• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep-water Riser Fatigue Monitoring Systems Based on Acoustic Telemetry

    2014-04-26 10:54:41LIBaojunWANGHaiyanSHENXiaohongYANYongshengYANGFuzhouandHUAFei
    Journal of Ocean University of China 2014年6期

    LI Baojun, WANG Haiyan, SHEN Xiaohong, YAN Yongsheng, YANG Fuzhou, and HUA Fei

    School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, P. R. China

    Deep-water Riser Fatigue Monitoring Systems Based on Acoustic Telemetry

    LI Baojun, WANG Haiyan*, SHEN Xiaohong, YAN Yongsheng, YANG Fuzhou, and HUA Fei

    School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, P. R. China

    Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of VIV response and enhance our ability to predict fatigue damage. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers’ fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.

    marine riser; fatigue monitoring; engineering prototype machine; underwater telemetry

    1 Introduction

    Marine risers have been used since 1949 in Mohole Project in the US (Leklong et al., 2008). In the last 10 years, the offshore oil and gas industry has pushed aggressively into deep and ultra-deep water. Marine risers are the only key connection between platforms on the water surface and well heads on the seabed (Anne, 2007; How et al., 2009; Sakdirat et al., 2005) in such harsh environments (Fig.1). Physically, marine risers are inherently long, slender, extensible, and flexible tubular structures and they tend to undergo the large amplitude motion subject to the severe environmental forces such as vortex shedding, current and wave forces in the ultra- deep waters. These motions, especially VIV (vortex induced vibration), can give rise to high rates of riser fatigue damage accumulation (Guo et al., 2013; Liu and Huang, 2013; Matthew et al., 2012; Modarres-Sadeghi et al., 2010; Li et al., 2010). As water depth increases, VIV becomes the supreme challenges for the marine risers’ security and the biggest uncertainties facing the riser engineers (Chaplin et al., 2005; Matthew et al., 2012; Mark et al., 2012; Michael et al., 2009).

    Fig.1 Schematic of riser and its dynamic response.

    Riser monitoring provides information that enables the operator to confirm the integrity of the riser, have assist with operational decisions, optimize inspection, maintenance and repair schedules and procedures and calibrate design tools. Riser monitoring systems (RMSs) can be classified into two broad categories: condition monitoringand structural response monitoring (Brittany et al., 2007; Mukundan et al., 2009; Muthu et al., 2007; Enuganti et al., 2011). The condition monitoring mainly refers to ocean current measurement. The structural response monitoring includes measurements of acceleration, inclination, strain stress and so on. And furthermore, a variety of monitoring equipment has been used for riser fatigue monitoring (Pierre et al., 2008; Ricky and Pei, 2008; Metin et al., 2009; Shreenaath et al., 2007; Yiannis et al., 2011). However, the aforementioned method and measurement equipment are possessed by the overseas institutions, such as 2H offshore company, but cannot meet various new conditions. Firstly, the existing equipment with high cut-off frequency cannot detect the vibration of marine risers with larger length in the deeper water, because it is induced by frequencies lower than the cut-off frequency of existing equipment. Secondly, the said equipment only measures one kind of parameters, such as acceleration, inclination, strain stress and sea current. It will be more complex and expensive to measure multiple parameters using the said equipment. As a result, new methods are called for to take up the challenges from deeper water environment.

    According to the different ways that power is supplied and communication is maintained with the monitoring equipment, RMS is ordinarily divided into three types, namely, standalone systems, hardwired systems and acoustic systems. The standalone systems have been most widely used in field monitoring, but they cannot transmit data in real time. Due to the requirement of cables, the hardwired systems are limited in terms of the number of locations. Besides, they are more complex and expensive than the standalone system. The acoustic systems are the key technology but also a challenging approach, due to the pros of their own and the cons of the other ways (Himanshu et al., 2008). The acoustic systems are cable-free solutions and can be installed either by remotely operated vehicles (ROV) or during riser installation. Compared with the standalone system, they are quasi-real time systems due to the teeny delay of data transmission and can provide operational support. Moreover, they are more simple and more cost-effective than the hardwired system. Of course, they are limited by the bandwidth of underwater acoustic channel.

    With the depth of water increasing, the length of riser increases accordingly. As a consequence, the VIV is in a lower frequency range (Li, 2010), and the existing monitoring equipment will become invalid because of the high filtering cut-off frequency.

    Following the demand of study on the Deep Ocean Oil and Gas Field Development Project of Major National Science and Technology in China, the detecting algorithm and telemetry method for marine riser fatigue in deepwater and ultra-deep-water have been studied recently (Li et al., 2011a, 2011b, 2012; Wang et al., 2011). A new marine riser fatigue acoustic telemetry scheme is proposed in this paper. An engineering prototype machine is developed based on the proposed scheme. After hundreds of times of laboratory tests and lake experiment, a field experiment of the engineering prototype machine was done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea from June, 2012 to August, 2012. The experimental results of the engineering prototype machine have made a huge impact. The technique will fill up the gap of deep-water equipment in China and offer technical support for exploration and production of offshore oil and gas in deep-water and ultra-deepwater environments.

