• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrastructure Developments During Spermiogenesis in Polydora ciliata (Annelida: Spionidae), a Parasite of Mollusca

    2014-04-26 10:55:00GAOYanZHANGTaoZHANGLibinQIUTianlongXUEDongxiuandYANGHongsheng
    Journal of Ocean University of China 2014年6期

    GAO Yan, ZHANG Tao ZHANG Libin QIU Tianlong, XUE Dongxiu, and YANG Hongsheng

    1) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Ultrastructure Developments During Spermiogenesis in Polydora ciliata (Annelida: Spionidae), a Parasite of Mollusca

    GAO Yan1),2), ZHANG Tao1), ZHANG Libin1), QIU Tianlong1),2), XUE Dongxiu1),2), and YANG Hongsheng1),*

    1) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Spionid worms of Polydora ciliata inhabit the shells of many commercially important bivalves and cause disease in molluscan aquaculture. Their sperm structure is closely related to their fertilization method. To give an insight into the sperm structure and spermatogenesis, ultrastructure details of the subcellular components of germ cells during spermiogenesis of Polydora ciliata are detected by transmission electron microscopy (TEM). In P. ciliata, during spermiogenesis, chromatin is regularly arranged as dense fibrils and becomes more condensed when the nucleus elongates. Microtubules do not surround the nucleus during its elongation. The Golgi phase is characterized by the formation of proacrosomal granules within the Golgi apparatus. The proacrosomal granules fuse to form a single, spherical acrosomal vesicle that migrates to the anterior pole of the cell. At the time of nuclear condensation, mitochondria become reduced in number but increased in size, causing deep indentation at the base of the nucleus. The mid-piece has a few mitochondria. The cap phase includes the spreading of the acrosomal granule over the surface of the nucleus of the differentiating spermatid. The acrosomal phase of spermiogenesis is typically associated with changes in the shape of the nucleus, acrosome and tail. The relationship of sperm ultrastructure to spermiogenesis in spionidae species was discussed.

    Polydora ciliata; spermiogenesis; ultrastructure

    1 Introduction

    The Polydora complex in the family of Spionidae contains at least 115 species in nine genera: Amphipolydora, Boccardia, Boccardiella, Carazziella, Dipolydora, Polydora, Polydorella, Pseudopolydora, and Tripolydora (Rice et al., 2008). These genera, commonly known as blisterworms or mudworms, share a setigerous fifth chaetiger which is modified and includes specialized setae or spines. These spines are useful in tube construction and maintenance. These worms can be troublesome parasites of commercially important bivalves. The boring behavior in the shells induces the creation of blisters by shell marterial secretion (conchiolin covered with nacre) to isolate the worm. These blisters containing the compact sludge can occupy a large proportion of the mantle cavity space and contribute to weakening the shell. Worm infestation affects the presentation of half-shell and reduces the market value.

    Several species of polydorid have been reported to cause damage to abalone (Lleonart et al., 2003; Mcdiarmid et al., 2004; Simon et al., 2004; Aviles et al., 2007), oysters (Loosanoff and Engle, 1943; Mohammad, 1972; Sato-Okoshi and Okoshi, 1993; Nel et al., 1996), scallops (Sato-Okoshi et al., 1990; Bower et al., 1992; Sato-Okoshi and Okoshi, 1993; Mortensen et al., 2000; Silina, 2006), clams (Riascos et al., 2008) and many other mollusks. Infestation by Polydora, therefore, is an important problem in molluscan aquaculture.

    About two decades ago the Japanese scallop Patinopecten yessoensis was introduced from Japan to China, and became one of the most important commercial bivalve mollusks (Li et al., 2007). However, numerous Polydora blisters were found in the scallop culture (Read et al., 2010; Walker et al., 2011; Sato-Okoshi et al., 2012; Silina et al., 2012; Souto et al., 2012). A scallop devotes much of its energy in secreting nacre and concholin during mud blister formation, which leads to poor quality and low growth rate. Clarifying the life cycle, including reproductive biology, of these boring Polydora could help in developing a management strategy to minimize the impact of mud worm infestation of scallop culture. Thereproductive biology of Polydora is poorly understood because of their life history characteristics. For example, tube-dwelling lifestyles limit direct body-contact or decrease the mobility of individuals so that encounters between sexes are infrequent or impossible. Due to the relationship between structural features of the spermatozoa and biology of fertilization of a species, the study of the sperm ultrastructure of Polydora could elucidate the mode of sperm transfer in this species.

    The ultrastructure of spermatogenesis has been reported in three species of Polydora only: Polydora ligni, P. websteri, and P. socialis (Rice, 1981). Similar characteristics such as a conical acrosome with a distinctive substructure, and the presence of platelet-shaped electron-dense bodies throughout the nuclear region and mid-piece, have been described. Nevertheless, the structure of the spermatozoa of individual species has unique features. The present work describes the ultrastructure of spermiogenesis and sperm in Polydora ciliata (Johnston, 1838), a parasite of the scallop Patinopecten yessoensis (Bivalvia, Mollusca) in the Yellow Sea.

    2 Materials and Methods

    Scallops infested with P. ciliata were collected from the Yellow Sea (39?03′N, 122?44′E) in March 2008. Adult worms, removed from the shell fragments with forceps, were relaxed in isotonic magnesium chloride to examine the gametogenic segments. Middle gametogenic segments were cut off and fixed in cold (4℃) 2.5% glutaraldehyde in 0.1 mol L-1sodium cacodylate buffer (pH 7.4) containing 3% sucrose, and left overnight at 4℃. Then the tissues were postfixed in 1% osmium tetroxide for 1 h, rinsed in 0.1 mol L-1sodium cacodylate buffer at pH 7.4, dehydrated in an ascending series of ethanol, and infiltrated and embedded in Epon 812. Ultrathin sections (55–70 nm) at different levels were cut on an LKB ultramicrotome, mounted on bare 200-mesh copper grids, and double-stained with uranyl acetate (5 min) and lead citrate (3 min); all staining was carried out in a 60℃ oven. The specimens were then examined in a transmission electron microscope (Hitachi, H-700) operating at an accelerating voltage of 100 kV.

