• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fe-Si-Mn-Oxyhydroxide Encrustations on Basalts at East Pacific Rise near 13?N: An SEM – EDS Study

    2014-04-26 10:54:36WANGXiaoyuanZENGZhigangQIHaiyanCHENShuaiYINXueboandYANGBaoju
    Journal of Ocean University of China 2014年6期

    WANG Xiaoyuan, ZENG Zhigang,, QI Haiyan, CHEN Shuai, YIN Xuebo, and YANG Baoju,

    1) Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Fe-Si-Mn-Oxyhydroxide Encrustations on Basalts at East Pacific Rise near 13?N: An SEM – EDS Study

    WANG Xiaoyuan1), ZENG Zhigang1),*, QI Haiyan1), CHEN Shuai1), YIN Xuebo1), and YANG Baoju1),2)

    1) Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13?N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe-Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn- oxyhydroxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrustations on pillow basalts are 1–2 mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrustations are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+Al) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrothermalism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.

    East Pacific Rise; Fe-Si-Mn encrustations; origin; pillow basalt

    1 Introduction

    Hydrothermal Fe-Si-Mn-oxyhydroxide deposits on the seafloor form in a range of geotectonic settings such as mid-ocean ridges (MOR) (e.g., Scott et al., 1974; Moore and Vogt, 1976; Corliss et al., 1979; Lonsdale et al., 1980; Grill et al., 1981; Hékinian et al., 1993; Nath et al., 1997; Dekov et al., 2010), volcanic arc-back-arc basins (e.g., Cronan et al., 1982; Moorby et al., 1984; Usui et al., 1986; Bolton et al., 1988; Hein et al., 1990; Herzig et al., 1990; Murphy et al., 1991; Binns et al., 1993; Sun et al., 2011, 2012; Zeng et al., 2012), intraplate submarine volcanoes and continental margins (e.g., Alt, 1988; Puteanus et al., 1991; Stoffers et al., 1993). The geotectonic settings occur as pavements coating volcanic and sedimentary substrates, as chimneys, as irregularly shaped edifices and mounds, as secondary alteration products of seafloor hydrothermal sulfide deposits, as primary precipitates from hydrothermal fluids, or as interstitial precipitates filling cracks between lava flows (Miriam and Rachel, 1986; Alt, 1988; Hannington and Scott, 1988; Herzig et al., 1991; Puteanus et al., 1991; Hékinian et al., 1993; Mills and Elderfield, 1995; Boyd and Scott, 1999; Bach et al., 2003; Benjamin and Haymon, 2006; Zeng et al., 2008). Major mineral phases in Fe-Si-Mn- oxyhydroxide crusts are todorokite, birnessite, vernadite, goethite, pyrolusite, and asbolane along with clay minerals such as nontronite and hisingerite (Varentsov et al., 1991; Mills et al., 2001; Glasby et al., 2006).

    Some Fe-Si-Mn oxyhydroxide crusts are formed by a combination of hydrogenetic and hydrothermal processes (Glasby, 1988; Varentsov et al., 1991; Gibbs et al., 1993; Hein et al., 1997; Usui and Someya, 1997; Van de Flierdt et al., 2004). Growth rates of these deposits are large, up to 105 mm Myr-1(Hein et al., 1997). The Fe/Mn ratio and trace element content of hydrothermal Fe-Si-Mn deposits vary widely. The latter reflects local hydrothermal inputs and complex particle-scavenging reactions that occur near hydrothermal vents (Hein et al., 1997). In general, hydrothermal Fe-Mn deposits have lower trace metal contents and larger varying Fe/Mn ratios than their hydrogenous counterparts (Hein et al., 1997). It has been suggested that exhalative Fe-Si-Mn oxyhydroxide accumulations in seafloor hydrothermal fields are protoliths for Fe and/orMn-rich exhalites in ancient volcanic-hosted massive sulfide (VHMS) deposits (Heath et al., 2000). Understanding the mineralogy, geochemistry and formation of Fe-Si-Mn oxyhydroxides in seafloor geological environments is important for mineral exploration of ancient VHMS deposits.

    In order to shed more light on the origin of Fe-Si-Mnoxyhydroxide encrustations on MOR basalts and evaluate the role that hydrothermal and hydrogenetic processes play in the formation of these encrustations, basalt samples from the seafloor at the EPR near 13?N by SEMEDS are studied in the present work.

    2 Geological Setting

    The study area lies on the fast-spreading EPR with a spreading rate of 10–12 cm yr-1(Hekinian et al., 1983) between 12?30?N and 13?N (Fig.1). The mid-ocean ridge here consists of an axial graben structure striking 345?±5?. The graben is 200–600 m wide and 20–50 m deep; the average water depth in the graben is 2630 m (Hékinian et al., 1983). The bottom of the graben is flat with many fissures at the center and the faults near the axis. These fissures are filled by fresh basaltic sheet lava flows (Gente et al., 1986).

    About twenty active and more than sixty inactive hydrothermal vents had been found within a narrow graben averaging about 300 m in width along a 20 km long segment of the ridge crest (Hékinian et al., 1983). Most hydrothermal activities occur in three structural environments: 1) axial graben, 2) graben fault, and 3) off-axis segment (Fouquet et al., 1996). Active and inactive vents and extensive mounds of mature sulfides are distributed in the central part of the graben, the graben faults, the marginal high and the SE seamount (Fouquet et al., 1996). The active hydrothermal vents range from low-temperature vents to high-temperature (up to 380℃) ‘black smo kers’ with polymetallic sulfide deposits (Charlou et al., 1991; Zeng et al., 2010) and hydrothermal Fe and Si oxyhydroxides associated with or occurring close to sulfide formation on axial and off-axial structures (Hékinian et al., 1993; Zeng et al., 2008).

    On the EPR near 13?N, the older ‘fissural domain’hosts inactive hydrothermal deposits rich in Fe-Mn- oxyhydroxides and is characterized by altered pillow and massive basaltic flows (Moss and Scott, 1996). Extinct hydrothermal chimneys and formless deposits made up essentially of Fe- and Si-rich hydrothermal products are frequently found (Hékinian and Fouquet, 1985). There are small (<30 cm in height), purple-red low-temperature Fe oxyhydroxide chimneys that are partly covered by located lava flows (Hékinian et al., 1993). Yellow coral-like structures are growing through sediment or on less than 1 mhigh Fe oxide mounds resulting from the oxidation of sulfide blocks. In the sulfide area, Mn-oxide is represented only by a thin layer (<1 mm thick) on the surface of sulfides and oxides, and at the top of the seamount on the EPR near 13?N,whereas deposits are represented by thick (up to 6 cm) Mn crusts growing directly on the basalt or around a nontronitic core (Hékinian et al., 1983; Fouquet et al., 1988).

