• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wind Wave Characteristics and Engineering Environment of the South China Sea

    2014-04-26 10:54:32WANGZhifengZHOULiangmingDONGShengWULunyuLIZhanbinMOULinandWANGAifang
    Journal of Ocean University of China 2014年6期

    WANG Zhifeng, ZHOU Liangming, DONG Sheng, WU Lunyu, LI Zhanbin, MOU Lin, and WANG Aifang

    1) College of Engineering, Ocean University of China, Qingdao 266100, P. R. China

    2) College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100, P. R. China

    3) The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, P. R. China

    4) National Marine Data and Information Service, State Oceanic Administration, Tianjin 300171, P. R. China

    5) Engineering Reconnaissance & Design Institute, Ocean University of China, Qingdao 266100, P. R. China

    Wind Wave Characteristics and Engineering Environment of the South China Sea

    WANG Zhifeng1), ZHOU Liangming2),*, DONG Sheng1), WU Lunyu3), LI Zhanbin4), MOU Lin4), and WANG Aifang5)

    1) College of Engineering, Ocean University of China, Qingdao 266100, P. R. China

    2) College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100, P. R. China

    3) The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, P. R. China

    4) National Marine Data and Information Service, State Oceanic Administration, Tianjin 300171, P. R. China

    5) Engineering Reconnaissance & Design Institute, Ocean University of China, Qingdao 266100, P. R. China

    Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the southern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme Hsvalues is focus in E in the northern and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.

    surface waves; statistical characteristics; joint distributions; extreme parameters

    1 Introduction

    The South China Sea (SCS) is the largest semi-enclosed marginal sea in the northwest Pacific (Fig.1). It connects to the East China Sea (through Taiwan Strait), the Pacific Ocean (through Luzon Strait), the Sulu Sea, the Java Sea (through Gasper and Karimata Straits), and the Indian Ocean (through the Strait of Malacca). The study and prediction of wave conditions in SCS, such as wave characteristics and extreme parameters, have become more and more important in recent years because of the relevant increase in scientific and economic interests, such as wave power, marine engineering, and oil exploitation.

    Qi et al. (1998) studied characteristics of ocean waves over the northern South China Sea from GEOSAT altimetry observations. Kohei et al. (1998) studied wave characteristics along the central coast of Vietnam in the South China Sea based on the measurements at a seaport from April 1997 to February 1998. Chu et al. (2004) studied wind-wave characteristics in SCS using TOPEX/ Poseidon data. However, all of the data used in those studies are affected by space and time limitations.

    Numerical simulation method (hindcast and forecast) has become important for wave studies since the appearance of numerical models. Wang et al. (1992) applied the Wave Model (WAM) to the wave hindcast under conditions of two typhoons and two cold fronts near Hong Kong in the northern part of the South China Sea. Qiao et al. (1997) simulated wave fields under tropical cyclones in the Gulf of Tonkin and estimated wave environmental and extreme parameters. Zhu et al. (2003) established a coupled mathematical model of nearshore waves, tide and current under tropical cyclones in the SCS. Zhou et al. (2008) simulated the sea wave directional spectra under typhoon wind forcing in the SCS using WAVEWATCH-III. Chu and Cheng (2008) investigated wave characteristics in the SCS during the passage of Typhoon Muifa in 2004 winter. Zheng et al. (2011, 2012) estimated wind energyand wave energy resources in the SCS. Zhou et al. (2008) studied the effect of surface waves on air-sea momentum flux under high wind conditions during typhoons in the SCS. Zhang et al. (2009) studied wind wave effects on ocean circulation in the SCS.

    More comprehensive and detailed wave information is needed in environmental research and engineering design. This study aim to improve the understanding of waves in the SCS and provide basic information for promoting environmental research and beuefiing engineering design.

    In Section 2, the progress in the numerical wave simulation is described, including the wind input and the wave output. In Section 3, the wave characteristics and engineering environment, such as seasonal variations, joint distributions and wave extreme values, are investigated. The summary and conclusions are given in Section 4.

    Fig.1 Depth contours of South China Sea (m).