    3 Results

    Different developmental stages of gametes, from spermatocytes to mature spermatozoa, were found in the seminal vesicles of each investigated mature individual. We divide spermiogenesis into three stages and describe them separately for convenience.

    3.1 Early Stage

    The presence of synaptonemal complexes is an important characteristic of primary spermatocytes. It indicates that the cells are in the leptotene stage of the first meiotic division. The spherical nuclei of primary spermatocytes occupy almost the entire cell volume.

    Fig.1 TEM micrographs showing early stages of spermatogenesis in P. ciliata. A, A primary spermatocyte showing a large nucleus with several synaptonemal complexes (arrowhead); B, A secondary spermatocyte with numerous mitochondria; C, A secondary spermatocyte with diffuse heterochromatin in the nucleus. m, mitochondria; N, nucleus; NE, nuclear envelope; pg, proacrosomal granule. Scale bars = 1 μm.

    Numerous dense granules and small mitochondria are scattered in the cytoplasm (Fig.1A). The secondary spermatocytes are similar to the primary spermatocytes in appearance, and their cytoplasm contains numerous mitochondria. The nuclei of the secondary spermatocytes appear to be slightly smaller and contain more heterochromatin than those of the primary spermatocytes. Vacuoles are present in the cytoplasm, and the ovoid mitochondria are close to the nucleus (Fig.1B). Coarsely granular chromatin begins gathering into a cluster. Nuclear pores are abundant. Two electron-dense granules which are recognized as proacrosomal granule, appear in the secondary spermatocytes (Fig.1C). The proacrosomal granules are large and ovate, and migrate towards the opposite pole of the cell.

    3.2 Middle Stage

    A secondary spermatocyte forms two spermatids after the second meiotic division. The cellular components change synchronously during the differentiation of the spermatids. We describe these changes separately for convenience.

    Fig.2 TEM micrographs showing mid- to late spermatids in P. ciliate. A, A mid spermatid with nucleus (n) and developing axoneme (ax); B, A mid spermatid with Golgi complex (g) and acrosome-like structure (ac); C, A mid spermatid with trapeziform nucleus; D, A mid spermatid with a centriole lying close to the plasmalemma; E, Late spermatid with proximal centriole; F, Late spermatid with distal centriole. ac, acrosome-like structure; ax, axoneme; c, centriole; dc, distal centriole; N, nucleus; m, mitochondria; pc, proximal centriole; pg, proacrosomal granule; pl, platelet-shaped electron-dense body. Scale bars = 1 μm.

    Nuclear Condensation During this stage of spermiogenesis, the condensation of chromatin proceeds and the nucleus then becomes trapeziform (Fig.2A). The granular chromatin condenses into tightly packed and uniformly electron-dense strands. These dense strands are in a progressive manner from anterior to posterior in the nucleus (Fig.2B). The chromatin then becomes regularly arranged as dense fibrils (Fig.2C). A centriolar fossa forms at the posterior end of the nucleus. The fossa becomes progressively deeper as nuclear elongation proceeds (Fig.2E).

    Proacrosome Formation In the early spermatids, the proacrosomal granules come to lie close to the developing anterior of the nucleus in a slight nuclear depression (Fig.2A). Acrosome formation is augmented with the appearance of a spherical, membrane-bound pro-acrosome granule on the concave surface of the Golgi complex between the Golgi and the nucleus. The location of the Golgi region and pro-acrosomal granule defines the future anterior end of the sperm cell. This granule subsequently fuses with the cell nucleus and generally contains a region of denser material (Fig.2A). With the differentiation of the spermatids, the proacrosomal granules fuse to form a single, spherical acrosomal vesicle that migrates to the anterior pole of the cell. This vesicle elongates and finally locates in the cup-shaped anterior surface of nucleus. At the end of the acrosome phase, the proacrosomal granules merge and become a long, narrow structure that forms a kind of cup beneath the plasma membrane (Fig.2B).

    Cytoplasmic Inclusion In early spermatids, a few mitochondria and multivesicular bodies are distributed at the margins of the cytoplasm. At the time of nuclear condensation, mitochondria become reduced in number but increase in size; even when they become apposed to the nuclear surface, they still undergo an increase in size, causing deep indentations at the base of the nucleus (Figs.2C, E). The Golgi complex is found in the posterior cytoplasm of early spermatids, opposite to the primary acrosomal vesicle (Fig.2B). Electron-dense platelet-shaped bodies form a layer around the developing spermatid just beneath the plasma membrane (Fig.2D).

    Axoneme Formation The formation of the centriole occurs simultaneously with the condensation of chromatin in the nucleus. In early spermatids, the centrioles lie close to the plasmalemma and lack a prominent centriolar satellite (Fig.2D). During chromatin condensation, the flagellum develops from the centrioles. The axoneme becomes longer and bent because of continuous growth. As a result, an axoneme is usually sectioned twice within one cell (Fig.2F). The distal centriole and proximal centriole are oriented at right angles to each other in late spermatid. The fossa at the posterior end of the nucleus is invaded by the proximal and distal centrioles that fuse to form the basal body of the flagellum. The proximal centriole lies under the posterior fossa of the nucleus while the distal centriole is associated with the axonemal complex with microtubules connecting with the flagellum (Figs.2E, F).

    3.3 Late Stage

    Late spermatids can be recognized by a more elongate nucleus, while the chromatin is becoming homogeneously electron-dense. The nucleus has a posterior fossa that houses the proximal centriole. The centrioles are located at the base of the nucleus in a position opposite to the acrosome. The acrosome has reached its final position and shape, and the mid-piece mitochondria are located around the axoneme. The distal part of the axoneme, which has a 9 + 2 arrangement of microtubules, is located centrally within the flagellum with only a small amount of surrounding cytoplasm (Fig.3H).

    Early in spermiogenesis, the proacrosome lies next to the plasmalemma, separating from the nucleus (Fig.3A). Later, the proacrosome migrates to the surface of the nucleus so that the prominent electron-dense zone becomes apposed to the nuclear envelope (Fig.2B). The proacrosome then becomes cup-shaped, with a well-defined acrosomal fossa. Longitudinal microtubules appear in the developing acrosomal vesicle (Fig.3A).