    Fig.1 a, Bathymetric map of the EPR segment near 13?N. Sampling site is indicated by a solid dot with dredge site number. Depth contours are in meters. b, The hydrothermal vents near E11 station (the solid dot) on EPR. The active hydrothermal vents are marked with open triangles, and the inactive hydrothermal vents are marked with open circles. The locations of hydrothermal vents are from Fouquet et al. (1988).

    3 Samples and Methods

    The samples studied were obtained from station E11 (103?57?W, 12?50?N, 2626 m) on the EPR near 13?N (less than 1 km away from the nearest vent) during the DY105-12 cruise (R/V DAYANG YIHAO, November 4, 2003) (Fig.1). They include fragments of pillow basalts (up to30 cm across) covered with thin (up to 1–2 mm) tan encrustations (Fig.2).

    Fig.2 A dark brown Fe-Si-Mn-oxyhydroxide coating is on pillow basalt from station E11.

    Petrographic analysis of the encrustations was performed on polished thin sections under an optical microscope (Nikon). Then the polished thin sections were investigated with a scanning electron microscope (SEM): TESCAN VEGA 3 LMH SEM with an Oxford INCA XMax energy dispersive spectrometer (EDS). Olivine, pyroxene, enstatite, diopside, anorthoclase, basaltic glass, calderite and anhydrite were used for standardization, and the results were corrected by the XPP method.

    4 Results

    The analysis of the thin sections by optical microscope shows that all samples contain phenocrysts of olivine, clinopyroxene and plagioclase, basaltic glass and Fe-Si-Mn-oxyhydroxides. The Fe-Si-Mn-oxyhydroxide encrustations occur as fine layers, micro-veins and coatings around minerals (Figs.3a, b and c) with globular particles scattered on the surface (Figs.3d, e and f). The encrustations are composed mainly of amorphous Fe-Si-Mn- oxyhydroxides (Fig.4), with scarce crystals of feldspar, quartz, anhydrite and nontronite, and biogenic debris (Fig.4, Figs. 5a–e). The Fe-Si-Mn-oxyhydroxides also have a framboidal structure (Fig.5f) with the major contents of Fe, Si, and Mn, and the trace contents of Na, K, Ca, Al, Mg, Ti, P, S, Cl, Cu, Zn, Co, Ni, and Cr (EDS studies).

    Two types of oxyhydroxides have been distinguished according to their chemical composition: Fe-Si-oxyhydroxides with low Mn content (Table 1) and Fe-Si-Mnoxyhydroxides. Fe-Si-oxyhydroxides coat basaltic glass and plagioclase crystals (Fig.6b, Fig.7), and some fill microcracks in the basaltic glass (Fig.6a). Fe-Si-Mnoxyhydroxides occur near Fe-Si-oxyhydroxides and those with Cu and Ni occur between Fe-Si-Mn oxyhydroxides (Figs.6b, c). Fe-Si-Mn-oxyhydroxide encrustations have a laminated texture (Figs.8a, c) with some layers having the minor contents of Ni, Cu and Zn (Figs.8b, d). Concentric layers are composed of Fe-Si- and Fe-Si-Mn-oxyhydroxides that constitute the dense core, and the loose and porous margin of the layers, respectively (Figs.9a, b).

    Fig.3 a, Fe-Si-Mn-oxyhydroxide (FSM) encrustations covering the surface of basaltic glass (Gl). b, Fe-Si-Mn-oxyhydroxide vein filling micro-crack of basaltic glass. c, Fe-Si-Mn-oxyhydroxide coatings on pyroxene (PX). d, Globular particles on the surface of Fe-Si-Mn-oxyhydroxide encrustations. e, Apophysis on the surface of Fe-Si-Mn-oxyhydroxide encrustations. f, EDS spectrum of globular particles.

    Fig.4 XRD pattern of Fe-Si-Mn-oxyhydroxide encrustation on pillow basalt.

    Fig.5 a, b, Anhydrite (An) in Fe-Si-Mn-oxyhydroxide encrustations. c, honeycomb texture formed by flakes of nontronite (No) crystals in Fe-Si-Mn-oxyhydroxide encrustation. d, e, Biogenic debris in Fe-Si-Mn-oxyhydroxide encrustations. f, Feldspar micro-particles and framboidal Fe-Si-Mn oxyhydroxides.

    Table 1 Contents of Si, Mn and Fe in Fe-Si-Mn-oxhydroxide encrustations

    Fig.6 a, Micro-vein of Fe-Si-oxyhydroxides (FS). b, Fe-Si-oxyhydroxides and Fe-Si-Mn oxyhydroxides (FSM) close to the basaltic glass (Gl). Nos. 1, 2, 3, and 4 are the points where EDS analyses are conducted. c, EDS spectrum of Fe-Si-Mn-oxyhydroxides with the trace contents of Cu and Ni at point 4 (Fig.6b).

    Fig.7 Fe-Si-oxyhydroxides (FS) and Fe-Si-Mn-oxyhydroxides (FSM) close to the plagioclase crystals (Pl). Nos. 1, 2, 3 and 4 are the points where EDS analyses are conducted.

    5 Discussion

    5.1 Thickness of Fe-Si-Mn-Oxyhydroxide Encrustations

    The estimated age of the basalt samples is about 10 kyr, according to the distance from the axial central graben to the sampling site (nearly 1 km) and the spreading rate of about 10–12 cm yr-1(Hékinian et al., 1983). The growth rate of ferromanganese crusts (hydrogenetic) is about 15–27 mm Myr-1in the survey area on EPR 13?N (Manheim and Lane- Bostwick, 1988). Therefore the Fe-Si-Mn- oxyhydroxide encrustations (hydrogenetic) should be 0.15–0.27 mm thick. However, the thickness of the Fe-Si- Mnoxyhydroxide encrustations is 1–2 mm thick based on the samples. So it is unlikely that these encrustations have been a result of hydrogenetic deposition alone and there must be other factors dominating the formation of Fe-Si-Mn-oxyhydroxide encrustations.

    5.2 Anhydrite and Nontronite in Fe-Si-Mn-Oxyhydroxide Encrustations

    Generally, there are two mechanisms for anhydrite precipitation under seafloor conditions: 1) mixing of Caenriched hydrothermal fluid with sulfate-enriched seawater at temperatures higher than 150℃ (Teagle et al., 1998; Amini et al., 2008), and 2) increasing of seawater temperature to 150℃ (Blount and Dickson, 1969; Bischoff and Seyfried, 1978). Both scenarios suggest that anhydrite is formed at temperatures above 150℃. The anhydrite particles inter-grown with the studied Fe-Si-Mnoxyhydroxides (Figs.5a, b) indicate that the Fe-Si-Mnoxyhydroxide encrustations probably form under hydro-thermal conditions.