    2 Numerical Simulations

    2.1 Wind Input

    The forcing for the wave modeling is the re-analysis winds. The wind model, the Weather Research and Forecasting (WRF), is used to simulate tropical storms (Gu et al., 2005; Yang et al., 2008). The simulation assimilated station-observed data, QuickSCAT data, and data from weather chart and typhoon (or tropical cyclone) yearbooks. The simulation period is from 1976 to 2005, with a horizontal resolution of 0.2? and a time interval of 3 h.

    Comparisons were carried out between the assimilated winds and observations at Dongsha station (20?40?N, 116?43?E), Xisha station (16?50?N, 112?20?E) and Nansha station (9?23?N, 112?53?E) (Fig.2). The time span is from 2000 to 2005. The mean errors of wind speeds at the three stations are 2.7, 3.4 and 1.9 m s-1, and these of wind directions are 25?, 26? and 29?, respectively.

    Fig.2 Wind observation stations and selected points for wave statistical analysis.

    The TOPEX/Poseidon data were also used to verify the accuracy of wind fields. Here, the comparisons of wind speeds between the assimilation and altimetry observations are shown in Fig.3. The two tracks correspond to the periods from 21 to 31 October 2004 and from 10 to 20 November 2004, respectively. The results show that the wind fields produced from the reanalysis method well agree with the TOPEX/Poseidon data. Four tropical cyclones were chosen as examples to calibrate the assimilated wind under high wind conditions. Fig.4 shows the comparisons of the maximum wind speeds at the center of Typhoon Sam from 20 to 23 August, 1999 and Typhoon Wukong from 6 to 10 September, 2000. It can be seen that the calculated and observed wind speeds show a good consistency.

    2.2 Wave Simulations

    The wave model WAVEWATCH III (WW III) (Tolman, 2009) is applied in this paper. The model was developed by the National Oceanic and Atmospheric Administration-National Centers for Environmental Prediction (NOAANCEP). It is designed with the general governing transport equations that permit full coupling with ocean models, improved physics integration schemes, improved propagation schemes (third order), and improved physics of wave growth and decay. The WW III has been used in many research programs to study surface wave dynamics. As the operational wave model of the NCEP for global and regional wave forecast it was validated over a globalscale wave forecast and a regional wave forecast (Hara and Belcher, 2002; Moon et al., 2004).

    The WW III grid in this study extends from 3.0? to 25.0?N, 99.0? to 125.0?E, with a horizontal resolution of0.2? by 0.2?. The output time period is from 1 January 1976 to 31 December 2005 with an hourly time interval.

    Comparisons were conducted between the model hindcast results and the TOPEX/Poseidon altimeter observations. Synchronous with wind speeds, comparisons of significant wave heights Hsare shown in Fig.5. The time series cover the same periods from 21 to 31 October, 2004 and from 10 to 20 November, 2004 as TOPEX/ Poseidon passed over the SCS. The simulation results are consistent with the observations, which indicates that in general the WW III can well reproduce the surface wave field in the SCS.

    Fig.3 Comparisons of wind speed between the simulation and T/P altimeter observations.

    Fig.4 Comparisons of the maximum wind speed between the simulation and typhoon yearbooks at the center of (a) Typhoon Sam and (b) Typhoon Wukong.

    Fig.5 Comparisons of Hs(m) between the simulation and T/P altimeter observations.

    Observed wave data under typhoon winds are scarce. Three datasets are available during the passages of Typhoon Wayne (1986), Typhoon Brian (1989) and Typhoon Damrey (2005). The comparisons of Hsbetween the measurements and model simulations during the typhoon passages are listed in Table 1. The simulated results are very close to the observed values, indicating that the WW III can be a dependable model to simulate surface waves under typhoon conditions in the SCS.

    Table 1 Comparisons of Hsbetween the simulation and observations during the passages of typhoons.

    3 Statistical Analysis and Engineering Environment

    In order to illustrate the wave characteristics in the SCS, fifteen points were selected, which are located in the northern, central and southern parts of the study area (Fig.2 and Table 2).