    At the time of acrosome formation, the mitochondria become reduced in number but increased in size. The internal membranes in the sausage-shaped mitochondria are clearly discerned during earlier stages (Fig.3B). Initially, most mitochondria are almost circular in crosssection. The mid-piece contains up to seven mitochondria, six being circular and one being bean-shaped. The mitochondria lie close together and the zone contacting with the membranes are rather electron-dense (Fig.3G).

    Amoeboid-shaped cells with a large nucleus are found during spermiogenesis. They are called auxiliary cells. The cytoplasm contains a Golgi complex, a few cisternae of endoplasmic reticulum and mitochondria. These cells may support nutrients to the sperm (Fig.3I).

    4 Discussion

    4.1 Spermiogenesis Characteristics

    The present results revealed substantial similarities in the ultrastructure of the spermiogenesis and spermatozoa among P. ciliata from the Yellow Sea and the three species from the Indian River Lagoon in the United States (Rice, 1981). In Polydora, the microtubules are absent during the granular chromatin condensation into tightly packed and uniformly electron-dense clumps. Chromatin structure of the same features was found in Boccardiella hamata from the Sea of Japan (Reunov et al., 2009).

    In most taxa, the acrosome is a cap-like structure derived from the Golgi complex (Zhu et al., 2008). However, it is different for P. ciliata. In this species, the Golgi complex forms the proacrosomal granules, which fuse to form an acrosomal vesicle. This structure is similar to that found in Syllis krohni (Musco et al., 2008).

    In addition to the elongated sperm head in Polydora, the presence of cytoplasmic platelets may be important in the biology of reproduction. If these platelets are energy storage organelles (as hypothesized), then reproduction in this species could include prolonged storage of sperm without loss of viability, multiple egg laying following a single sperm transfer, establishment of new populations by a single inseminated female, and the elimination ofsimultaneous spawning of males and females. These reproductive adaptations could be quite advantageous to opportunistic species such as P. ligni and S. benedicti, which have rapid reproduction and tend to colonize ephemeral habitats (Grassle, 1974).

    4.2 Correlating Sperm Morphology and Reproductive Mechanisms

    Wilson (1991; see also Giangrande, 1997) reviewed sexual reproduction in the Polychaeta and identified 17 modes based on the type of larvae and the mode of development. He categorized the species as using free spawning (external fertilization) with no care of larvae, brooding of larvae (four types), or using gelatinous encapsulation of larvae. Offsprings were released as lecithotrophic larvae, planktotrophic larvae, or larvae that underwent ‘direct development’. This variability in reproductive mode is reflected in the variety in sperm structurethat is found among polychaetes. Ultrastructure studies of spermiogenesis and the morphology of spermatozoa in polychaetes have been reviewed (Eckelbarger and Grassle, 1987; Wilson, 1991; Giangrande, 1997; Rouse, 1999). A number of studies on ultrastructure aspects of spermatozoa in polychaetes have shown a large diversity in sperm morphology (Tzetlin et al., 2002; Jouin-Toulmond and Purschke, 2004; Simon and Rouse, 2005; Lepore et al., 2006; Musco et al., 2008; Reunov et al., 2009). The hypothesis that sperm structure correlates with the method of sperm transfer or biology of fertilization is supported by these studies. Sperm transfer in polychaetes occurs in two main modes: non-aggregate transfer, in which sperm swim freely and are not packed together before reaching eggs; and aggregate transfer, in which sperm are packed together by varying complex structure before reaching eggs. Life history characteristics and habitat choice have been considered strong selective forces for the mode of sperm transfer. For example, sessile or tube-dwelling lifestyles limit direct body-contact or decrease the mobility of individuals, so that encountering between different sexes are infrequent or impossible. Thus, neither copulation, nor pseudocopulation, nor indirect hypodermic impregnation would be favored. Broadcast spawning or free transfer of spermatophores may be the only alternative for such species. However, broadcast spawning requires a large number of gametes and synchronous reproduction in the population (Hsieh and Simon, 1990). In most cases, sperm that is directly introduced comprises a narrow bell-shaped acrosome, a elongated nucleus with highly condensed chromatin, a typical 9+2 flagellum derived from the distal centriole, and a few mitochondria as a sheath around the axoneme (Jamieson and Rouse, 1989; Purschke and Fursman, 2005).

    From the results in this study, the sperm structure of P. ciliata resembles the direct sperm transfer type. The acrosome contains a compact vesicle and an axial rod (Figs.3A, 4A). The chromatin is completely condensed in the spermatozoa. The nucleus has a posterior fossa that houses a flagellum derived from proximal centriole (Fig.4A). The sperm mitochondria are spherical during spermiogenesis and elongate slightly down the axoneme, forming a tight sheath in very late spermatid (Fig.4D). Because the mitochondria may continue to fuse during the late spermatid stage, the number of mitochondria in middle-piece is not clear and more detailed study is required. The elongation of the nuclei and mitochondria may cause the sperm to be more effective (Rice et al., 1992).

    The present study has shown that features such as the regularly arranged fibrous chromatin, the formation of proacrosomal granules, and the presence of cytoplasmic platelets are important features of P. clilata. Jamieson (1989) divided polychaete sperm into ect-aquasperm, ent-aquasperm, and introsperm. His report on the sperm structure had been demonstrated for the Spionidae. Our research supports his conclusion. Shell-boring spionid polychaetes are ubiquitous in many mollusca species and there are no effective treatments. Maybe we can explore some measures to prevent and control this parasite of Mollusca from fertilization.

    Fig.4 Reconstruction of the spermatozoon of P. ciliata. A, longitudinal section; B, transverse section through the acrosome; C, transverse section through the nucleus; D, transverse section through the mid-piece; E, transverse section through the flagellum; ax, axoneme; m, mitochondria; n, nucleus. Scale bar = 1 μm

    Acknowledgements

    The work was supported by the National Key Technology Support Program (2011BAD13B05). We appreciate the technical help from Prof. Ming Jiang and Mrs. Jialin Xie.