    Nontronite is often formed by direct precipitation from hydrothermal fluids above the seafloor (Keeling et al., 2000) such as in the hydrothermal systems in the Red Sea, Galapagos Rift, Mariana Trough, Juan de Fuca Ridge, and Manus Basin (Cole and Shaw, 1983; Murnane and Clague, 1983; Singer and Stoffers, 1987; Kohler et al., 1994; Zeng et al., 2012). At an oxidation potential (Eh) range between -0.1 and -0.8 V, and a pH of 7–10, nontronite could be synthesized by co-precipitation of Feoxyhydroxide and silica from solutions that contain Fe2+and Si at a temperature lower than 96℃. A higher temperature will inhibit nontronite formation in favor of Fe-oxyhydroxide (Harder, 1978; de Carlo et al., 1983). In the studied Fe-Si-Mn-oxyhydroxide encrustations, a fine honeycomb texture formed by flakes of nontronite crystals (Fig.5c) implies that the encrustations may have formed under reduced hydrothermal conditions (T<96℃).

    Fig.8 a, c, Laminated Fe-Si-Mn-oxyhydroxide encrustations. The points analyzed by EDS are marked by crosses. b, EDS spectrum of the point marked by the cross in (a). d, EDS spectrum of point 5 in (c).

    Fig.9 a, Concentric texture of Fe-Si-oxyhydroxides. Nos. 1, 2, 3, 4, 5 and 6 are the points where EDS analyses are conducted. b, Fe-Si-Mn oxyhydroxides close to the concentric texture of Fe-Si-oxyhydroxides.

    5.3 Laminated Fe-Si-Mn-Oxyhydroxide Encrustations

    Ferromanganese oxyhydroxides can be divided into three types according to their origins: diagenetic, hydrogenetic and hydrothermal (Halbach, 1986). However, these processes seldom occur in isolation and each may play a key role in the precipitation of Fe-Mn oxyhydroxides at different stages (Varentsov et al., 1991). The Fe/ Mn and Fe/(Fe+Mn+Al) ratios of Fe-Mn- oxyhydroxides are good indicators of their origins. Hydrogenetic Fe-Mn crusts have a stable Fe/Mn ratio, and a mean value of 0.7 has been estimated for the open-ocean seamount crusts (Hein et al., 1997). Fe/(Fe+Mn+Al) ratio exceeding 0.78 indicates a hydrothermal input (Edmonds and German, 2004).

    In this study the laminated Fe-Si-Mn-oxyhydroxide encrustations have varying Fe/Mn ratios (Fig.8c, Table 1). The maximum is up to 7.73 with a Fe/(Fe+Mn+Al) ratio of 0.87, indicating a hydrothermal input. The minimum Fe/Mn ratio is 0.22, which indicates a hydrogenic origin. The high Ni (about 1.8%), Cu (about 1.8%), and Zn (about 0.9%) contents in some layers (Figs.8b, d) also imply a hydrogenic influence, as Ni, Cu and Zn can be scavenged from seawater by adsorption during Fe-Si-Mn-oxyhydroxide formation (Krauskopf, 1956; Loganathan and Burau, 1973; Moore and Vogt, 1976; Varentsov et al., 1991; Koschinsky and Halbach, 1995; Hein et al., 1997; Koschinsky and Hein, 2003; Dekov et al., 2007). Thus, the laminated Fe-Si-Mn-oxyhydroxide encrustations have hydrothermal-hydrogenic origin, and the Fe-Si-Mn-oxyhydroxides can be contemporaneously deposited on the surface of the seafloor pillow basalts.

    5.4 Initial Formation of Fe-Si-Mn-Oxyhydroxide Encrustations

    During the formation process of Fe-Si-Mn- oxyhydroxide encrustations, it is obvious that Fe-Si-oxyhydroxides first deposited, and then relatively loose Fe-Si-Mn-oxyhydroxides settled on the top of Fe-Si-oxyhydroxides, either on the surface of basaltic glass (Fig.6b), or on the surface of feldspar particles (Fig.7), or forming a concentric ring (Fig.9a). Moreover, from Fe-Si-oxyhydroxides to Fe-Si-Mn-oxyhydroxides, the contents of Mn and Fe increase, whereas the Si contents decrease (Table 1). This suggests that the initial hydrothermal fluid is relatively reduced so that Fe-Si-oxyhydroxides are easy to precipitate (Krauskopf, 1957), and as the the degree of oxidation of hydrothermal fluid increases, Mn-oxides precipitate with Fe-oxyhydroxides while Si-oxides are inhibited.

    6 Conclusions

    The surfaces of pillow basalts from the EPR near 13?N are covered with Fe-Si-Mn encrustations that largely consist of amorphous Fe-Si-Mn-oxyhydroxides with anhydrite, nontronite, feldspar and biogenic debris. The laminated Fe-Si-Mn-oxyhydroxide encrustations have varying Fe/Mn ratios with relatively high Fe/(Fe+Mn+Al) ratios and high Ni, Cu, and Zn contents in some layers, which indicates a hydrothermal input with a hydrogenic origin. At the initial formation process, Fe-Si-oxyhydroxides first deposite from a relatively reduced hydrothermal fluid, and then Fe-Si-Mn-oxyhydroxides deposite on the Fe-Sioxyhydroxides. During the precipitation of Mn-oxides with Fe-oxyhydroxides, Si-oxides are inhibited.

    Acknowledgements

    We would like to thank the crew of the DY105-12 cruise for helping us collect samples. This work was supported by the National Key Basic Research Program of China (2013CB429700), the Shandong Province Natural Science Foundation for Distinguished Young Scholars (JQ200913), the National Natural Science Foundation of China (40830849), and the National Special Fund for the Eleventh Five-Year Plan of COMRA (DY125-12-R-02 and DY125-11-R-05).

    Alt, J. C., 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Marine Geology,81: 227-239.

    Amini, M., Eisenhauer, A., B?hma, F., Fietzke, J., Banch, W., Garbe-Sch?nberg, D., Rosner, M., Bock, B., Lackschewitz, K.S., and Hauff, F., 2008. Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14?50?N). Geochimica et Cosmochimica Acta,72: 4107-4122.

    Bach, W., Roberts, S., Vanko, D., Binns, R., Yeats, C., Craddock, P., and Humphris, S., 2003. Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system, Manus Basin, Papua New Guinea. Mineralium Deposita,38: 916-935.

    Benjamin, S. B., and Haymon, R. M., 2006. Hydrothermal mineral deposits and fossil biota from a young (0.1 Ma) abyssal hill on the flank of the fast spreading East Pacific Rise: Evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids. Geochemistry Geophysics Geosystems,7, Q05002, DOI: 10.1029/2005GC001011.

    Binns, R. A., Scott, S. D., Bogdanov, Y. A., Lisitzin, A. P., Gordeev, V. V., Gurvich, E. G., Finlayson, E. J., Boyd, T., Dotter, L. E., Wheller, G. E., and Muravyev, K. G., 1993. Hydrothermal oxide and Gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua-New-Guinea. Economic Geology,88: 2122-2153.