    2 Method and Framework of Riser Monitoring

    In order to acquire the riser fatigue parameters at first time farthest, the acoustic telemetry scheme is employed in the marine riser fatigue monitoring scheme, as shown in Fig.2a. The riser fatigue monitoring system consists of two main parts, namely the upper computer and the lower computer. The underwater fatigue parameters measuring and transmitting equipment is regarded as the first section, and so is the lower computer. The data receiving and dis-playing equipment at the drill site is the second section, the upper computer. The marine riser’s VIV, inclination, stress and ocean current speed are measured by their own measurement module respectively. These parameters are processed, stored and transmitted successively, illustrated in Fig.2b, with the corresponding methods under the control of MSP430 Single Chip Microcontroller from Texas Instruments.

    Fig.2 Riser fatigue telemetry scheme.

    The acoustic signals transmitted by transmitting transducer are transformed into electrical signals by the receiving transducer. After Pre-amplifying and low pass filtering at receiver, A/D conversion, and data demodulation, the measured fatigue parameters are displayed and stored at upper computer. An engineering prototype machine, which has been patented (Xu et al., 2010 and 2011), is developed followed the schematic mentioned above. Fig.3 shows the machine. The detection module includes SSMM, VIVMM, IMM and OCMM, which are specified in the appendix.

    The smart sensor is utilized for measuring VIV and inclination. The FBG sensor undertakes the task of riser strain-stress detection. The ocean current speed is detected by a universal current meter based on magnetic induction, which is the invention patent formed in this project (Jiang et al., 2010).

    Fig.3 Picture of engineering prototype.

    3 Key Techniques

    Compared to the existing riser monitoring systems, the breakthrough and innovation in the proposed engineering prototype machine are as follow.

    3.1 Current Monitoring

    The universal current meter based on magnetic induction measures the current speed where the lower computer is placed. The current vertical profile can b e achieved through the interpolation of multipoint measured current speeds. ADCP (acoustic Doppler current profilers) (Anne, 2007), to our best knowledge, is the one and only ocean current measurement equipment used for the offshore petroleum field. The power dissipation of ADCP is proportional to its measuring depth. The universal current meter is superior to ADCP in accuracy, power dissipation and cost.

    3.2 Inclination Monitoring

    The existing angle measurement is of the 2D style (x-y, x-z or y-z). However, the marine riser inclination along the z axis is the most important and limited to 10 degrees. One novel method is proposed for inclination monitoring using:

    where α, β and θ are respectively the inclination relative to x, y and z axes to be measured.

    The proposed method can reduce energy consumption greatly according to formula (1). The inclination data is transmitted in the form of frame. The angles α, β and θ have the same length of frame, which is assumed to be L bits. Compared to the existing method that angle data with two L bits need to be transmitted, the length of angle data with L bits in the proposed method reduces by one half. Meanwhile, the time of data transmission also decreases. As a result, energy consumption will reduce accordingly.

    3.3 Acceleration Monitoring

    The inherent frequency of riser is in inverse proportion to its length. As the riser length increases, the lower frequency would be excited by VIV. For example, the lowest inherent frequency of riser with 3000 m length is about 0.019 Hz (Li, 2010). As a result, lots of existing acceleration measurement equipment becomes out of action, due to the high cut-off frequency, e.g., the cut-off frequency of INTEGRI pod?-AM, which is the typical case of 2H offshore Inc, is 4.5 Hz, and in the reference (Tang et al., 2012) it is 1 Hz. They all cannot match the riser fatigue monitoring in deep and ultra-deep water. However, the cut-off frequency of the proposed engineering prototype machine is 0 Hz and its sampling frequency is 25 Hz, which permits a wider frequency range to be monitored.

    Last, the engineering prototype machine is an integrated fatigue monitoring system. To our best knowledge, kinds of existing riser monitoring systems are single- parameter monitoring system. Strain and vibration are the parameters that can be interchangeable in theory. In practice the measurement of strain or vibration present its own sets of challenges (Himanshu et al., 2008). The integrated monitoring system possesses the comparative advantage and comprehensive advantage compared with the oneparameter monitoring system.

    4 Sea Trials

    The accuracy, measuring error and feasibility of every parameter measurement module of the engineering pro-totype machine had been tested through laboratory tests. And lake experiments made at Fengjia Shan Reservoir of Shaanxi province in Nov. 2010 tested and verified the data transmitting and the good performance of underwater acoustic communication. After hundreds of times of laboratory tests and lake experiments, sea trials of the machine were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea from June 30, 2012 to August 10, 2012. The seal housing was installed by a special ribbon during riser installation as shown in Fig.4. The receiving transducer was launched into water 100m below sea level to avoid thermocline.

    Fig.4 Pictures of seal housing installation.