    3.1 Seasonal Variations of Wave Heights and Directions

    The SCS is under the influence of monsoon winds and synoptic systems such as fronts and tropical cyclones (Wang et al., 2009; Wang et al., 2007). In general, the winter monsoon season is from October to March, during which northeast wind prevails and cold fronts influence the SCS; the summer monsoon season is from June to August, with anticyclones and enhanced convection migrating northward from the equator to the mid-latitudes. The sea-surface wind over the SCS is strongest during the winter monsoon and weaker during the summer monsoon. In the periods of seasonal transition, spring and autumn, the average wind speed is smaller than in summer and winter. The tropical cyclone (TC) is a very important weather factor that influences the SCS in summer and autumn. The central and northern parts of the SCS (19?–20?N, 110?–120?E) is the most important region where the TC forms. In the SCS, the propagating direction of the TC is mainly west-forward and more than 25 TCs occur every year, mostly from July to October.

    Fig.6 Seasonal distributions of Hs(m) and Dir.

    Fig.6 shows the seasonal variations of Hsand dominantwave direction Dirin the SCS. During spring, Diris southwestward along the diagonal line across the SCS from southwest to northeast, south southwestward in the southeast SCS, and westward in most of the northwest SCS with northwestward waves in the Beibu Bay. During summer, Dirbecomes northeastward along the southwest to northeast diagonal line, north northeastward in the northwest SCS, and eastward in the southeast SCS. During autumn, Diris again southwestward along the southwest to northeast diagonal line and in the northwest SCS, and south southwestward in the southeast SCS. Influenced by strong winter monsoon, Diris southwestward in most of the SCS during winter. By comparing the seasonal significant wave heights, it can be seen that the maximum value of Hsis largest in winter and smallest in spring. In spring, Hsin the central SCS (10? to 20?N, 111? to 115?E) is greater than 1m with the maximum value greater than 1.5 m; outside the area Hsis smaller than 1m. The maximum Hsgreater than 2 m occurs in the northern SCS during autumn, whereas the maximum Hscan reach up to 2.6 m in the southwestern SCS in winter.

    Fig.7 shows the annual spatial distributions of Hsand Dirin the SCS. Generally, Diris southwestward along the diagonal line across the SCS from southwest to northeast, west southwestward in the northwest SCS, and south southwestward in the southeast SCS. The maximum Hsis greater than 1.7m, occurring in the central SCS. The isolines are ellipsoidal, with the long axes in southwest to northeast direction.

    3.2 Joint Distributions

    Joint distributions of wave heights and wave periods (directions) were applied in this study for the analysis of wave fields (Dag and Fouques, 2010; Soares and Carvalho, 2012). Fig.8 is the joint distributions of Hsand Tsat 10 points. A common feature shown in the figure is a single peak at each location, which corresponds to a wave period around 4.5 s. With a frequency greater than 1%, Hsis smaller than 5 m, while Tsranges from 2 to 10 s.

    The joint distributions of Hsand Dirshow a doublepeak pattern (Fig.9). The significant wave height corresponding to the peak frequencies range from 0.5 to 1.5 m. The distribution characteristics of Dirare consistent with the analysis in the previous section. The dominant Dirare westward or southwestward in most of the SCS, while the secondary Diris northward or northwestward.

    Fig.7 Annual distributions of Hs(m) and Dir.

    Fig. 8 Joint distributions of Hs(m) and Ts(s).

    Fig.9 Joint distributions of Hs(m) and Dir.

    3.3 Wave Extreme Parameters

    In order to obtain reliable extrapolation for wave extreme parameters, three well-known extreme value distributions, the Pearson III distribution, Gumbel distribution and Weibull distribution were compared. The Weibull distribution is found to be suitable for the long-term inference of extreme values in the SCS.

    Extreme values of Hsand Ts, were calculated for different return periods. Fig.10 shows the spatial distributions of Hsand Tsfor 100-year return period in the SCS. It can be seen that the maximum value of Hs, greater than 18 m, occurs to the southeast of Hainan Island. The extreme values of Hsare larger in the northern SCS than those in the southern. In the central SCS, the values are greater than 12 m. The extreme values of Hsdecrease to 6 m in the southwest corner of the SCS and in the northern Tonkin Gulf, and reach up to 11 m at the mouth of the Gulf. Those results are consistent with those of Kohei et al. (1998). As shown in Fig.10, the larger Tsvalues,with the maximum value greater than 17 s, occur in the western SCS, while the smaller values, with the minimum value less than 12 s occur in the eastern SCS. In most of the SCS the Tsvalues are larger than 12 s. The larger values are also found in the southern SCS, with the maximum greater than 17 s.