    Bischoff, J. L., and Seyfried, W. E., 1978. Hydrothermal chemistry of seawater from 25℃ to 350℃. American Journal of Science,278: 838-860.

    Blount, C. W., and Dickson, F. W., 1969. The solubility of anhydrite (CaSO4) in NaCl-H2O from 100 to 450℃ and 1 to 1000 bars. Geochimica et Cosmochimica Acta,33: 227-245.

    Bolton, B. R., Both, R., Exon, N. F., Hamilton, T. F., Oswald, J., and Smith, J. D., 1988. Geochemistry and mineralogy of seafloor hydrothermal and hydrogenetic Mn oxide deposits from the Manus Basin and Bismarck Archipelago region of the southwest Pacific Ocean. Marine Geology,85: 65-87.

    Boyd, T., and Scott, S. D., 1999. Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from Franklin Seamount, western Woodlark Basin, Papua New Guinea. Canadian Mineralogist,37: 973-990.

    Charlou, J. L., Bougault, H., Appriou, P., Jean-Baptiste, P., Etoubleau, J., and Birolleau, A., 1991. Water column anomalies associated with hydrothermal activity between 11?40? and 13?N on the East Pacific Rise: Discrepancies between tracers. Deep-Sea Research I,38: 569-596.

    Cole, T. G., and Shaw, H. F., 1983. The nature and origin of authigenic smectites in some recent marine sediments. Clay and Clay Miner,18: 239-252.

    Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H., 1979. Submarine thermal springs on the Galapagos rift. Science,203: 1073-1083.

    Cronan, D. S., Glasby, G. P., Moorby, S. A., Thomson, J., Knedler, K. E., and McDougall, J. C., 1982. A submarine hydrothermal manganese deposit from the southwest Pacific island arc. Nature,298: 456-458.

    de Carlo, E. H., McMurtry, G. M., and Yeh, H. W., 1983. Geochemistry of hydrothermal deposits from Loihi submarine volcano, Hawaii. Earth and Planetary Science Letters,66: 438-449.

    Dekov, V. M., Scholten, J. C., Botz, R., Garbe-Schonberg, C.-D., and Stoffers, P., 2007. Fe-Mn- (hydr) oxide-carbonate crusts from the Kebrit Deep, Red Sea: Precipitation at the seawater/ brine redoxcline. Marine Geology,236: 95-119.

    Dekov, V. M., Petersen, S., Garbe-Sch?nberg, C. D., Kamenov, G. D., Perner, M., Kuzmann, E., and Schmidt, M., 2010. Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field (9?33?S, Mid-Atlantic Ridge). Chemical Geology,278: 186-200.

    Edmonds, H. N., and German, C. R., 2004. Particle geochemistry in the Rainbow hydrothermal plume, Mid- Atlantic ridge. Geochimica et Cosmochimica Acta,68: 759-772.

    Fouquet, Y., Auclair, G., Cambon, P., and Etoubleau, J., 1988. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13?N on the East Pacific Rise. Marine Geology,84: 145-178.

    Fouquet, Y., Knott, R., Cambon, P., Cambon, P., Fallick, A., Rickard, D., and Desbruyeres, D., 1996. Formation of large sulfide mineral deposits along fast spreading ridges: Example from off-axial deposits at 12?43′N on the East Pacific Rise. Earth and Planetary Science Letters,144: 147-162.

    Gente, P., Auzende, J. M., Renard, V., Fouquet, Y., and Bideau, D., 1986. Detailed geological mapping by submersible of the East Pacific Rise axial graben near 13?N. Earth and Planetary Science Letters,78: 224-236.

    Gibbs, A. E., Hein, J. R., Lewis, S. D., and McCulloch, D. S., 1993. Hydrothermal palygorskite and ferromanganese mineralization at a central California margin fracture zone. Marine Geology,115: 47-65.

    Glasby, G. P., 1988. Hydrothermal manganese deposits in island arcs and related to subduction processes: A possible model for genesis. Ore Geology Reviews,4: 145-153.

    Glasby, G. P., Cherkashov, G. A., Gavrilenko, G. M., Rashidov, V. A., and Slovtsov, I. B., 2006. Submarine hydrothermal activity and mineralization on the Kurile and western Aleutian island arcs, N.W. Pacific. Marine Geology,231: 163-180.

    Grill, E. V., Chase, R. L., Macdonald, R. D., and Murray, J. W., 1981. A hydrothermal deposit from explorer ridge in the Northeast Pacific Ocean. Earth and Planetary Science Letters,52: 142-150.

    Halbach, P., 1986. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts. Geologische Rundschau,75: 235-247.

    Hannington, M. D., and Scott, S. D., 1988. Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Canadian Mineralogist,26: 603-625.

    Harder, H., 1978. Synthesis of iron layer silicate minerals under natural conditions. Clay and Clay Miner,26: 65-72.

    Heath, S., Yeats, C. J., and Binns, R. A., 2000. Fe-Si-Mn oxides of the PACMANUS seafloor massive sulfide field, Eastern Manus Basin, Papua New Guinea. Geological Society of Australia (Abstracts),59: 217.

    Hein, J. R., Schulz, M. S., and Kang, J.-K., 1990. Insular and submarine ferromanganese mineralization of the Tonga-Lau region. Marine Mining,9: 305-354.

    Hein, J. R., Koschinsky, A., Halbach, P., Manheim, F. T., Bau, M., Kang, J. K., and Lubick, N., 1997. Iron and manganese oxide mineralization in the Pacific. Geological Society, London, Special Publications,119: 123-138.

    Hékinian, R., Francheteau, J., Renard, V., Ballard, R. D., Choukroune, P., Cheminee, J. L., Albarede, F., Minster, J. F., Charlou, J. L., Marty, J. C., and Boulegue, J., 1983. Intense hydrothermal activity at the axis of the East Pacific Rise near 13?N: Submersible witnesses the growth of sulfide chimney. Marine Geophysical Researches,6: 1-14.

    Hékinian, R., and Fouquet, Y., 1985. Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13?N. Economic Geology,80: 221-243.

    Hékinian, R., Hoffert, M., Larque, P., Cheminee, J. L., Stoffers, P., and Bideau, D., 1993. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions. Economic Geology,88: 2099-2121.

    Herzig, P. M., von Stackelberg, U., and Petersen, S., 1990. Hydrothermal mineralization from the Valu Fa Ridge, Lau back-arc Basin (SW Pacific). Marine Mining,9: 271-301.

    Herzig, P. M., Hannington, M. D., Scott, S. D., Maliotis, G., Rona, P. A., and Thompson, G., 1991. Gold-rich sea-floor gossans in the Troodos ophiolite and on the Mid-Atlantic Ridge. Economic Geology,86: 1747-1755.

    Keeling, J. L., Raven, M. D., and Gates, W. P., 2000. Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clay and Clay Miner,48: 537-548.

