| 久久久精品欧美日韩精品| 两个人视频免费观看高清| 桃红色精品国产亚洲av| 校园春色视频在线观看| 真人做人爱边吃奶动态| 亚洲专区中文字幕在线| 日本与韩国留学比较| 国产精品久久久人人做人人爽| АⅤ资源中文在线天堂| 黄色视频,在线免费观看| 久久亚洲真实| 国产欧美日韩一区二区精品| 夜夜夜夜夜久久久久| 熟女少妇亚洲综合色aaa.| 久久久精品大字幕| 91九色精品人成在线观看| 国产乱人伦免费视频| 全区人妻精品视频| 伊人久久大香线蕉亚洲五| 91字幕亚洲| 精品国产超薄肉色丝袜足j| 国产精品亚洲美女久久久| 久久国产精品人妻蜜桃| 欧美丝袜亚洲另类 | 我要搜黄色片| 国产黄a三级三级三级人| 99精品欧美一区二区三区四区| 亚洲激情在线av| 亚洲成人中文字幕在线播放| 九九在线视频观看精品| 国产伦在线观看视频一区| a级一级毛片免费在线观看| 国产久久久一区二区三区| 校园春色视频在线观看| 国产久久久一区二区三区| 亚洲国产精品久久男人天堂| 成年免费大片在线观看| 欧美日韩一级在线毛片| 给我免费播放毛片高清在线观看| 亚洲欧美日韩高清专用| 久9热在线精品视频| 欧美色欧美亚洲另类二区| 99久久成人亚洲精品观看| 丁香六月欧美| 精品久久久久久久久久免费视频| 欧美+日韩+精品| 国产精品综合久久久久久久免费| 国产欧美日韩一区二区三| 女人十人毛片免费观看3o分钟| 国产欧美日韩一区二区精品| 女人被狂操c到高潮| 免费人成在线观看视频色| 婷婷精品国产亚洲av| 男女下面进入的视频免费午夜| 国内久久婷婷六月综合欲色啪| 国产av一区在线观看免费| 亚洲中文日韩欧美视频| 又紧又爽又黄一区二区| 午夜福利在线在线| 国产精品久久久人人做人人爽| 九九热线精品视视频播放| 国模一区二区三区四区视频| 热99re8久久精品国产| 欧美国产日韩亚洲一区| 看黄色毛片网站| 久久香蕉精品热| 无遮挡黄片免费观看| 一二三四社区在线视频社区8| 亚洲欧美日韩卡通动漫| 又爽又黄无遮挡网站| 美女高潮的动态| 人妻丰满熟妇av一区二区三区| 99久久九九国产精品国产免费| 最好的美女福利视频网| av在线天堂中文字幕| av片东京热男人的天堂| 国产精品亚洲美女久久久| 亚洲真实伦在线观看| 久久久精品欧美日韩精品| 无人区码免费观看不卡| 午夜视频国产福利| 99久久久亚洲精品蜜臀av| 最新中文字幕久久久久| 亚洲性夜色夜夜综合| 成人性生交大片免费视频hd| 久久久久久久亚洲中文字幕 | 黑人欧美特级aaaaaa片| 亚洲色图av天堂| 嫩草影视91久久| 国产欧美日韩一区二区三| 日本a在线网址| 午夜精品在线福利| 国产精品电影一区二区三区| 国产乱人伦免费视频| 国产一区二区三区视频了| 亚洲欧美日韩无卡精品| 亚洲熟妇中文字幕五十中出| 亚洲黑人精品在线| tocl精华| 少妇的丰满在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美一级毛片孕妇| 99久久综合精品五月天人人| 欧美极品一区二区三区四区| 精品日产1卡2卡| 精品久久久久久成人av| 内地一区二区视频在线| 最新美女视频免费是黄的| 国产探花在线观看一区二区| 脱女人内裤的视频| 天堂av国产一区二区熟女人妻| 免费av观看视频| 免费看光身美女| 三级男女做爰猛烈吃奶摸视频| 亚洲 国产 在线| 国产三级中文精品| 日韩 欧美 亚洲 中文字幕| 欧美午夜高清在线| 精品欧美国产一区二区三| 国产探花在线观看一区二区| 伊人久久大香线蕉亚洲五| 亚洲内射少妇av| 日韩高清综合在线| 99热这里只有精品一区| 