    Aviles, F., Rozbaczylo, N., Herve, M., and Godoy, M., 2007. First report of Polychaetes from the genus Oriopsis (Polychaeta: Sabellidae) associated with the Japanese abalone Haliotis discus hannai and other native molluscs in Chile. Journal of Shellfish Research, 26 (3): 863-867.

    Bower, S. M., Blackbourn, J., Meyer, G. R., and Nishimura, D. J. H., 1992. Diseases of cultured Japanese scallops (Patinopecten Yessoensis) in British-Columbia, Canada. Aquaculture, 107 (2-3): 201-210.

    Eckelbarger, K. J., and Grassle, J. P., 1987. Spermatogenesis,sperm storage and comparative sperm morphology in nine species of Capitella, Capitomastus and Capitellides (Polychaeta: Capitellidae). Marine Biology, 95: 415-429.

    Giangrande, A., 1997. Polychaeta reproductive patterns, life cycles and life histories: An overview. Oceanography and Marine Biology: An Annual Review, 35: 323-389.

    Grassle, J. F., and Grassle, J. P., 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes.Journal of Marine Research, 32: 253-284.

    Hsieh, H., and Simon, J. L., 1990. The Sperm Transfer System in Kinbergonuphis simoni (Polychaeta: Onuphidae). The Biological Bulletin, 178: 85-93.

    Jamieson, B. G. M., and Rouse, G. W., 1989. The spermatozoa of the Polychaeta (Annelida) – An ultrastructural review. Biological Reviews of the Cambridge Philosophical Society, 64 (2): 93-157.

    Jouin-Toulmond, C., and Purschke, G., 2004. Ultrastructure of the spermatozoa of Parenterodrilus taenioides (Protodrilida:‘Polychaeta’) and its phylogenetic significance. Zoomorphology, 123: 139-146.

    Lepore, E., Sciscioli, M., Mastrodonato, M., Gheradi, M., Giangrande, A., and Musco, L., 2006. Sperm ultra-structure and spermiogenesis in Syllis krohni (Polychaeta: Syllidae), with some observation on its reproductive biology. Scientia Marina, 70 (4): 585-592.

    Li, Q, Xu, K., and Yu, R., 2007. Genetic variation in Chinese hatchery populations of the Japanese scallop (Patinopecten yessoensis) inferred from microsatellite data. Aquaculture, 269 (1-4): 211-219.

    Lleonart, M., Handlinger, J., and Powell, M., 2003. Spionid mudworm infestation of farmed abalone (Haliotis spp.). Aquaculture, 221 (1-4): 85-96.

    Loosanoff, V. L., and Engle, J. B., 1943. Polydora in oysters suspended in, the water. Biological Bulletin, 85 (1): 69-78.

    Mcdiarmid, H., Day, R., and Wilson, R., 2004. The ecology of polychaetes that infest abalone shells in Victoria, Australia. Journal of Shellfish Research, 23 (4): 1179-1188.

    Mohammad, M. M., 1972. Infestation of pearl oyster Pinctada margaritifera (Linne) by a new species of Polydora in Kuwait, Arabian Gulf. Hydrobiologia, 39 (4): 463-477.

    Mortensen, S., Meeren, T. V., and Fosshagen, A., 2000. Mortality of scallop spat in cultivation, infested with tube dwelling bristle worm, Polydora sp. Aquaculture International, 8: 267-271.

    Musco, L., Giangrande, A., Gherardi, M., Leopre, E., Mercurio, M., and Sciscioli, M., 2008. Sperm ultra-structure of Odontosyllis ctenostoma (Polychaeta: Syllidae) with inferences on syllid phylogeny and reproductive biology. Scientia Marina, 72 (3): 421-427.

    Nel, R., Coetzee, P. S., and Niekerk, G. V., 1996. The evaluation of two treatments to reduce mud worm (Polydora hoplura Claparede) infestation in commercially reared oysters (Crassostrea gigas Thunberg). Aquaculture, 141 (1-2): 31-39.

    Okoshi, S. W., and Okoshi, K., 1993. Microstructure of scallop and oyster shells infested with boring Polydora. Nippon Suisan Gakkaishi, 59 (7): 1243-1247.

    Purschke, G., and Fursman, M. C., 2005. Spermatogenesis and spermatozoa in Stygocapitella subterranea (Annelida, Parergodrilidae), an enigmatic supralittoral polychaete. Zoomorphology, 124: 137-148.

    Read, G. B., 2010. Comparison and history of Polydora websteri and P. haswelli (Polychaeta: Spionidae) as mud-blister worms in New Zealand shellfish. New Zealand Journal of Marine and Freshwater Research, 44 (2): 83-100.

    Reunov, A. A., Yurchenko, O. V., Alexandrova, Y. N., and Radashevsky, V. I., 2009. Spermatogenesis in Boccardiella hamata (Polychaeta: Spionidae) from the Sea of Japan: Sperm formation mechanisms as characteristics for future taxonomic revision. Acta Zoologica, 91 (4): 447-456.

    Riascos, J. M., Heilmayer, O., Oliva, M. E., Laudien, J., and Arntz, W. E., 2008. Infestation of the surf clam Mescidesma donacium by the spionid polychaete Polydora bioccipitalis. Journal of Sea Research, 59 (4): 217-227.

    Rice, S. A., 1981. Spermatogenesis and sperm ultrastructure in three species of Polydora and in Streblospio benedicti (Polychaeta, Spionidae). Zoomorphology, 97 (1-2): 1-16.

    Rice, S. A., and Harrison, F. W., 1992. Polychaeta: Spermatogenesis and spermiogenesis. Microscopic Anatomy of Invertebrates, 7: 129-151.

    Rice, S. A., Harrison, F. W., and Gardiner, S. L., 1982. Polychaeta: Spermatogenesis and spermiogenesis. Microscopic Anatomy of Invertebrates, 7: 129-151.