    Kohler, B., Singer, A., and Stoffers, P., 1994. Biogenic nontronite from marine white smoker chimneys. Clay and Clay Miner,42: 689-701.

    Koschinsky, A., and Halbach, P., 1995. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica et Cosmochimica Acta,59: 5113-5132.

    Koschinsky, A., and Hein, J. R., 2003. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation. Marine Geology,198: 331-351.

    Krauskopf, K., 1956. Factors controlling the concentrations of thirteen rare metals in sea water. Geochimica et Cosmochimica Acta,9: 1-32B.

    Krauskopf, K. B., 1957, Separation of manganese from iron in sedimentary processes. Geochimica et Cosmochimica Acta,12: 61-84.

    Loganathan, P., and Burau, R. G., 1973. Sorption of heavy metal ions by a hydrous manganese oxide. Geochimica et Cosmo-chimica Acta,37: 1277-1293.

    Lonsdale, P., Burns, V. M., and Fisk, M., 1980. Nodules of hydrothermal birnessite in the caldera of a young seamount. Journal of Geology,88: 611-618.

    Manheim, F. T., and Lane-Bostwick, C. M., 1988. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific seafloor. Nature,335: 59-62.

    Mills, R. A., and Elderfield, H., 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26?N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta,59: 3511-3524.

    Mills, R. A., Wells, D. M., and Roberts, S., 2001. Genesis of ferromanganese crusts from the TAG hydrothermal field. Chemical Geology,176: 283-293.

    Miriam, H., and Rachel, M., 1986. The formation of high temperature clay minerals from basalt alteration during hydrothermal discharge on the East Pacific Rise axis at 21?N. Geochimica et Cosmochimica Acta,50: 1933-1939.

    Moorby, S. A., Cronan, D. S., and Glasby, G. P., 1984. Geochemistry of hydrothermal Mn-oxide deposits from the SW Pacific island arc. Geochimica et Cosmochimica Acta,48: 433-441.

    Moore, W. S., and Vogt, P. R., 1976. Hydrothermal manganese crusts from two sites near the Galapagos spreading axis. Earth and Planetary Science Letters,29: 349-356.

    Moss, R., and Scott, S. D., 1996. Silver in sulfide chimneys and mounds from 13?N and 21?N, East Pacific Rise. Canadian Mineralogist,34: 697-716.

    Murnane, R., and Clague, D. A., 1983. Nontronite from a lowtemperature hydrothermal system on the Juan de Fuca Ridge. Earth and Planetary Science Letters,65: 343-352.

    Murphy, E., Mcmurtry, G. M., Kim, K. H., and de Carlo, E. H., 1991. Geochemistry and geochronology of a hydrothermal ferromanganese deposit from the N. Fiji Basin. Marine Geology,98: 297-312.

    Nath, B. N., Plüger, W. L., and Roelandts, I., 1997. Geochemical constraints on the hydrothermal origin of ferromanganese encrustation from the Rodriguez Triple Junction, Indian Ocean. In: Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Nicholson, K., et al., eds., Geological Society Special Publication,119: 199-211.

    Puteanus, D., Glasby, G. P., Stoffers, P., and Kunzendorf, H., 1991. Hydrothermal iron-rich deposits from the Teahitia-Mehitia and Macdonald hot spot areas, Southwest Pacific. Marine Geology,98: 389-409.

    Scott, R. M., Scott, R. B., Rona, P. A., Butler, L. W., and Nalwalk, A. J. 1974. Rapidly accumulating manganese deposit from the median valley of the Mid-Atlantic ridge. Geophysical Research Letters,1: 355-358.

    Singer, A., and Stoffers, P., 1987. Mineralogy of a hydrothermal sequence in a core from the Atlantis II Deep, Red Sea. Clay and Clay Miner,22: 251-267.

    Stoffers, P., Glasby, G. P., Stuben, D., Renner, R. M., Pierre, T. G., Webb, J., and Cardile, C. M., 1993. Comparative mineralogy and geochemistry of hydrothermal iron-rich crusts from the Pitcairn, Teahitia-mehetia, and Macdonald hot spot areas of the SW Pacific. Marine Georesources & Geotechnology,11: 45-86.

    Sun, Z. L., Zhou, H. Y., Yang, Q. H., Sun, Z. X., Bao, S. X., and Yao, H. Q., 2011. Hydrothermal Fe-Si-Mn oxide deposits from the Central and South Valu Fa Ridge, Lau Basin. Applied Geochemistry,26: 1192-1204.

    Sun, Z. L., Zhou, H. Y., Glasby, G. P., Yang, Q. H., Yin, X. J., Li, J. W., and Chen, Z. Q., 2012. Formation of Fe-Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. Journal of Asian Earth Sciences,43: 64-76.

    Teagle, D. A. H., Alt, J. C., Chiba, H., Humphris, S. E., and Halliday, A. N., 1998. Strontium and oxygen isotopic constraints on fluid mixing, alteration and mineralization in the TAG hydrothermal deposit. Chemical Geology,149: 1-24.

    Usui, A., and Someya, M., 1997. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. In: Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Nicholson, K., et al., eds., Geological Society Special Publication,119: 177-198.

    Usui, A., Yuasa, M., Yokota, S., Nohara, M., Nishimura, A., and Murakami, F., 1986. Submarine hydrothermal manganese deposits from the Ogasawara (Bonin) Arc, off the Japan Islands. Marine Geology,73: 311-322.

    Van de Flierdt, T., Frank, M., Halliday, A. N., Hein, J. R., Hattendorf, B., Günther, D., and Kubik, P. W., 2004. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget–a combined Pb-Hf-Nd isotope approach. Earth and Planetary Science Letters,222: 259-273.

    Varentsov, I. M., Drits, V. A., Gorshkov, A. I., Sivtsov, A. V., and Sakharov, B. A., 1991. Mn-Fe oxyhydroxide crusts from Krylov Seamount (Eastern Atlantic): Mineralogy, geochemistry and genesis. Marine Geology,96: 53-70.

    Zeng, Z. G., Wang, X. Y., Zhang, G. L., Yin, X. B., Chen, D. G., and Wang, X. M., 2008. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13?N: Evidence from mineralogical and geochemical data. Science in China Series D: Earth Sciences,51: 206-215.

    Zeng, Z. G., Chen, D. G., Yin, X. B., Wang, X. Y., Zhang, G. L., and Wang, X. M., 2010. Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13?N. Science in China Series D: Earth Sciences,53: 253-266.

    Zeng, Z. G., Ouyang, H. G., Yin, X. B., Chen, S., Wang, X. Y., and Wu, L., 2012. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: Mineralogical and geochemical evidence. Journal of Asian Earth Sciences,60: 130-146.