    The data transmitting through underwater acoustic channel are affected critically by ambient noise. The frequency range of the engineering prototype machine is 8 kHz-12 kHz. According to the ambient noise frequency spectrum around the platform HYSY-981 shown in Fig.5, the needed frequency range is smooth and no noise interference exists. It proves that the frequency range is in point and the sea trials show the system’s feasibility and reliability.

    The interface of data receiving and data displaying is illustrated in Fig.6. The received Bauhinia pattern transmitted by lower computer before fatigue data transmitting signifies the excellent underwater acoustic communication performance. The received fatigue parameters aredrawn in red line.

    Fig.5 Ambient noise spectrums around HYSY-981.

    Fig.6 Interface of data receiving and data displaying.

    Fig.7 Inclination data chart.

    Because of the confidentiality and operation limitations of the platform HYSY-981, only the inclination measurement results are demonstrated in this paper. The risers moved from 0 m to 12 m under the manipulation by drilling platform. The inclination changing process was monitored and recorded by two monitoring systems. The inclination data are shown in the left diagram of Fig.7. The horizontal axis stands for sampling data numbers and the vertical axis indicates the inclination data of marine riser. The right picture displays the inclination measured by the Kongsberg Riser Management System that has been employed by the deep-water drilling platform HYSY-981. The monitored inclination changing process by the engineering prototype machine is in agreement with that by Kongsberg system. The measuring error in the proposed system is less than 5% compared to Kongsberg.

    5 Conclusions

    Marine risers are the only key connection between platforms on the water surface and well heads on the seabed. Their fatigue and failure induced by dynamic response can not only diminish its fatigue life, but also lead to economic losses and eco-catastrophe. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed. The proposed integrated fatigue monitoring system has many breakthroughs and innovation.

    The sea trial results obtained from the 6th generation deep-water drilling platform HYSY-981 in the South China Sea show that the proposed scheme is feasible and reliable and the engineering prototype machine developed meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained will provide much technical support to optimize the design of the engineering prototype machine in the future.

    Acknowledgements

    This work was supported in part by the National Science and Technology Major Project of China (2011ZX 05026-001-06), and the National Natural Science Foundation of China (51249005; 60972153).

    Appendix

    Nomenclature

    DDS: Direct Digital Synthesis

    DSM: Display System Module

    DSP: Digital Signal Processor

    IMM: Inclination Measurement Module

    OCMM: Ocean Current Measurement Module

    SSMM: Stress Strain Measurement Module

    VIV: Vortex Induced Vibrations

    VIVMM: VIV Measurement Module

    UAC: Underwater Acoustic Channel

    Anne, M. R., 2007. Modeling and control of top tensioned risers. PhD dissertation. Norwegian University of Science and Technology, Norway, 1-55.

    Brittany, G., Elizabeth, F., and Madhu, H., 2007. The role of offshore monitoring in an effective deepater riser integrity management program. In: Proceedings of OMAE 2007: 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, OMAE2007-29479.

    Chaplin, J. R., Bearman, P. W., and Cheng, Y., 2005. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. Journal of Fluids and Structures, 21: 25-40.

    Enuganti, P., Shakkari, P., and Constantinides, Y., 2011. SCR integrity management program using field data from a monitoring system. In: Offshore Technology Conference. Houston. OTC-21912-PP.

    Guo, H. Y., Zhang, L., Li, X. M., and Lou, M., 2013. Dynamic responses of top tensioned riser under combined excitation of internal solitary wave, surface wave and vessel motion. Journal of Ocean University of China, 12 (1): 6-12.

    Himanshu, M., Wolfgang, R., and Dave, W., 2008. Riser integrity monitoring techniques and data processing methods. ISOPE-2008-EF-01

    How, B. V. E., Ge, S. S., and Choo, Y. S., 2009. Active control of flexible marine risers. Journal of Sound and Vibration, 320: 758-776

    Jiang, S. Q., Xu, L. B., and Wang, H. Y., 2010. One kind of deep-water universal current meter based on magnetic induction. Patent pending number: 201010593428.3 (China Patent).

    Leklong, J., Chucheepsakul, S., and Kaewunruen, S., 2008. Dynamic responses of marine risers/pipes tran sporting fluid subject to top end excitations. In: Proceedings of the Eighth International Society of Offshore and Polar Engineers Pacific/Asia Offshore Mechanics Symposium Bangkok. Thailand, November 10-14.

    Li, B. J., 2010. Research on fatigue monitoring techniques of deepwater risers. Master thesis. Northwest-ernPolytechnical University, Xi’an, 1-32 (in Chinese with English abstract).

    Li, B. J., Wang, H. Y., Shen, X. H., and Zhu, M. Y., 2011. A novel algorithm for riser vortexinducedvibration detecting. Computer Measurement & Control, 19 (6): 1273-1277 (in Chinese with English abstract).

    Li, B. J., Wang, H. Y., Shen, X. H., and Zhao, R. Q., 2012. Telemetry method with low power consumption for marine riser fatigue monitoring. Computer Measurement & Control, 20 (5): 1211-1213 (in Chinese with English abstract).