    Rice, S. A., Karl, S., and Rice, K. A., 2008. The Polydora cornuta complex (Annelida: Polychaeta) contains populations that are reproductively isolated and genetically distinct. Invertebrate Biology, 127 (1): 45-64.

    Rouse, G. W., 1999. Polychaeta sperm: Phylogenetic and functional considerations. Hydrobiologia, 402: 215-224.

    Sato-Okoshi, W., and Okoshi, K., 1993. Microstructure of scallop and oyster shells infested with boring Polydora. Nippon Suisan Gakkaishi, 59 (7): 1243-1247.

    Sato-Okoshi, W., Okoshi, K., Koh, B. S., Kim, Y. H., and Hong, J. S., 2012. Polydorid species (Polychaeta: Spionidae) associated with commercially important mollusk shells in Korean waters. Aquaculture, 350: 82-90.

    Sato-Okoshi, W., Sugawara, Y., and Nomura, T., 1990. Reproduction of the boring polychaete Polydora-Variegata inhabiting scallops in Abashiri Bay, North Japan. Marine Biology, 104 (1): 61-66.

    Silina, A. V., 2006. Tumor-like formation on the shells of Japanese scallops Patinopecten yessoensis (Jay). Marine Biology, 148: 833-840.

    Silina, A. V., and Zhukova, N. V., 2012. The benthic association between a bivalve and a shell boring polychaete and their potential food sources. Oceanology, 52 (5): 646-654.

    Simon, A. C., and Rouse, G. W., 2005. Ultrastructure of spermiogenesis, sperm, and the spermatheca in Terebrasabella heterouncinata (Polychaeta: Sabellidae: Sabellinae). Invertebrate Biology, 124 (1): 39-49.

    Simon, C. A., Kaiser, H., and Britz, P. J., 2004. Infestation of the abalone, Haliotis midae, by the sabellid, Terebrasabella heterouncinata, under intensive culture conditions, and the influence of infestation on abalone growth. Aquaculture, 232: 29-40.

    Souto, V. S., Schejter, L., and Bremec, C. C., 2012. Epibionts on Aequipecten tehuelchus (d’Orbigny, 1846) (Pectinidae) in shelf waters off Buenos Aires, Argentina. American Malacological Bulletin, 30 (2): 261-266.

    Toulmond, J. C., and Purschke, G., 2004. Ultrastructure of the spermatozoa of Parenterodrilus taenioides (Protodrilida: ‘Polychaeta’) and its phylogenetic significance. Zoomorphology, 123: 139-146.

    Tzetlin, A. B., Dahlgren, T., and Pueschke, G., 2002. Ultrastructure of the body wall, body cavity, nephridia and spermatozoa in four species of the Chrysopetalidae (Annelida, ‘Polychaeta’). Zoologischer Anzeiger, 241: 37-55.

    Walker, L. M., 2011. A review of the current status of the Polydora-complex (Polychaeta: Spionidae) in Australia and a checklist of recorded species. Zootaxa, 2751: 40-62.

    Wilson, W. H., 1991. Sexual reproductive modes in polychaetes: Classification and diversity. Bulletin of Marine Science, 48 (2): 500-516.

    Zhu, J. Q., Dahms, H. U., and Yang, W. X., 2008. Ultrastructure of the mature spermatozoon of the bivalve Scapharca broughtoni (Mollusca: Bivalvia: Arcidae). Micron, 39 (8): 1205-1209.

    (Edited by Qiu Yantao)

    (Received February 25, 2013; revised March 24, 2013; accepted August 29, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82898610