    (Edited by Xie Jun)

    (Received April 2, 2013; revised May 3, 2013; accepted February 13, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82898525

    E-mail: zgzeng@qdio.ac.cn

    一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 嫩草影院入口| 欧美精品人与动牲交sv欧美| 丝袜喷水一区| 亚洲欧美清纯卡通| 国产精品三级大全| 亚洲,欧美精品.| 欧美 亚洲 国产 日韩一| 国产福利在线免费观看视频| 自线自在国产av| av卡一久久| 日本av免费视频播放| 久久精品人人爽人人爽视色| 久久精品国产亚洲av天美| 国产片内射在线| 亚洲国产精品一区二区三区在线| 丝瓜视频免费看黄片| 亚洲天堂av无毛| 精品一品国产午夜福利视频| 人妻人人澡人人爽人人| 99热国产这里只有精品6| 五月开心婷婷网| 精品99又大又爽又粗少妇毛片| 午夜福利视频精品| 波多野结衣一区麻豆| 女性生殖器流出的白浆| 中文字幕制服av| 精品少妇内射三级| 一级毛片 在线播放| 寂寞人妻少妇视频99o| 国产av一区二区精品久久| 婷婷色av中文字幕| 午夜福利视频精品| 一级毛片 在线播放| 香蕉丝袜av| 久久这里有精品视频免费| 欧美日韩精品网址| 成人影院久久| 亚洲美女黄色视频免费看| 伦理电影大哥的女人| 伊人久久国产一区二区| 黑人欧美特级aaaaaa片| 精品国产乱码久久久久久小说| 欧美人与善性xxx| 看免费av毛片| 国产福利在线免费观看视频| 国产又色又爽无遮挡免| 亚洲精品在线美女| 久久青草综合色| 日韩精品有码人妻一区| 久久精品人人爽人人爽视色| 午夜福利视频在线观看免费| 不卡av一区二区三区| 欧美亚洲 丝袜 人妻 在线| 久久国产精品男人的天堂亚洲| 老司机影院成人| 色婷婷av一区二区三区视频| 精品少妇黑人巨大在线播放| 999精品在线视频| 中国国产av一级| 黄片无遮挡物在线观看| kizo精华| 亚洲av免费高清在线观看| 日韩一卡2卡3卡4卡2021年| 精品少妇黑人巨大在线播放| 日韩 亚洲 欧美在线| 亚洲精品国产一区二区精华液| 香蕉丝袜av| tube8黄色片| 亚洲欧美一区二区三区久久| 国产一区二区在线观看av| 免费大片黄手机在线观看| 韩国高清视频一区二区三区| 免费久久久久久久精品成人欧美视频| 国产有黄有色有爽视频| 在线观看一区二区三区激情| 观看美女的网站| 亚洲av国产av综合av卡| 国产精品一二三区在线看| 成年人免费黄色播放视频| 国产有黄有色有爽视频| 最新的欧美精品一区二区| 一本色道久久久久久精品综合| 亚洲经典国产精华液单| 三上悠亚av全集在线观看| 激情五月婷婷亚洲| 亚洲av中文av极速乱| 国产毛片在线视频| 777久久人妻少妇嫩草av网站| 国产精品 欧美亚洲| 国产精品偷伦视频观看了| 久久亚洲国产成人精品v| 在线观看www视频免费| 日韩成人av中文字幕在线观看| 丝袜美腿诱惑在线| 久久久久久人人人人人| 久久 成人 亚洲| 久久这里只有精品19| 亚洲经典国产精华液单| 亚洲图色成人| 国产精品久久久久成人av| 亚洲精品国产一区二区精华液| 黑丝袜美女国产一区| 精品亚洲乱码少妇综合久久| av卡一久久| 精品久久久久久电影网| 免费在线观看完整版高清| 久久久久国产精品人妻一区二区| 精品一区二区免费观看| 亚洲国产日韩一区二区| 黄网站色视频无遮挡免费观看| 综合色丁香网| 国产精品一区二区在线不卡| 大码成人一级视频| 一本—道久久a久久精品蜜桃钙片| 久久99蜜桃精品久久| 国产成人一区二区在线| 丰满饥渴人妻一区二区三| 亚洲成国产人片在线观看| 五月开心婷婷网| 91精品三级在线观看| 午夜精品国产一区二区电影| 亚洲成国产人片在线观看| 大陆偷拍与自拍| 一级爰片在线观看| 午夜免费鲁丝| 亚洲精品视频女| 黑人巨大精品欧美一区二区蜜桃| 精品国产国语对白av| 高清黄色对白视频在线免费看| 午夜精品国产一区二区电影| 婷婷色综合www| 欧美精品一区二区免费开放| 国产高清不卡午夜福利| 国产成人精品一,二区| 国产老妇伦熟女老妇高清| 精品一区在线观看国产| 成人国产麻豆网| 欧美日韩一区二区视频在线观看视频在线| 丝瓜视频免费看黄片| 99久久综合免费| 中国三级夫妇交换| 午夜av观看不卡| 国产免费现黄频在线看| 不卡av一区二区三区| 亚洲精品日韩在线中文字幕| 97在线人人人人妻| 97人妻天天添夜夜摸| 亚洲精品国产一区二区精华液| 国产黄频视频在线观看| 五月开心婷婷网| 一个人免费看片子| 亚洲国产欧美网| 桃花免费在线播放| 婷婷色麻豆天堂久久| 日韩一本色道免费dvd| 国产av一区二区精品久久| 精品人妻一区二区三区麻豆| a级毛片黄视频| 亚洲国产精品一区三区| √禁漫天堂资源中文www| 一区二区av电影网| 久久久亚洲精品成人影院| 美女中出高潮动态图| 久久99一区二区三区| 日韩 亚洲 欧美在线| 中文字幕av电影在线播放| 日韩av免费高清视频| 日本色播在线视频| 在线天堂最新版资源| 国产在线免费精品| 久久久欧美国产精品| 成人二区视频| av一本久久久久| 亚洲av福利一区| 街头女战士在线观看网站| av.