    Li, X. M., Guo, H. Y., and Meng, F. S., 2010a. Fatigue life assessment of top tensioned risers under vortexinduced vibrations. Journal of Ocean University of China, 9 (1): 43-47.

    Li, X. M., Guo, H. Y., and Meng, F. S., 2010b. Stress analysis of top tensioned riser under random waves and vessel motions. Journal of Ocean University of China, 9 (3): 251-256.

    Liu, J., and Huang, W. P., 2013.A nonlinear vortex induced vibration model of marine risers, Journal of Ocean University of China, 12 (1): 32-36.

    Mark, C., Shyue, S. C., and Cary, G., 2012. Fatigue analysis of tether chain in hybrid risers. In: Proceedings of the ASME 31stInternational Conference on Ocean, Offshore and Arctic Engineering. Rio De Janeiro, OMAE2012-83954.

    Matthew, B., Elizabeth,T., and Dhyanjyoti, D., 2012. Experi-mental evaluation of vortex induced vibration response of straked pipes in tandem arrangements. In: Proceedings of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio De Janeiro, OMAE2012-83772.

    Metin, K., Wolfgang, R., and Shreenaath, N., 2009. Steel catenary riser response characterization with on-line monitoring devices, OMAE2009-79437.

    Metin, K., Chen, J. H., and Curtiss, B., 2009. Tahiti online monitoring system for steel catenary risers and flowlines. OTC 19860.

    Michael, A. T., Yin, F. J., and Mike, C., 2009. Benchmarking of shear7v4.5: Comparisons to full-scale drilling riser VIV data and legacy analyses. In: Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, OMAE2009-79442.

    Modarres, S. Y., Mukundan, H., and Dahl, J. M., 2010. The effect of higher harmonic forces on fatigue life of marine risers. Journal of Sound and Vibration,329: 43-55.

    Mukundan, H., Modarres, S. Y., and Dahl, J. M., 2009. Monitoring VIV fatigue damage on marine risers. Journal of Fluids and Structures,25: 617-628.

    Muthu, C., and Trond, S. M., 2007. Riser monitoring systems–then and now. Exploration & Production –Oil & Gas Review–OTC Edition, 82-85.

    Pierre, B., Roy, S., and Mike, C., 2008. Full scale VIV response measurements of a drill pipe in Gulf of Mexico loop currents, OMAE2008-57610.

    Ricky, T., and Pei, A., 2008. Performance monitoring of deep-water risers. In: Proceedings of the ASME 27th International Conference on Ocean, Offshore and Arctic Engineering. Estoril, OMAE2008-57018.

    Sakdirat, K., Julapot, C., and Somchai, C., 2005. Nonlinear free vibrations of marine risers/pipes transporting fluid. Ocean Engineering,32: 417–440.

    Shreenaath, N., Mateusz, P., and Metin, K., 2007. Deep-water spar steel catenary riser monitoring strategy, In: International Conference on Ocean, Offshore and Arctic Engineering. OMAE 2007-29344.

    Tang, D., He, F., and Shi, R. F., 2012. New-developed selfcontained acceleration measurement instrument used for offshore platform monitoring. Chinese Journal of Scientific Instrument,33(3): 689-694 (in Chinese with English abstract).

    Wang, H. Y., Li, B. J., Shen, X. H., Jiang, S. Q., and Xu, L. B., 2011. Research on deep-water Riser VIV fati--guetelemetry monitoring. In: the 8th International Bhurban Conference on Applied Sciences & Technology. Pakistan, 5pp.

    Xu, L. B., Wang, H. Y., and Jiang, S. Q., 2011. One kind of multiple point acoustic monitoring system for marine riser fatigure. Patent pending number: 201120001419.0 (China Patent).

    Xu, L. B., Wang, H. Y., and Jiang, S. Q., 2010. One kind of seal housing used for deep-water information sensing and acoustic wireless transmitting. Patent pending number: 201010616028. X (China Patent).

    Yiannis, C., Lee, T., and Prahlad, E., 2011. Steel catenary riser response identification based on field measurements. In: Proceedings of the ASME 30thInternational Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, OMAE 2011-50148.