    E-mail: hshyang@qdio.ac.cn

    国产色爽女视频免费观看| 日韩人妻高清精品专区| 久久精品国产自在天天线| 免费久久久久久久精品成人欧美视频 | 久久精品人人爽人人爽视色| 日韩不卡一区二区三区视频在线| 视频中文字幕在线观看| 久久人人爽人人片av| 新久久久久国产一级毛片| 不卡视频在线观看欧美| 久久99蜜桃精品久久| 欧美国产精品一级二级三级| 日韩 亚洲 欧美在线| 新久久久久国产一级毛片| 久久精品人人爽人人爽视色| 99热网站在线观看| 国产在视频线精品| 一级爰片在线观看| 亚洲国产精品一区二区三区在线| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 国产亚洲av片在线观看秒播厂| 欧美激情极品国产一区二区三区 | 国国产精品蜜臀av免费| 黄色视频在线播放观看不卡| 青春草视频在线免费观看| 国产av码专区亚洲av| 亚洲欧美成人综合另类久久久| 校园人妻丝袜中文字幕| 91久久精品电影网| 在线观看三级黄色| 亚洲综合精品二区| 久久国产精品男人的天堂亚洲 | 26uuu在线亚洲综合色| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| 国产淫语在线视频| 亚洲精品视频女| 成人国语在线视频| 久久精品久久精品一区二区三区| 各种免费的搞黄视频| 欧美日韩视频高清一区二区三区二| 99九九在线精品视频| 99热这里只有精品一区| 99国产精品免费福利视频| 母亲3免费完整高清在线观看 | av国产精品久久久久影院| 午夜91福利影院| 亚洲国产色片| 又黄又爽又刺激的免费视频.| 久久av网站| 美女大奶头黄色视频| 亚洲色图 男人天堂 中文字幕 | 亚洲av日韩在线播放| 七月丁香在线播放| 亚洲精品久久午夜乱码| 国产成人aa在线观看| 国产高清三级在线| 人妻制服诱惑在线中文字幕| 超色免费av| 蜜臀久久99精品久久宅男| 日韩不卡一区二区三区视频在线| 欧美 亚洲 国产 日韩一| 免费看av在线观看网站| 赤兔流量卡办理| videosex国产| 五月伊人婷婷丁香| 91在线精品国自产拍蜜月| 丝袜脚勾引网站| 亚洲美女搞黄在线观看| 十八禁网站网址无遮挡| 久久免费观看电影| 搡老乐熟女国产| 我要看黄色一级片免费的| 色婷婷久久久亚洲欧美| 欧美成人午夜免费资源| 日日摸夜夜添夜夜添av毛片| 成人毛片60女人毛片免费| 日本午夜av视频| 日韩av免费高清视频| 一区二区三区四区激情视频| 最近的中文字幕免费完整| 亚洲精品乱码久久久v下载方式| 国产亚洲av片在线观看秒播厂| 亚洲精品456在线播放app| 免费观看无遮挡的男女| 九九久久精品国产亚洲av麻豆| 亚洲欧美精品自产自拍| 熟女电影av网| 三级国产精品欧美在线观看| 亚洲一区二区三区欧美精品| 制服诱惑二区| 少妇人妻 视频| 欧美xxⅹ黑人| 亚洲经典国产精华液单| 国产精品不卡视频一区二区| 伦精品一区二区三区| 在线亚洲精品国产二区图片欧美 | 国产熟女欧美一区二区| 99视频精品全部免费 在线| 成人亚洲欧美一区二区av| 亚洲性久久影院| videos熟女内射| 性色av一级| 欧美精品亚洲一区二区| 午夜老司机福利剧场| 午夜91福利影院| 亚洲综合精品二区| 九色亚洲精品在线播放| 久久久精品区二区三区| 午夜福利影视在线免费观看| 99九九在线精品视频| 在线 av 中文字幕| 9色porny在线观看| 男女高潮啪啪啪动态图| 97在线视频观看| 97超视频在线观看视频| 一区在线观看完整版| 免费高清在线观看视频在线观看| 亚洲av中文av极速乱| 一级,二级,三级黄色视频| 国产av码专区亚洲av| 日韩,欧美,国产一区二区三区| 热99久久久久精品小说推荐| 午夜免费观看性视频| 国产色爽女视频免费观看| 亚洲av在线观看美女高潮| 欧美成人午夜免费资源| 欧美精品高潮呻吟av久久| 午夜91福利影院| 夫妻午夜视频| 色吧在线观看| 免费观看在线日韩| 国产成人freesex在线| 日日摸夜夜添夜夜添av毛片| 中国美白少妇内射xxxbb| 伊人久久精品亚洲午夜| 91精品三级在线观看| 色网站视频免费| 国产成人精品无人区| 成年美女黄网站色视频大全免费 | 人人妻人人澡人人爽人人夜夜| 简卡轻食公司| 97精品久久久久久久久久精品| 一本一本综合久久| 亚洲综合精品二区| 中文乱码字字幕精品一区二区三区| 国产精品久久久久成人av| 国产精品久久久久成人av| 狂野欧美白嫩少妇大欣赏| 国产综合精华液| 一级毛片 在线播放| 国产国语露脸激情在线看| 草草在线视频免费看| 色吧在线观看| 精品久久蜜臀av无| 少妇人妻 视频| 亚洲成人av在线免费| 欧美激情 高清一区二区三区| 精品人妻在线不人妻| 国产av一区二区精品久久| 新久久久久国产一级毛片| 中文字幕亚洲精品专区| 51国产日韩欧美| 国产综合精华液| 校园人妻丝袜中文字幕| 亚洲精品乱久久久久久| 一区二区av电影网| 国产精品偷伦视频观看了| 看非洲黑人一级黄片| 精品久久久久久久久亚洲| 欧美亚洲 丝袜 人妻 在线| 欧美精品一区二区大全| 九九在线视频观看精品| 久久久久久久久久人人人人人人| 免费黄频网站在线观看国产| 久久国产精品男人的天堂亚洲 | 久久人人爽人人爽人人片va| 亚洲熟女精品中文字幕| 亚洲熟女精品中文字幕| 91aial.com中文字幕在线观看| 91午夜精品亚洲一区二区三区| 亚洲成色77777| 国产精品.久久久| 寂寞人妻少妇视频99o| 99精国产麻豆久久婷婷| 欧美激情极品国产一区二区三区 | 欧美 亚洲 国产 日韩一| 热99国产精品久久久久久7| 丝袜美足系列| 国产亚洲最大av| 一级毛片电影观看| 国产精品一区二区在线不卡| 欧美国产精品一级二级三级| 美女国产视频在线观看| 26uuu在线亚洲综合色| 成人黄色视频免费在线看| 国产在线视频一区二区| 国产成人精品在线电影| 亚洲欧美成人精品一区二区| 岛国毛片在线播放| 欧美精品人与动牲交sv欧美| 一级,二级,三级黄色视频| 久久久久久久久久久久大奶| 亚洲精品久久久久久婷婷小说| 亚洲熟女精品中文字幕| 日本色播在线视频| 97超视频在线观看视频| 各种免费的搞黄视频| 国产一区二区在线观看日韩| 制服丝袜香蕉在线| 精品国产一区二区三区久久久樱花| kizo精华| 日韩在线高清观看一区二区三区| 九草在线视频观看| av有码第一页| 欧美三级亚洲精品| 精品人妻偷拍中文字幕| .