在线天堂| 久久久国产精品麻豆| 亚洲av电影在线进入| 亚洲精品一二三| 国产成人欧美| 欧美日韩av久久| 日韩成人av中文字幕在线观看| 97在线视频观看| 国产成人91sexporn| 日本-黄色视频高清免费观看| 性高湖久久久久久久久免费观看| 久久久a久久爽久久v久久| 韩国高清视频一区二区三区| 人妻人人澡人人爽人人| 亚洲欧洲精品一区二区精品久久久 | 九草在线视频观看| 久久精品国产鲁丝片午夜精品| 青春草国产在线视频| 天美传媒精品一区二区| 国产精品欧美亚洲77777| 亚洲综合色网址| 免费高清在线观看视频在线观看| 日韩人妻精品一区2区三区| 日韩av不卡免费在线播放| 亚洲男人天堂网一区| tube8黄色片| 久久精品国产鲁丝片午夜精品| 国产亚洲一区二区精品| 免费在线观看视频国产中文字幕亚洲 | 搡老乐熟女国产| 一区在线观看完整版| 久久久久国产网址| 精品国产一区二区三区四区第35| 精品国产超薄肉色丝袜足j| 伦理电影免费视频| 一区二区av电影网| 久久久国产精品麻豆| 亚洲,欧美,日韩| 久久久久久久国产电影| 丰满饥渴人妻一区二区三| 99久久精品国产国产毛片| 97在线视频观看| 日本vs欧美在线观看视频| 日本色播在线视频| 天堂中文最新版在线下载| 国产精品.久久久| 日韩电影二区| 亚洲欧美色中文字幕在线| 丁香六月天网| 男人舔女人的私密视频| 高清在线视频一区二区三区| 亚洲精品成人av观看孕妇| 欧美 亚洲 国产 日韩一| 欧美精品av麻豆av| 亚洲av福利一区| freevideosex欧美| 大话2 男鬼变身卡| 亚洲在久久综合| 老熟女久久久| 亚洲成人一二三区av| 韩国av在线不卡| 日韩 亚洲 欧美在线| 99久国产av精品国产电影| 大片免费播放器 马上看| 爱豆传媒免费全集在线观看| 精品国产乱码久久久久久小说| 免费人妻精品一区二区三区视频| 性高湖久久久久久久久免费观看| 国产av一区二区精品久久| 日日啪夜夜爽| 三上悠亚av全集在线观看| 亚洲五月色婷婷综合| 久久久久国产精品人妻一区二区| 亚洲色图综合在线观看| 久久ye,这里只有精品| 一级毛片 在线播放| 香蕉国产在线看| 午夜av观看不卡| 亚洲美女黄色视频免费看| 只有这里有精品99| 国产精品 国内视频| 制服丝袜香蕉在线| 日本免费在线观看一区| 久久免费观看电影| 亚洲成人av在线免费| 九草在线视频观看| 久久久久久久久久久免费av| 国产精品一区二区在线观看99| 亚洲久久久国产精品| 国产精品国产av在线观看| 欧美激情 高清一区二区三区| 精品少妇黑人巨大在线播放| 日本黄色日本黄色录像| 青春草视频在线免费观看| 一区福利在线观看| 亚洲精华国产精华液的使用体验| 午夜福利,免费看| 男的添女的下面高潮视频| 桃花免费在线播放| 久久97久久精品| 黄色毛片三级朝国网站| 毛片一级片免费看久久久久| 免费在线观看视频国产中文字幕亚洲 | 亚洲成人手机| 啦啦啦视频在线资源免费观看| 美女福利国产在线| 男男h啪啪无遮挡| 日韩伦理黄色片| 丝袜美足系列| 日本免费在线观看一区| 成人二区视频| 欧美亚洲日本最大视频资源| 一本久久精品| 亚洲 欧美一区二区三区| av在线播放精品| 亚洲成人手机| 亚洲国产最新在线播放| 亚洲,一卡二卡三卡| 国产免费一区二区三区四区乱码| 青春草亚洲视频在线观看| www.熟女人妻精品国产| xxxhd国产人妻xxx| 国产免费视频播放在线视频| 99久久综合免费| 国产精品久久久久成人av| 女性被躁到高潮视频| 欧美成人午夜精品| 欧美成人精品欧美一级黄| 亚洲精品一区蜜桃| 国产淫语在线视频| 老女人水多毛片| 久久久国产欧美日韩av| h视频一区二区三区| 欧美激情 高清一区二区三区| 在线精品无人区一区二区三| 欧美激情极品国产一区二区三区| 在线天堂中文资源库| 亚洲成人av在线免费| 久久久久久久久久久久大奶| 如日韩欧美国产精品一区二区三区| 国产国语露脸激情在线看| 亚洲精品乱久久久久久| √禁漫天堂资源中文www| 美女xxoo啪啪120秒动态图| 成人漫画全彩无遮挡| 久久99热这里只频精品6学生| 亚洲,一卡二卡三卡| 男男h啪啪无遮挡| 热re99久久国产66热| 毛片一级片免费看久久久久| videossex国产| 免费日韩欧美在线观看| 亚洲国产欧美网| 国产精品久久久久久av不卡| 亚洲四区av| 亚洲三区欧美一区| 男女午夜视频在线观看| 国产一区有黄有色的免费视频| 另类亚洲欧美激情| 亚洲精品一二三| 女性生殖器流出的白浆| 国产精品 国内视频| 777米奇影视久久| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久久久免| 日韩视频在线欧美| 国产精品香港三级国产av潘金莲 | 熟女电影av网| 人妻 亚洲 视频| 人人妻人人爽人人添夜夜欢视频| 日韩一区二区视频免费看| a级片在线免费高清观看视频| 亚洲经典国产精华液单| 寂寞人妻少妇视频99o| 婷婷色综合大香蕉| 久久久国产一区二区| 黄片播放在线免费| 夜夜骑夜夜射夜夜干| 久久久久久免费高清国产稀缺| 久久久久久久国产电影| 女性生殖器流出的白浆| 久久久精品免费免费高清| 99久久人妻综合| 赤兔流量卡办理| 黄色配什么色好看| 亚洲第一区二区三区不卡| 亚洲一码二码三码区别大吗| 日韩人妻精品一区2区三区| 大话2 男鬼变身卡| 大陆偷拍与自拍| 交换朋友夫妻互换小说| 亚洲第一区二区三区不卡| 哪个播放器可以免费观看大片| 国产男人的电影天堂91| 亚洲精品久久午夜乱码| 一区二区三区乱码不卡18| 免费黄色在线免费观看| 亚洲美女搞黄在线观看| 巨乳人妻的诱惑在线观看| 男女午夜视频在线观看| 亚洲美女黄色视频免费看| 中文精品一卡2卡3卡4更新| 9191精品国产免费久久| a 毛片基地| 亚洲精品一区蜜桃| 在线精品无人区一区二区三| 久久人妻熟女aⅴ| 国产成人91sexporn| 啦啦啦中文免费视频观看日本| 婷婷色综合www| 在线亚洲精品国产二区图片欧美| 一区福利在线观看| 人人妻人人爽人人添夜夜欢视频| 免费人妻精品一区二区三区视频| 国产亚洲最大av| 日日爽夜夜爽网站| 建设人人有责人人尽责人人享有的| 国产色婷婷99| 人人妻人人澡人人爽人人夜夜| 亚洲美女黄色视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品一区三区| 人妻少妇偷人精品九色| 精品亚洲成a人片在线观看| 日韩在线高清观看一区二区三区| 婷婷色麻豆天堂久久| 欧美精品国产亚洲| 两个人看的免费小视频| 亚洲欧美清纯卡通| 精品亚洲成a人片在线观看| av有码第一页| 欧美最新免费一区二区三区| 