亚洲最大成人中文| 男女午夜视频在线观看| 亚洲无线在线观看| 久久久国产成人免费| 国产高清三级在线| 成人特级黄色片久久久久久久| 九九久久精品国产亚洲av麻豆| 亚洲av美国av| 亚洲自拍偷在线| 国产一区二区三区在线臀色熟女| 久久精品国产99精品国产亚洲性色| h日本视频在线播放| 国产欧美日韩一区二区三| 久久精品91无色码中文字幕| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 国产高清视频在线观看网站| 午夜精品久久久久久毛片777| 免费一级毛片在线播放高清视频| 嫩草影院入口| 久久亚洲真实| av黄色大香蕉| 在线观看av片永久免费下载| 观看美女的网站| 精品欧美国产一区二区三| xxx96com| 成人av一区二区三区在线看| 欧美一区二区国产精品久久精品| 中文字幕精品亚洲无线码一区| 日韩国内少妇激情av| 色综合亚洲欧美另类图片| 日韩欧美精品免费久久 | av在线天堂中文字幕| x7x7x7水蜜桃| 韩国av一区二区三区四区| 午夜影院日韩av| 偷拍熟女少妇极品色| 在线看三级毛片| 香蕉久久夜色| 国产真实伦视频高清在线观看 | 精品国内亚洲2022精品成人| 人妻夜夜爽99麻豆av| 日韩欧美免费精品| www.熟女人妻精品国产| av天堂中文字幕网| 国产亚洲欧美在线一区二区| 成年免费大片在线观看| 国产精品98久久久久久宅男小说| 天堂动漫精品| 亚洲成a人片在线一区二区| 又紧又爽又黄一区二区| 麻豆国产97在线/欧美| www国产在线视频色| 亚洲 欧美 日韩 在线 免费| av在线天堂中文字幕| 国产av一区在线观看免费| 久久精品91蜜桃| 男女床上黄色一级片免费看| 麻豆国产av国片精品| 中文字幕高清在线视频| 国产伦精品一区二区三区视频9 | 日韩欧美在线二视频| 中文字幕av成人在线电影| 中文字幕熟女人妻在线| 免费在线观看成人毛片| 熟妇人妻久久中文字幕3abv| av欧美777| 男人的好看免费观看在线视频| 国产在线精品亚洲第一网站| 国产野战对白在线观看| 少妇裸体淫交视频免费看高清| 国内精品久久久久久久电影| 国产亚洲精品一区二区www| 午夜精品久久久久久毛片777| 蜜桃久久精品国产亚洲av| 欧美日韩黄片免| 欧美一区二区亚洲| 亚洲天堂国产精品一区在线| 久久久久久人人人人人| 亚洲欧美日韩卡通动漫| 中文字幕久久专区| 国产不卡一卡二| 久99久视频精品免费| 久久精品国产亚洲av涩爱 | 亚洲成a人片在线一区二区| 三级男女做爰猛烈吃奶摸视频| 久久久国产精品麻豆| 日本在线视频免费播放| 国产三级中文精品| 性色avwww在线观看| 久久精品亚洲精品国产色婷小说| 精品国产美女av久久久久小说| 国产精品美女特级片免费视频播放器| 国产亚洲精品一区二区www| 男女做爰动态图高潮gif福利片| 久久久色成人| 国产伦一二天堂av在线观看| 日本 av在线| 欧美色视频一区免费| 国产伦在线观看视频一区| 国产精品一及| 女人被狂操c到高潮| 亚洲人成网站在线播放欧美日韩| 丰满乱子伦码专区| 国产 一区 欧美 日韩| 亚洲自拍偷在线| 99在线视频只有这里精品首页| 白带黄色成豆腐渣| 天天添夜夜摸| 国产高清三级在线| 午夜影院日韩av| 男人的好看免费观看在线视频| 亚洲成av人片在线播放无| 丰满的人妻完整版| 美女高潮的动态| 人妻夜夜爽99麻豆av| 精品久久久久久久末码| 韩国av一区二区三区四区| 国产精品久久久久久精品电影| 欧美3d第一页| 日韩免费av在线播放| 天天躁日日操中文字幕| 窝窝影院91人妻| www.