    Fig.10 The spatial distributions of a) Hs(m) and b) Ts(s) for 100-year return period.

    The directional extreme Hsvalues at 15 points are listed in Table 2. The waves with the maximum heights are found propagating in the westward direction in most of the northern and central SCS. The secondary extreme values are mainly in the southwest and occasionally in the northwest direction. In the southeast SCS, the waves with the maximum heights are propagating in the south southwest direction.

    Table 2 Hs(m) for 100-year return period in 8 directions

    4 Summary

    In this paper, wave fields are simulated by WAVEWATCH-III from 1976 to 2005. The wind input data is from the objective reanalysis wind datasets. Comparisons of wave heights between the simulation and observations show a good agreement.

    From the statistical analysis, several wave characteristics can be summarized as follows: 1) the annual mean dominant wave direction is southwestward along the diagonal line across the SCE from southwest to northeast, west southwestward in the northwest SCS, and south southwestward in the southeast SCS; 2) the significant wave height is largest in winter and smallest in spring; 3) the joint distribution results show a single-peak pattern for Hsand Ts, but a double-peak for Hsand Dir; 4) the extreme values of Hsare larger in the northern SCS than in the southern SCS, and the maximum value appears to the southeast of Hainan Island; 5) the direction of large directional extreme Hsvalues is focus in E in the northern and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (51279186) and the Open Fund of the Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China (201362045).

    Chu, P. C., and Cheng, K. F., 2008. South China Sea wave characteristics during Typhoon Muifa passage in winter 2004. Journal of Oceanography, 64 (1): 1-21.

    Chu, P. C., Qi, Y. Q., Chen, Y. C., Shi, P., and Mao, Q. W., 2004. South China Sea wind-wave characteristics. Part 1: Validation of Wavewatch-III using TOPEX/Poseidon data. Journal of Atmospheric and Oceanic Technology, 21 (11): 1718-1733.

    Dag, M., and Fouques, S., 2010. A joint distribution of significant wave height and characteristic surf parameter. Coastal Engineering, 57 (10): 948-952.

    Gu, J. F., Xiao, Q. N., Kuo, Y. H., Barker, D. M., Xue, J. S., and Ma, X. X., 2005. Assimilation and simulation of Typhoon Rusa (2002) using the WRF system. Advances in Atmospheric Sciences, 22: 415-427.

    Guedes, S. C., and Carvalho, A. N., 2012. Probability distributions of wave heights and periods in combined sea-states measured off the Spanish. Ocean Engineering, 52: 13-21.

    Hara, T., and Belcher, S. E., 2002. Wind forcing in the equilibrium range of wind-wave spectra. Journal of Fluid Mechanics, 470: 223-245.

    Kohei, N., Shinji, K., and Dao, X. Q., 1998. Wave characteristics on the central coast of Vietnam in the South China Sea. Coastal Engineering Journal, 40 (4): 347-366.

    Moon, I. J., Ginis, I., and Hara, T., 2004. Effect of surface waves on air-sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. Journal of the Atmospheric Sciences, 61: 2334-2348.

    Qi, Y. Q., Shi, P., and Mao, Q. W., 1998. Characteristics of sea wave over the northern South China Sea from GEOSAT altimetric observations. Acta Oceanologica Sinica, 20 (2): 20-26 (in Chinese).

    Qiao, F. L., Yu, W. D., and Pan, Z. D., 1997. Study on the wind and wave extreme parameters of Tonkin Gulf in the South China Sea–the applications of LAGFD numerical models. Journal of Hydrodynamics, 12 (1): 75-86 (in Chinese).

    Tolman, H. L., 2009. User Manual and System Documentation of WAVEWATCH-III Version 3.14. NOAA/NWS/NCEP/MMAB Technical Note, Washington, 1-194.