    (Edited by Ji Dechun)

    (Received September 24, 2013; revised April 29, 2014; accepted May 24, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-029-88495759

    E-mail: hywang@nwpu.edu.cn

    亚洲,一卡二卡三卡| 国精品久久久久久国模美| 大片免费播放器 马上看| av在线app专区| 亚洲人与动物交配视频| 午夜91福利影院| 成年av动漫网址| 啦啦啦中文免费视频观看日本| 国产亚洲精品第一综合不卡 | 麻豆乱淫一区二区| 熟女av电影| 亚洲久久久国产精品| 午夜福利视频精品| 久久久久久久大尺度免费视频| 91国产中文字幕| 免费大片黄手机在线观看| 999精品在线视频| 男人操女人黄网站| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产一区二区三区四区第35| av国产精品久久久久影院| 视频在线观看一区二区三区| 不卡视频在线观看欧美| 最近的中文字幕免费完整| av又黄又爽大尺度在线免费看| 大话2 男鬼变身卡| 亚洲美女搞黄在线观看| 精品一区二区三卡| 日本欧美国产在线视频| 又粗又硬又长又爽又黄的视频| 亚洲av电影在线进入| 国产色婷婷99| 又黄又粗又硬又大视频| 国产麻豆69| 伦理电影大哥的女人| 极品少妇高潮喷水抽搐| 免费日韩欧美在线观看| 中国三级夫妇交换| 2022亚洲国产成人精品| 另类精品久久| 久久97久久精品| 一边亲一边摸免费视频| 男女啪啪激烈高潮av片| 成人综合一区亚洲| 视频中文字幕在线观看| 国内精品宾馆在线| 国产av精品麻豆| 日韩视频在线欧美| 另类精品久久| 国产成人aa在线观看| 观看美女的网站| av片东京热男人的天堂| 波野结衣二区三区在线| 巨乳人妻的诱惑在线观看| av女优亚洲男人天堂| 午夜免费鲁丝| 国产精品女同一区二区软件| 天堂中文最新版在线下载| 国产一级毛片在线| 人人澡人人妻人| 国产精品无大码| 免费大片黄手机在线观看| 国产av一区二区精品久久| 国产精品久久久久久精品古装| 欧美另类一区| 精品人妻偷拍中文字幕| 午夜福利乱码中文字幕| 99久久精品国产国产毛片| 一区二区三区精品91| 中文字幕免费在线视频6| 日本vs欧美在线观看视频| 久久免费观看电影| 精品酒店卫生间| 久久久久国产网址| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久久电影| 一区二区日韩欧美中文字幕 | 精品人妻一区二区三区麻豆| 我要看黄色一级片免费的| 成人手机av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 色婷婷久久久亚洲欧美| 日本wwww免费看| 国产精品一区二区在线观看99| 久久99热6这里只有精品| 一级片'在线观看视频| 在线看a的网站| 国产日韩欧美视频二区| 久久人人爽av亚洲精品天堂| 日本与韩国留学比较| 国产成人精品无人区| h视频一区二区三区| 国产黄色视频一区二区在线观看| 国精品久久久久久国模美| 日韩伦理黄色片| 亚洲成av片中文字幕在线观看 | 国产国语露脸激情在线看| 高清视频免费观看一区二区| av福利片在线| 亚洲精品一二三| 最近的中文字幕免费完整| 少妇人妻 视频| 如何舔出高潮| 麻豆乱淫一区二区| 最黄视频免费看| 国产成人精品一,二区| 我要看黄色一级片免费的| 久久影院123| av播播在线观看一区| 欧美老熟妇乱子伦牲交| 精品亚洲成a人片在线观看| 熟女人妻精品中文字幕| 777米奇影视久久| 老司机影院毛片| 在线观看免费视频网站a站| 性色av一级| 最近中文字幕高清免费大全6| 欧美亚洲 丝袜 人妻 在线| 欧美激情 高清一区二区三区| 飞空精品影院首页| 亚洲四区av| 日本av手机在线免费观看| 极品人妻少妇av视频| 久久99一区二区三区| 久久精品熟女亚洲av麻豆精品| 欧美日韩av久久| 综合色丁香网| 色婷婷av一区二区三区视频| 国产黄色免费在线视频| 少妇高潮的动态图| 午夜免费男女啪啪视频观看| 女的被弄到高潮叫床怎么办| 丝袜脚勾引网站| 久久热在线av| 精品一区二区三区四区五区乱码 | 欧美精品人与动牲交sv欧美| 久久亚洲国产成人精品v| 97在线人人人人妻| 黄网站色视频无遮挡免费观看| 一级a做视频免费观看| 日韩大片免费观看网站| 18在线观看网站| 黄色配什么色好看| 热99久久久久精品小说推荐| 一级爰片在线观看| 99热全是精品| 亚洲情色 制服丝袜| 久久精品国产自在天天线| av有码第一页| 青春草视频在线免费观看| 美女视频免费永久观看网站| 丰满少妇做爰视频| 最近最新中文字幕免费大全7| 亚洲精品,欧美精品| 国产成人精品久久久久久| videosex国产| 精品少妇黑人巨大在线播放| 亚洲国产欧美日韩在线播放| 精品第一国产精品| www.