色视频.com| 精品午夜福利视频在线观看一区| 好男人电影高清在线观看| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 综合色av麻豆| xxx96com| 美女免费视频网站| 国产精品嫩草影院av在线观看 | 99久久久亚洲精品蜜臀av| 欧美激情在线99| 在线观看舔阴道视频| 波多野结衣高清作品| 少妇的丰满在线观看| 国产高潮美女av| 亚洲精品影视一区二区三区av| 在线观看舔阴道视频| 国产高清视频在线观看网站| 色av中文字幕| 男女午夜视频在线观看| 国产精品美女特级片免费视频播放器| 欧美不卡视频在线免费观看| 90打野战视频偷拍视频| 天堂影院成人在线观看| 亚洲美女黄片视频| 好男人在线观看高清免费视频| 国产精品国产高清国产av| 久久香蕉国产精品| 尤物成人国产欧美一区二区三区| av中文乱码字幕在线| 国产精华一区二区三区| 亚洲欧美日韩东京热| АⅤ资源中文在线天堂| 欧美国产日韩亚洲一区| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 757午夜福利合集在线观看| 亚洲精品国产精品久久久不卡| 国产精品 欧美亚洲| 男女午夜视频在线观看| 亚洲欧美日韩高清专用| 亚洲精品一卡2卡三卡4卡5卡| 听说在线观看完整版免费高清| 怎么达到女性高潮| 黄片小视频在线播放| 2021天堂中文幕一二区在线观| 亚洲五月天丁香| 日本熟妇午夜| 黄色视频,在线免费观看| 麻豆一二三区av精品| 亚洲精品国产精品久久久不卡| 国产色婷婷99| 国产精品免费一区二区三区在线| 高清在线国产一区| 久久精品夜夜夜夜夜久久蜜豆| 人妻久久中文字幕网| 免费看a级黄色片| 99热6这里只有精品| 日韩免费av在线播放| 亚洲人成电影免费在线| ponron亚洲| 久久久久九九精品影院| 白带黄色成豆腐渣| 69人妻影院| 欧美日韩国产亚洲二区| 黄色视频,在线免费观看| 午夜日韩欧美国产| 丰满乱子伦码专区| 成人精品一区二区免费| 成年女人永久免费观看视频| 啦啦啦韩国在线观看视频| 丰满的人妻完整版| 熟女少妇亚洲综合色aaa.| 欧美av亚洲av综合av国产av| 老司机午夜十八禁免费视频| ponron亚洲| 麻豆国产av国片精品| 亚洲电影在线观看av| 久久久久九九精品影院| 99视频精品全部免费 在线| 国产精品 国内视频| 激情在线观看视频在线高清| 性色av乱码一区二区三区2| 91在线观看av| 久久久国产精品麻豆| 成人一区二区视频在线观看| 国产黄a三级三级三级人| 啦啦啦观看免费观看视频高清| 99精品欧美一区二区三区四区| 精品久久久久久久久久免费视频| 亚洲av美国av| 午夜精品一区二区三区免费看| www.999成人在线观看| 亚洲人成网站高清观看| 亚洲激情在线av| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影| 黄色丝袜av网址大全| 欧美午夜高清在线| 欧美国产日韩亚洲一区| 久久99热这里只有精品18| 99热这里只有精品一区| 欧美bdsm另类| 色av中文字幕| 久久这里只有精品中国| 日韩欧美在线二视频| 久久亚洲精品不卡| 国产精品永久免费网站| 国产91精品成人一区二区三区| 久久国产精品人妻蜜桃| 亚洲熟妇熟女久久| 国产亚洲精品综合一区在线观看| 国产精品精品国产色婷婷| 天天一区二区日本电影三级| 欧美成人a在线观看| 网址你懂的国产日韩在线| 精品久久久久久久末码| 国产视频一区二区在线看|