    Wang, B., Huang, F., Wu, Z. W., Yang, J., Fu, X., and Kikuchi, K., 2009. Multi-scale climate variability of the South China Sea monsoon: A review. Dynamics of Atmospheres and Oceans,47: 15-37.

    Wang, G. H., Su, J. L., Ding, Y. H., and Chen, D. K., 2007. Tropical cyclone genesis over the South China Sea. Journal of Marine Systems,68: 318-326.

    Wang, W. Z., Chen, J. C., and Li, M. Q., 1992. Wind waves simulation in the North Area of the South China Sea. Chinese Journal of Oceanology and Limnology,10(2): 107-118.

    Yang, S. H., Kang, K. R., Cui, X. P., and Wang, H. J., 2008. Diagnostic analysis of the asymmetric structure of the simulated landfalling typhoon ‘Haitang’. Progress in Natural Science,18(10): 1249-1260.

    Zhang, H., Sannasiraj, S. A., and Chan, E. S., 2009. Wind wave effects on hydrodynamic modeling of ocean circulation in the South China Sea. The Open Civil Engineering Journal,3: 48-61.

    Zheng, C. W., Zheng, Y. Y., and Chen, H. C., 2011. Research on wave energy resources in the northern South China Sea during recent 10 years using SWAN wave model. Journal of Subtropical Resources and Environment,6(2): 54-59 (in Chinese).

    Zheng, C. W., Zhuang, H., Li, X., and Li, X. Q., 2012. Wind energy and wave energy resources assessment in the East China Sea and South China Sea. Science China Technological Sciences.55(1): 163-173.

    Zhou, L. M., Wang, A. F., and Guo, P. F., 2008. Numerical Simulation of sea surface directional wave spectra under typhoon wind forcing. Journal of Hydrodynamics,20(6): 776-783.

    Zhou, L. M., Wang, A. F., Guo, P. F., and Wang, Z. F., 2008. Effect of surface waves on air-sea momentum flux in high wind conditions for typhoons in the South China Sea. Progress in Natural Science,18(9): 1107-1113.

    Zhu, L. S., Song, Y. F., Qiu, Z., Chen, X. H., Mai, B. Q., Qiu, Y. W., and Song, L. L., 2003. Computation of wave, tide and wind currents for the South China Sea under tropical cyclones. China Ocean Engineering,17(4): 505-516.

    (Edited by Xie Jun)

    (Received March 18, 2013; revised April 10, 2013; accepted August 25, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-66781511