色视频.com| 如日韩欧美国产精品一区二区三区| 久久狼人影院| 青春草国产在线视频| 久久人人爽人人爽人人片va| 久久久久久久久久久免费av| 男人添女人高潮全过程视频| 激情视频va一区二区三区| 亚洲欧洲日产国产| 日本wwww免费看| 在线观看免费日韩欧美大片| 国产成人精品久久久久久| 国产亚洲精品第一综合不卡 | 又黄又粗又硬又大视频| 久久99热这里只频精品6学生| 亚洲伊人久久精品综合| 日本av免费视频播放| 国产av精品麻豆| 久久精品国产亚洲av天美| 亚洲国产欧美日韩在线播放| 欧美成人午夜精品| 亚洲精品日本国产第一区| 精品卡一卡二卡四卡免费| 观看美女的网站| √禁漫天堂资源中文www| 日日撸夜夜添| 交换朋友夫妻互换小说| 日本欧美视频一区| 18禁观看日本| 久久97久久精品| 制服人妻中文乱码| 精品久久久久久电影网| 丝袜人妻中文字幕| 男女免费视频国产| 秋霞伦理黄片| 在线观看免费视频网站a站| 在线观看人妻少妇| 熟妇人妻不卡中文字幕| 99热全是精品| 2018国产大陆天天弄谢| 久久毛片免费看一区二区三区| 亚洲美女搞黄在线观看| 免费观看a级毛片全部| 男女边摸边吃奶| 成年女人在线观看亚洲视频| 一区二区日韩欧美中文字幕 | 街头女战士在线观看网站| 成年动漫av网址| 免费大片18禁| 亚洲av.av天堂| 这个男人来自地球电影免费观看 | 免费看不卡的av| 免费日韩欧美在线观看| 一区二区三区四区激情视频| 日韩三级伦理在线观看| 69精品国产乱码久久久| 黑丝袜美女国产一区| 免费看光身美女| av在线app专区| 国产欧美日韩一区二区三区在线| 春色校园在线视频观看| 国产免费视频播放在线视频| 亚洲婷婷狠狠爱综合网| 亚洲国产欧美在线一区| 国产国语露脸激情在线看| 又大又黄又爽视频免费| 亚洲美女视频黄频| 91久久精品国产一区二区三区| 一本久久精品| 亚洲精品日韩在线中文字幕| 只有这里有精品99| 欧美人与性动交α欧美精品济南到 | 久久精品国产自在天天线| 天天操日日干夜夜撸| 久久久久久久久久人人人人人人| 亚洲成色77777| 亚洲成色77777| 精品一区二区三卡| 十八禁高潮呻吟视频| 香蕉精品网在线| 国产精品一区www在线观看| 精品少妇久久久久久888优播| 亚洲综合色网址| 少妇人妻久久综合中文| 国产熟女午夜一区二区三区| 亚洲第一区二区三区不卡| 亚洲精品日本国产第一区| 欧美精品av麻豆av| 我的女老师完整版在线观看| 亚洲av成人精品一二三区| 一区在线观看完整版| 99久久中文字幕三级久久日本| 我的女老师完整版在线观看| 我的女老师完整版在线观看| 91在线精品国自产拍蜜月| 亚洲人与动物交配视频| 成年动漫av网址| 久久久a久久爽久久v久久| 久久人人爽人人片av| a级毛片黄视频| 高清欧美精品videossex| av又黄又爽大尺度在线免费看| 亚洲国产av新网站| 一区二区三区精品91| 国产精品久久久久久久电影| 精品一区二区三卡| 精品国产一区二区三区四区第35| a级毛色黄片| 大香蕉97超碰在线| 制服诱惑二区| 交换朋友夫妻互换小说| 中文天堂在线官网| 国产极品天堂在线| 亚洲天堂av无毛| 亚洲美女视频黄频| 免费久久久久久久精品成人欧美视频 | 亚洲精品,欧美精品| 亚洲第一区二区三区不卡| 麻豆精品久久久久久蜜桃| 美女福利国产在线| 日韩大片免费观看网站| 天天影视国产精品| 亚洲av国产av综合av卡| freevideosex欧美| 日本黄色日本黄色录像| 黄色配什么色好看| 亚洲欧美成人精品一区二区| 亚洲,欧美,日韩| 欧美3d第一页| 熟女电影av网| 国产成人精品无人区| 久久99一区二区三区| 男女啪啪激烈高潮av片| 高清视频免费观看一区二区| 热99国产精品久久久久久7| 久久国产亚洲av麻豆专区| 午夜福利影视在线免费观看| 日韩成人av中文字幕在线观看| 久久99热这里只频精品6学生| 少妇被粗大猛烈的视频| 国产精品成人在线| 在线天堂中文资源库| 欧美日本中文国产一区发布| 久久久国产欧美日韩av| 