国产精品久久| 国产成人精品久久久久久| 欧美xxⅹ黑人| av网站免费在线观看视频| 成人毛片a级毛片在线播放| 老司机影院毛片| 国产av码专区亚洲av| 五月开心婷婷网| av播播在线观看一区| 国产 一区精品| 欧美日韩在线观看h| 日本-黄色视频高清免费观看| 久久国产精品大桥未久av| 中国美白少妇内射xxxbb| 黄色配什么色好看| 久久人妻熟女aⅴ| 人成视频在线观看免费观看| 欧美日韩视频精品一区| 2022亚洲国产成人精品| 满18在线观看网站| 久久久久久久久久人人人人人人| 80岁老熟妇乱子伦牲交| 老熟女久久久| 日韩 亚洲 欧美在线| 嘟嘟电影网在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美3d第一页| 久久精品久久久久久久性| 新久久久久国产一级毛片| 一级毛片aaaaaa免费看小| 国产av一区二区精品久久| 久久久国产精品麻豆| 伊人亚洲综合成人网| 最近中文字幕2019免费版| 各种免费的搞黄视频| 女性被躁到高潮视频| 国产精品蜜桃在线观看| 99国产综合亚洲精品| 桃花免费在线播放| 久久久久精品性色| 看免费成人av毛片| 一本色道久久久久久精品综合| 丝袜在线中文字幕| 久久国产精品大桥未久av| xxx大片免费视频| 丰满少妇做爰视频| 亚洲欧美色中文字幕在线| 国产色婷婷99| 在线看a的网站| 欧美少妇被猛烈插入视频| 性色av一级| 大香蕉久久网| 日本色播在线视频| 麻豆乱淫一区二区| 久久女婷五月综合色啪小说| 亚洲,一卡二卡三卡| 免费看av在线观看网站| 超色免费av| 卡戴珊不雅视频在线播放| 丝瓜视频免费看黄片| 亚洲美女黄色视频免费看| 热re99久久国产66热| 一级爰片在线观看| 久久99精品国语久久久| a 毛片基地| 亚洲国产精品999| freevideosex欧美| 日本av手机在线免费观看| 日日爽夜夜爽网站| 成人午夜精彩视频在线观看| 精品熟女少妇av免费看| 婷婷色综合大香蕉| 在线观看美女被高潮喷水网站| 在线免费观看不下载黄p国产| 在线观看一区二区三区激情| 国产白丝娇喘喷水9色精品| 只有这里有精品99| 久久午夜综合久久蜜桃| 97精品久久久久久久久久精品| 久久精品夜色国产| 精品一品国产午夜福利视频| 色94色欧美一区二区| 国产精品 国内视频| 亚洲av男天堂| 日本爱情动作片www.在线观看| 国产亚洲一区二区精品| 99久久精品一区二区三区| 人妻制服诱惑在线中文字幕| 免费av不卡在线播放| 国产黄频视频在线观看| 女人精品久久久久毛片| 中文字幕av电影在线播放| 建设人人有责人人尽责人人享有的| 亚洲av成人精品一区久久| 亚洲综合精品二区| a级毛片黄视频| 蜜桃国产av成人99| 色5月婷婷丁香| 成人毛片a级毛片在线播放| 日韩三级伦理在线观看| 王馨瑶露胸无遮挡在线观看| 熟妇人妻不卡中文字幕| www.av在线官网国产| 黄色配什么色好看| 日本vs欧美在线观看视频| 美女福利国产在线| 涩涩av久久男人的天堂| 女性生殖器流出的白浆| 在线天堂最新版资源| 激情五月婷婷亚洲| 在线 av 中文字幕| 中文字幕久久专区| a级毛片在线看网站| 99久久中文字幕三级久久日本| 一区二区三区四区激情视频| 精品人妻一区二区三区麻豆| 波野结衣二区三区在线| 亚洲天堂av无毛| av又黄又爽大尺度在线免费看| 久久午夜福利片| 丝袜在线中文字幕| 青春草视频在线免费观看| 亚洲成人av在线免费| 国产探花极品一区二区| 高清午夜精品一区二区三区| 成人黄色视频免费在线看| 校园人妻丝袜中文字幕| 欧美亚洲日本最大视频资源| 中国美白少妇内射xxxbb| 男女边摸边吃奶| 国产精品免费大片| 日韩免费高清中文字幕av| 精品99又大又爽又粗少妇毛片| 国产高清有码在线观看视频| 丰满饥渴人妻一区二区三| 人妻 亚洲 视频| 青春草视频在线免费观看| 欧美激情国产日韩精品一区| 另类亚洲欧美激情| 99视频精品全部免费 在线| 精品人妻偷拍中文字幕| 亚洲熟女精品中文字幕| 国产极品粉嫩免费观看在线 | 夜夜看夜夜爽夜夜摸| 男的添女的下面高潮视频| 成人黄色视频免费在线看| 亚洲综合色惰| 亚洲精品国产色婷婷电影| 男男h啪啪无遮挡| 91久久精品国产一区二区三区| 伦理电影免费视频| √禁漫天堂资源中文www| 色视频在线一区二区三区| 成人无遮挡网站| 亚洲国产精品成人久久小说| 妹子高潮喷水视频| 极品少妇高潮喷水抽搐| 成人午夜精彩视频在线观看| 不卡视频在线观看欧美| 你懂的网址亚洲精品在线观看| 亚洲精品自拍成人| 日韩精品有码人妻一区| 久久久国产一区二区| 色视频在线一区二区三区| av电影中文网址| 久久99热6这里只有精品| 亚洲美女搞黄在线观看| 两个人免费观看高清视频| 岛国毛片在线播放| 午夜福利网站1000一区二区三区| 欧美人与性动交α欧美精品济南到 | 久久久久久伊人网av| 伦理电影免费视频| 精品国产国语对白av| 一级黄片播放器| 国产在线一区二区三区精| 一级毛片aaaaaa免费看小| 看免费成人av毛片| 国产成人精品无人区| 国产极品粉嫩免费观看在线 | 男女边摸边吃奶| 看非洲黑人一级黄片| 欧美另类一区| 好男人视频免费观看在线| 最近2019中文字幕mv第一页| 午夜精品国产一区二区电影| 日韩精品免费视频一区二区三区 | 日韩精品有码人妻一区| 一边亲一边摸免费视频| 日日摸夜夜添夜夜爱| 欧美精品亚洲一区二区| 极品少妇高潮喷水抽搐| 久久亚洲国产成人精品v| 你懂的网址亚洲精品在线观看| 日本色播在线视频| 免费不卡的大黄色大毛片视频在线观看| 