久久精品亚洲av国产电影网| 亚洲精品国产一区二区精华液| 日本欧美国产在线视频| 久久久久久人人人人人| 亚洲欧美成人精品一区二区| 成年动漫av网址| 久久精品国产a三级三级三级| www.av在线官网国产| 日本免费在线观看一区| 亚洲欧美成人综合另类久久久| 观看美女的网站| 日韩中文字幕欧美一区二区 | 国产成人精品在线电影| 国产精品国产三级专区第一集| 日韩三级伦理在线观看| xxxhd国产人妻xxx| 亚洲欧美日韩另类电影网站| 欧美97在线视频| 99国产精品免费福利视频| 最新的欧美精品一区二区| 日本色播在线视频| 美女xxoo啪啪120秒动态图| 在线免费观看不下载黄p国产| 国产成人午夜福利电影在线观看| 亚洲精品久久久久久婷婷小说| 精品久久久久久电影网| 亚洲国产精品一区三区| 国产 精品1| 日韩视频在线欧美| 亚洲中文av在线| 亚洲精品aⅴ在线观看| 搡女人真爽免费视频火全软件| 欧美日韩亚洲国产一区二区在线观看 | 婷婷色麻豆天堂久久| 亚洲美女黄色视频免费看| 日韩大片免费观看网站| 9色porny在线观看| 一区二区三区激情视频| 精品少妇一区二区三区视频日本电影 | 成年人免费黄色播放视频| 男的添女的下面高潮视频| 久久久久久久久久久免费av| 国产成人精品在线电影| 欧美精品一区二区免费开放| 汤姆久久久久久久影院中文字幕| 最黄视频免费看| 黑人欧美特级aaaaaa片| 制服诱惑二区| 中文字幕精品免费在线观看视频| 国产 精品1| av有码第一页| 91精品国产国语对白视频| 久久久a久久爽久久v久久| 久久99精品国语久久久| 欧美人与性动交α欧美软件| 亚洲av.av天堂| 亚洲精品中文字幕在线视频| 男女边摸边吃奶| 亚洲国产最新在线播放| 老司机影院毛片| 成人影院久久| 考比视频在线观看| 综合色丁香网| 免费在线观看完整版高清| 2018国产大陆天天弄谢| h视频一区二区三区| 少妇的丰满在线观看| 18禁观看日本| 色吧在线观看| 精品人妻一区二区三区麻豆| 亚洲国产av影院在线观看| 国产日韩欧美亚洲二区| 少妇人妻 视频| 欧美成人午夜精品| 99香蕉大伊视频| 激情视频va一区二区三区| 大话2 男鬼变身卡| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| 午夜激情av网站| 1024香蕉在线观看| 黄片播放在线免费| 免费在线观看完整版高清| 午夜福利视频精品| 黑丝袜美女国产一区| 亚洲四区av| 国产福利在线免费观看视频| 国产免费一区二区三区四区乱码| 亚洲av综合色区一区| 国产一区有黄有色的免费视频| 精品人妻在线不人妻| 美女大奶头黄色视频| 多毛熟女@视频| 女性被躁到高潮视频| 国产精品久久久av美女十八| 精品国产乱码久久久久久男人| 免费播放大片免费观看视频在线观看| 国产成人a∨麻豆精品| av在线老鸭窝| 日韩av在线免费看完整版不卡| 我的亚洲天堂| 天堂俺去俺来也www色官网| 狠狠精品人妻久久久久久综合| 亚洲国产看品久久| 久久久久国产网址| 欧美激情 高清一区二区三区| 尾随美女入室| 91国产中文字幕| 大片电影免费在线观看免费| 高清不卡的av网站| 亚洲欧美中文字幕日韩二区| 精品99又大又爽又粗少妇毛片| 免费大片黄手机在线观看| 精品国产乱码久久久久久小说| 好男人视频免费观看在线| 国产在线一区二区三区精| 精品人妻在线不人妻| 亚洲,欧美精品.| 男女啪啪激烈高潮av片| 久久久国产一区二区| 午夜老司机福利剧场| 久久久久久人人人人人| 久久精品人人爽人人爽视色| 久久久精品国产亚洲av高清涩受| 99久久综合免费| 青春草国产在线视频| 国产精品国产三级国产专区5o| 伊人久久国产一区二区| 99re6热这里在线精品视频| 国产极品天堂在线| 成人毛片a级毛片在线播放| 国产精品一国产av| 我的亚洲天堂| 久久久久久久国产电影| 美女高潮到喷水免费观看| 搡女人真爽免费视频火全软件| 美女福利国产在线| 97在线人人人人妻| 人人妻人人爽人人添夜夜欢视频| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| 欧美日韩av久久| 自线自在国产av| 国产精品偷伦视频观看了| 妹子高潮喷水视频| 色吧在线观看| 亚洲第一av免费看| 日本av手机在线免费观看| 国产在线免费精品| videossex国产| 男女啪啪激烈高潮av片| 在线观看www视频免费| 观看av在线不卡| 国产xxxxx性猛交| 大片电影免费在线观看免费| 午夜免费男女啪啪视频观看| 大片免费播放器 马上看| 国产av精品麻豆| 亚洲av免费高清在线观看| 哪个播放器可以免费观看大片| 精品99又大又爽又粗少妇毛片| 精品一区二区免费观看| 蜜桃在线观看..| 美女xxoo啪啪120秒动态图| 亚洲精品美女久久久久99蜜臀 | 夫妻性生交免费视频一级片| 啦啦啦在线免费观看视频4| 亚洲,欧美精品.| 最近手机中文字幕大全| 国产福利在线免费观看视频| 亚洲精品国产av蜜桃| 26uuu在线亚洲综合色| 高清在线视频一区二区三区| 成人影院久久| 九草在线视频观看| 9191精品国产免费久久| 国产精品国产三级专区第一集| 亚洲国产欧美日韩在线播放| 电影成人av| 九九爱精品视频在线观看| 日韩一卡2卡3卡4卡2021年| 在线观看人妻少妇| 美女xxoo啪啪120秒动态图| 亚洲中文av在线| 午夜日韩欧美国产| 狠狠婷婷综合久久久久久88av| av电影中文网址| 香蕉国产在线看| 999久久久国产精品视频| 精品久久久久久电影网| 精品人妻一区二区三区麻豆| 欧美日韩视频高清一区二区三区二| 亚洲精品美女久久av网站| 少妇猛男粗大的猛烈进出视频| 成人亚洲欧美一区二区av| 免费日韩欧美在线观看| 中文字幕人妻熟女乱码| 午夜福利视频在线观看免费| 欧美中文综合在线视频| 国产av精品麻豆| 水蜜桃什么品种好| 菩萨蛮人人尽说江南好唐韦庄| 亚洲第一av免费看| 久久久精品94久久精品| 大陆偷拍与自拍| 人妻少妇偷人精品九色| 精品一区二区免费观看|