午夜精品国产一区二区电影| 欧美丝袜亚洲另类| 99热这里只有是精品在线观看| 日韩一区二区三区影片| 少妇熟女欧美另类| 少妇猛男粗大的猛烈进出视频| 久久久久久伊人网av| www.av在线官网国产| 亚洲欧美成人精品一区二区| 一级爰片在线观看| 国产成人午夜福利电影在线观看| 亚洲成色77777| 亚洲欧美一区二区三区黑人 | 日日撸夜夜添| 中文欧美无线码| 日本vs欧美在线观看视频| 夫妻午夜视频| 女人精品久久久久毛片| 夫妻性生交免费视频一级片| 最近中文字幕2019免费版| 国产日韩欧美在线精品| 欧美 亚洲 国产 日韩一| 一级片'在线观看视频| 99热网站在线观看| av视频免费观看在线观看| 最近的中文字幕免费完整| 天美传媒精品一区二区| 亚洲综合色惰| 国产熟女午夜一区二区三区| 丝瓜视频免费看黄片| 观看美女的网站| 美女国产视频在线观看| 午夜福利网站1000一区二区三区| 日韩 亚洲 欧美在线| 男女高潮啪啪啪动态图| 少妇被粗大猛烈的视频| 99国产精品免费福利视频| 纯流量卡能插随身wifi吗| 久热久热在线精品观看| 丝袜在线中文字幕| 日本av免费视频播放| 日本-黄色视频高清免费观看| 一级爰片在线观看| 午夜视频国产福利| 精品视频人人做人人爽| 亚洲,欧美,日韩| 亚洲少妇的诱惑av| 一区二区三区乱码不卡18| 毛片一级片免费看久久久久| 久久久久久久精品精品| 久久人人爽人人爽人人片va| 只有这里有精品99| www.熟女人妻精品国产 | 日韩精品有码人妻一区| av国产精品久久久久影院| 最近的中文字幕免费完整| 国产精品久久久久成人av| 亚洲精品中文字幕在线视频| 两个人免费观看高清视频| 你懂的网址亚洲精品在线观看| 看非洲黑人一级黄片| 久久综合国产亚洲精品| 国内精品宾馆在线| 狂野欧美激情性bbbbbb| 国产xxxxx性猛交| 男女啪啪激烈高潮av片| 亚洲精品国产色婷婷电影| a 毛片基地| 亚洲四区av| 国产成人aa在线观看| 中国美白少妇内射xxxbb| 少妇人妻久久综合中文| 国产精品 国内视频| 久久ye,这里只有精品| 亚洲欧美一区二区三区国产| 欧美激情极品国产一区二区三区 | 成人亚洲欧美一区二区av| 18禁裸乳无遮挡动漫免费视频| 欧美3d第一页| 久久国产精品大桥未久av| 亚洲精品,欧美精品| 中文字幕最新亚洲高清| 久久人人97超碰香蕉20202| 九草在线视频观看| 国产成人精品婷婷| 国产日韩欧美亚洲二区| 亚洲色图 男人天堂 中文字幕 | 狂野欧美激情性xxxx在线观看| 高清在线视频一区二区三区| 亚洲美女黄色视频免费看| 大片免费播放器 马上看| 国产精品麻豆人妻色哟哟久久| 婷婷色麻豆天堂久久| 日韩成人av中文字幕在线观看| 一级黄片播放器| 国产高清不卡午夜福利| 免费观看性生交大片5| 丰满少妇做爰视频| a级片在线免费高清观看视频| 午夜福利网站1000一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 夜夜骑夜夜射夜夜干| 午夜福利视频精品| 男男h啪啪无遮挡| 乱码一卡2卡4卡精品| 国产精品成人在线| 大片免费播放器 马上看| 黑丝袜美女国产一区| 天堂8中文在线网| 欧美变态另类bdsm刘玥| 午夜久久久在线观看| 久久久a久久爽久久v久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲图色成人| 亚洲成国产人片在线观看| 欧美日韩亚洲高清精品| 色婷婷av一区二区三区视频| 999精品在线视频| 香蕉丝袜av| 精品久久蜜臀av无| 十八禁高潮呻吟视频| 黄片无遮挡物在线观看| av卡一久久| 久久久a久久爽久久v久久| 亚洲欧洲国产日韩| 国产精品一二三区在线看| 99re6热这里在线精品视频| 成年美女黄网站色视频大全免费| 久久青草综合色| 国语对白做爰xxxⅹ性视频网站| 亚洲第一av免费看| av福利片在线| 蜜桃国产av成人99| 国产成人精品福利久久| 国产精品女同一区二区软件| 少妇 在线观看| 午夜福利视频在线观看免费| 亚洲国产日韩一区二区| 成人毛片60女人毛片免费| 国产男女内射视频| tube8黄色片| 如日韩欧美国产精品一区二区三区| 美女国产高潮福利片在线看| 老司机影院毛片| 久久99热这里只频精品6学生| 久久毛片免费看一区二区三区| 桃花免费在线播放| 九九爱精品视频在线观看| 午夜福利乱码中文字幕| 国产毛片在线视频| 久久热在线av| 高清视频免费观看一区二区| 国产精品三级大全| 国产黄色视频一区二区在线观看| 