天美传媒精品一区二区| 精品人妻熟女av久视频| 三上悠亚av全集在线观看| 青春草视频在线免费观看| 伦精品一区二区三区| 国产成人一区二区在线| 你懂的网址亚洲精品在线观看| 日韩av在线免费看完整版不卡| 大话2 男鬼变身卡| 日产精品乱码卡一卡2卡三| 日产精品乱码卡一卡2卡三| 亚洲欧美成人综合另类久久久| 中国三级夫妇交换| 免费大片18禁| 一本久久精品| 亚洲av不卡在线观看| 精品人妻在线不人妻| 久久久久国产网址| 国产欧美亚洲国产| av播播在线观看一区| 少妇猛男粗大的猛烈进出视频| 高清在线视频一区二区三区| 狠狠婷婷综合久久久久久88av| 97超视频在线观看视频| 下体分泌物呈黄色| 日韩一区二区视频免费看| 日本wwww免费看| 精品久久久精品久久久| 久久这里有精品视频免费| 久久99一区二区三区| 日韩中字成人| 国产成人a∨麻豆精品| 国产亚洲精品第一综合不卡 | 久久久亚洲精品成人影院| 国产免费一区二区三区四区乱码| 在线观看人妻少妇| 日韩人妻高清精品专区| 久久久久久久精品精品| 亚洲av不卡在线观看| 日本免费在线观看一区| 男女边摸边吃奶| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜添av毛片| 国产精品欧美亚洲77777| 日韩视频在线欧美| 中国三级夫妇交换| 亚洲人成网站在线播| av网站免费在线观看视频| 久久久久久久精品精品| 欧美日本中文国产一区发布| 天美传媒精品一区二区| 亚洲人成网站在线观看播放| 欧美国产精品一级二级三级| 乱码一卡2卡4卡精品| 国产欧美日韩综合在线一区二区| 一个人免费看片子| 国产精品国产三级国产av玫瑰| 人妻系列 视频| 日韩不卡一区二区三区视频在线| 91精品国产九色| 满18在线观看网站| 国产黄色视频一区二区在线观看| 国产成人精品久久久久久| 国产乱来视频区| 亚洲激情五月婷婷啪啪| 国产欧美日韩一区二区三区在线 | 中文字幕av电影在线播放| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| 亚洲国产精品一区二区三区在线| 在线 av 中文字幕| 国产有黄有色有爽视频| 亚洲精品第二区| 两个人的视频大全免费| 国产精品国产三级国产专区5o| av在线观看视频网站免费| 水蜜桃什么品种好| 久久久午夜欧美精品| 国产老妇伦熟女老妇高清| 国产黄频视频在线观看| 韩国av在线不卡| 插逼视频在线观看| 国产精品国产三级国产专区5o| 纵有疾风起免费观看全集完整版| 中文乱码字字幕精品一区二区三区| 美女大奶头黄色视频| 欧美日韩av久久| 午夜av观看不卡| 国产精品久久久久久精品古装| 国产精品偷伦视频观看了| 中文字幕制服av| 91国产中文字幕| 亚洲av在线观看美女高潮| 国产伦精品一区二区三区视频9| 大又大粗又爽又黄少妇毛片口| 婷婷色综合大香蕉| 国产精品国产三级国产专区5o| 在线观看免费日韩欧美大片 | 国产精品久久久久久精品电影小说| 大话2 男鬼变身卡| 在现免费观看毛片| 天堂中文最新版在线下载| 久久国内精品自在自线图片| 国产成人一区二区在线| 亚洲精品国产色婷婷电影| 亚洲经典国产精华液单| 啦啦啦在线观看免费高清www| 亚洲在久久综合| 狂野欧美激情性xxxx在线观看| 国产免费现黄频在线看| 国模一区二区三区四区视频| 日韩av在线免费看完整版不卡| 午夜激情福利司机影院| 日本黄大片高清| 美女视频免费永久观看网站| 日韩三级伦理在线观看| 十八禁网站网址无遮挡| 男人爽女人下面视频在线观看| 国产精品一国产av| 亚洲三级黄色毛片| 久久 成人 亚洲| 两个人的视频大全免费| 18禁观看日本| 激情五月婷婷亚洲| 老司机影院毛片| 国产精品国产三级国产专区5o| 亚洲av.av天堂| 尾随美女入室| 国语对白做爰xxxⅹ性视频网站| 亚洲精品视频女| av黄色大香蕉| 人人澡人人妻人| 大话2 男鬼变身卡| 狠狠精品人妻久久久久久综合| 午夜久久久在线观看| 国产白丝娇喘喷水9色精品| 狂野欧美激情性bbbbbb| 亚洲综合色惰| 亚洲,欧美,日韩| 在线 av 中文字幕| 成人国产麻豆网| 免费看不卡的av| 午夜福利影视在线免费观看| 亚洲色图 男人天堂 中文字幕 | 一级爰片在线观看| 亚洲,一卡二卡三卡| 日韩人妻高清精品专区| 精品人妻一区二区三区麻豆| 黄片播放在线免费| 我的老师免费观看完整版| 国产精品久久久久久精品古装| 婷婷色综合大香蕉| 日韩精品免费视频一区二区三区 | 天天躁夜夜躁狠狠久久av| 色婷婷久久久亚洲欧美| 永久免费av网站大全| 自线自在国产av| 九九久久精品国产亚洲av麻豆| 97超碰精品成人国产| 国产精品女同一区二区软件| 亚洲第一区二区三区不卡| 99久久精品国产国产毛片| 亚洲熟女精品中文字幕| 亚洲不卡免费看| 午夜av观看不卡| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| av专区在线播放| 亚洲av成人精品一二三区| 全区人妻精品视频| 男女高潮啪啪啪动态图| 十八禁高潮呻吟视频| 亚洲精品日韩在线中文字幕| 免费观看性生交大片5| 岛国毛片在线播放| 国国产精品蜜臀av免费| 老女人水多毛片| 自拍欧美九色日韩亚洲蝌蚪91| 午夜精品国产一区二区电影| 只有这里有精品99| 亚洲国产精品成人久久小说| 2022亚洲国产成人精品| 精品一区二区三区视频在线| 亚洲经典国产精华液单| 亚洲四区av| 99国产综合亚洲精品| av国产精品久久久久影院| 人妻 亚洲 视频| 久久久亚洲精品成人影院| 能在线免费看毛片的网站| 精品人妻熟女毛片av久久网站| 嫩草影院入口| 国产一区二区三区综合在线观看 | 9色porny在线观看| tube8黄色片| 欧美国产精品一级二级三级| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| 亚洲精品视频女| 亚洲av电影在线观看一区二区三区| 国产免费一级a男人的天堂|