    E-mail: zhou5299@ouc.edu.cn

    一级毛片黄色毛片免费观看视频| 亚洲欧美成人综合另类久久久| 日本黄色日本黄色录像| 丰满饥渴人妻一区二区三| 国产免费一区二区三区四区乱码| 日本av手机在线免费观看| 久久精品久久久久久噜噜老黄| 午夜福利在线观看免费完整高清在| 亚洲欧美成人精品一区二区| 少妇人妻精品综合一区二区| 亚洲欧美日韩卡通动漫| 日日啪夜夜爽| 女性被躁到高潮视频| av国产久精品久网站免费入址| 国国产精品蜜臀av免费| 一区二区av电影网| 在线看a的网站| 久久久久久久久久久免费av| 美女中出高潮动态图| 国产69精品久久久久777片| 水蜜桃什么品种好| 日本欧美国产在线视频| 丝袜美足系列| 美女xxoo啪啪120秒动态图| 少妇人妻久久综合中文| 久久久久精品久久久久真实原创| 亚洲精品乱码久久久久久按摩| 精品国产一区二区三区久久久樱花| 国产午夜精品一二区理论片| 亚洲av在线观看美女高潮| 香蕉精品网在线| 国产老妇伦熟女老妇高清| 久久99热这里只频精品6学生| 亚洲精品色激情综合| 99热网站在线观看| 国产精品成人在线| 成年美女黄网站色视频大全免费| 国产一区二区三区综合在线观看 | 人妻一区二区av| 日韩欧美一区视频在线观看| 天天影视国产精品| 男人舔女人的私密视频| 侵犯人妻中文字幕一二三四区| 日韩免费高清中文字幕av| 国产成人a∨麻豆精品| 欧美国产精品一级二级三级| 成人毛片a级毛片在线播放| 男女无遮挡免费网站观看| 欧美精品高潮呻吟av久久| 丝袜喷水一区| 欧美成人午夜免费资源| 久久精品夜色国产| av不卡在线播放| 午夜老司机福利剧场| 人人妻人人添人人爽欧美一区卜| 亚洲av福利一区| 大片电影免费在线观看免费| 女人精品久久久久毛片| 一区二区av电影网| 亚洲熟女精品中文字幕| 久久免费观看电影| 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区黑人 | 精品视频人人做人人爽| av在线老鸭窝| 国产精品麻豆人妻色哟哟久久| 一个人免费看片子| 天天影视国产精品| 精品国产一区二区三区四区第35| 成人午夜精彩视频在线观看| 欧美老熟妇乱子伦牲交| 国产成人午夜福利电影在线观看| 成年女人在线观看亚洲视频| 亚洲欧美色中文字幕在线| 国产一区有黄有色的免费视频| 国产在线一区二区三区精| 亚洲av在线观看美女高潮| 日日啪夜夜爽| 熟妇人妻不卡中文字幕| 国产精品蜜桃在线观看| 熟妇人妻不卡中文字幕| 国产欧美日韩一区二区三区在线| 亚洲国产精品国产精品| 欧美日韩亚洲高清精品| 另类精品久久| 国产无遮挡羞羞视频在线观看| 国产精品蜜桃在线观看| 99热全是精品| 国产精品一二三区在线看| 老司机亚洲免费影院| 老司机亚洲免费影院| 黄色视频在线播放观看不卡| 国产黄色视频一区二区在线观看| av女优亚洲男人天堂| 建设人人有责人人尽责人人享有的| 成年人午夜在线观看视频| 久久久久精品性色| 丝袜美足系列| 日本av手机在线免费观看| 又粗又硬又长又爽又黄的视频| 自拍欧美九色日韩亚洲蝌蚪91| √禁漫天堂资源中文www| 精品午夜福利在线看| 国产国拍精品亚洲av在线观看| 免费久久久久久久精品成人欧美视频 | 久久婷婷青草| 两个人免费观看高清视频| 秋霞伦理黄片| 国产精品国产av在线观看| 精品人妻在线不人妻| 日韩成人伦理影院| 少妇高潮的动态图| 99视频精品全部免费 在线| 在线精品无人区一区二区三| 在线精品无人区一区二区三| 国产精品一区二区在线观看99| 午夜福利网站1000一区二区三区| 日韩一本色道免费dvd| 亚洲av中文av极速乱| 婷婷色麻豆天堂久久| 免费人妻精品一区二区三区视频| 波多野结衣一区麻豆| 中文字幕人妻熟女乱码| 男女高潮啪啪啪动态图| 欧美另类一区| 国产成人免费无遮挡视频| 欧美日韩国产mv在线观看视频| 婷婷色综合www| 熟女人妻精品中文字幕| 国产成人aa在线观看| a级毛色黄片| 亚洲精品中文字幕在线视频| 内地一区二区视频在线| 国产精品久久久av美女十八| 午夜免费男女啪啪视频观看| 尾随美女入室| 成人免费观看视频高清| 中国美白少妇内射xxxbb| 欧美+日韩+精品| 精品酒店卫生间| 国产免费福利视频在线观看| 这个男人来自地球电影免费观看 | 国产成人午夜福利电影在线观看| 日韩一区二区视频免费看| 看免费成人av毛片| 在线天堂最新版资源| 