欧美变态另类bdsm刘玥| 一区二区三区精品91| 黄色怎么调成土黄色| 晚上一个人看的免费电影| 国产高清不卡午夜福利| 亚洲综合色惰| 国产1区2区3区精品| 高清毛片免费看| 国产高清不卡午夜福利| 在线观看一区二区三区激情| 成人亚洲精品一区在线观看| 黑人欧美特级aaaaaa片| 男女午夜视频在线观看 | 午夜免费鲁丝| 狠狠精品人妻久久久久久综合| 一级毛片黄色毛片免费观看视频| 丝袜脚勾引网站| 亚洲人成网站在线观看播放| 一级毛片 在线播放| 成人无遮挡网站| 国产精品99久久99久久久不卡 | 91久久精品国产一区二区三区| 夜夜爽夜夜爽视频| 制服诱惑二区| 欧美xxxx性猛交bbbb| 高清在线视频一区二区三区| 婷婷色综合大香蕉| 国产片特级美女逼逼视频| 波野结衣二区三区在线| 日日爽夜夜爽网站| 久久久久久久久久成人| 丰满迷人的少妇在线观看| 国产成人精品一,二区| 啦啦啦啦在线视频资源| 久热这里只有精品99| 亚洲成人av在线免费| 色哟哟·www| 成人综合一区亚洲| 女人精品久久久久毛片| 免费黄网站久久成人精品| 久久精品国产自在天天线| 久久热在线av| 97人妻天天添夜夜摸| 国产有黄有色有爽视频| 国产成人a∨麻豆精品| 青春草国产在线视频| 国产免费福利视频在线观看| 夜夜骑夜夜射夜夜干| 亚洲欧美成人精品一区二区| www.熟女人妻精品国产 | 亚洲五月色婷婷综合| 久久国产精品大桥未久av| √禁漫天堂资源中文www| 亚洲av免费高清在线观看| 国产成人av激情在线播放| 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| 国产成人a∨麻豆精品| 男人爽女人下面视频在线观看| 久久人妻熟女aⅴ| 国国产精品蜜臀av免费| 国产日韩欧美亚洲二区| 亚洲伊人久久精品综合| 日韩制服丝袜自拍偷拍| av福利片在线| 少妇 在线观看| 91午夜精品亚洲一区二区三区| 日本猛色少妇xxxxx猛交久久| 丝袜美足系列| videosex国产| 国产成人a∨麻豆精品| 五月开心婷婷网| 亚洲成人手机| 国产在线视频一区二区| 久久久久久久精品精品| 久久久久国产网址| av播播在线观看一区| 免费黄色在线免费观看| 精品一区二区三区视频在线| 老司机影院毛片| 桃花免费在线播放| 国产高清三级在线| 18禁裸乳无遮挡动漫免费视频| tube8黄色片| 成人国产av品久久久| 久久精品熟女亚洲av麻豆精品| 三上悠亚av全集在线观看| 午夜视频国产福利| 欧美日韩精品成人综合77777| 观看美女的网站| 精品亚洲成国产av| 黄色配什么色好看| 成人国语在线视频| 丰满饥渴人妻一区二区三| 最近手机中文字幕大全| 人妻 亚洲 视频| 精品亚洲乱码少妇综合久久| 精品一区二区三区四区五区乱码 | 一级,二级,三级黄色视频| 国产精品国产三级国产专区5o| 国产精品国产三级专区第一集| 三级国产精品片| 欧美日韩成人在线一区二区| 九色亚洲精品在线播放| 亚洲天堂av无毛| 午夜精品国产一区二区电影| 亚洲精品色激情综合| 亚洲久久久国产精品| 女性被躁到高潮视频| 在线看a的网站| 国产黄色视频一区二区在线观看| 亚洲av中文av极速乱| 午夜激情av网站| 99热6这里只有精品| 中文字幕人妻丝袜制服| 啦啦啦中文免费视频观看日本| 欧美激情 高清一区二区三区| 国产片内射在线| 中国美白少妇内射xxxbb| 日韩av免费高清视频| 97在线人人人人妻| 欧美bdsm另类| 精品人妻一区二区三区麻豆| 寂寞人妻少妇视频99o| 热re99久久国产66热| 久久久久国产网址| 成人18禁高潮啪啪吃奶动态图| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区| 欧美激情 高清一区二区三区| 国产男女内射视频| 夜夜爽夜夜爽视频| 九色成人免费人妻av| 精品亚洲乱码少妇综合久久| 日本色播在线视频| 丝袜喷水一区| 一级毛片电影观看| 中文字幕人妻丝袜制服| 国产成人欧美| 我的女老师完整版在线观看| 不卡视频在线观看欧美| 亚洲欧美清纯卡通| 国产一区二区在线观看日韩| 午夜影院在线不卡| 午夜福利视频精品| 边亲边吃奶的免费视频| 亚洲国产精品国产精品| 在线观看三级黄色| 亚洲经典国产精华液单| 在线观看www视频免费| 99热网站在线观看| 国产一区二区三区综合在线观看 | 亚洲国产日韩一区二区| 性色avwww在线观看| 蜜臀久久99精品久久宅男| 99久久人妻综合| 国产高清国产精品国产三级| 精品少妇黑人巨大在线播放|