精品福利永久在线观看| 日本与韩国留学比较| 一区二区av电影网| 激情五月婷婷亚洲| 大片免费播放器 马上看| 男人爽女人下面视频在线观看| 建设人人有责人人尽责人人享有的| 免费黄网站久久成人精品| 欧美97在线视频| 久久亚洲国产成人精品v| av视频免费观看在线观看| 亚洲性久久影院| 国产高清不卡午夜福利| 欧美精品一区二区大全| 欧美日韩视频精品一区| 国产熟女午夜一区二区三区| 亚洲av成人精品一二三区| 99热网站在线观看| 大码成人一级视频| 一级a做视频免费观看| 青青草视频在线视频观看| 精品一区在线观看国产| 看免费av毛片| 午夜91福利影院| www日本在线高清视频| 一边摸一边做爽爽视频免费| 午夜影院在线不卡| 国产成人精品一,二区| kizo精华| 女性生殖器流出的白浆| 亚洲av日韩在线播放| 午夜av观看不卡| 中国三级夫妇交换| 有码 亚洲区| 亚洲欧洲日产国产| 成人无遮挡网站| 亚洲五月色婷婷综合| 黑人巨大精品欧美一区二区蜜桃 | 一区在线观看完整版| 中国三级夫妇交换| 国产高清国产精品国产三级| 国产成人免费无遮挡视频| av女优亚洲男人天堂| 国产精品蜜桃在线观看| 国产乱人偷精品视频| 精品亚洲成国产av| 另类亚洲欧美激情| 99re6热这里在线精品视频| 熟女电影av网| 一级,二级,三级黄色视频| 日韩不卡一区二区三区视频在线| 日本猛色少妇xxxxx猛交久久| 天堂8中文在线网| 国产精品久久久久久av不卡| av不卡在线播放| 精品99又大又爽又粗少妇毛片| 久久这里有精品视频免费| 男人添女人高潮全过程视频| 欧美激情极品国产一区二区三区 | 观看美女的网站| 9191精品国产免费久久| 少妇人妻精品综合一区二区| 日本91视频免费播放| 亚洲精华国产精华液的使用体验| 免费高清在线观看日韩| 国产一区二区在线观看日韩| 午夜久久久在线观看| 大片免费播放器 马上看| 激情视频va一区二区三区| 一级爰片在线观看| 日韩成人伦理影院| 亚洲中文av在线| 亚洲精品乱码久久久久久按摩| 99热网站在线观看| 啦啦啦中文免费视频观看日本| 女性被躁到高潮视频| 久久久久久久大尺度免费视频| 亚洲国产看品久久| 成年人免费黄色播放视频| 伊人亚洲综合成人网| 国产极品粉嫩免费观看在线| 国产精品一区二区在线不卡| 9191精品国产免费久久| 黄网站色视频无遮挡免费观看| 男人添女人高潮全过程视频| 久久女婷五月综合色啪小说| 亚洲精品,欧美精品| 国产精品三级大全| 国产精品一区www在线观看| 亚洲美女搞黄在线观看| 国产色婷婷99| 老司机影院毛片| 国产熟女午夜一区二区三区| 国国产精品蜜臀av免费| 午夜91福利影院| 飞空精品影院首页| 精品一品国产午夜福利视频| 国产在线视频一区二区| 久久久久久久久久久久大奶| 国产国语露脸激情在线看| 欧美国产精品一级二级三级| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三区在线| 日韩在线高清观看一区二区三区| 男的添女的下面高潮视频| 精品福利永久在线观看| 欧美人与性动交α欧美精品济南到 | 亚洲五月色婷婷综合| 久久婷婷青草| 女性生殖器流出的白浆| av播播在线观看一区| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 国产又爽黄色视频| 欧美激情国产日韩精品一区| 亚洲欧美精品自产自拍| 99热国产这里只有精品6| 亚洲国产精品一区三区| 一本大道久久a久久精品| 日日啪夜夜爽| 日本免费在线观看一区| 一区二区av电影网| 亚洲,一卡二卡三卡| 侵犯人妻中文字幕一二三四区| 久久久久久久亚洲中文字幕| 色网站视频免费| 精品国产乱码久久久久久小说| 9色porny在线观看| 国产精品一区www在线观看| 日韩电影二区| 亚洲一码二码三码区别大吗| 国产麻豆69| 18禁在线无遮挡免费观看视频| 韩国高清视频一区二区三区| 精品一品国产午夜福利视频| 熟女电影av网| 精品一区二区三区四区五区乱码 | 欧美日韩成人在线一区二区| 在线观看三级黄色| 国产老妇伦熟女老妇高清| 国产xxxxx性猛交| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区在线观看av| 99久久综合免费| 高清毛片免费看| 亚洲国产日韩一区二区| 国产精品偷伦视频观看了| 国产精品一区二区在线不卡| 欧美成人午夜精品| 亚洲第一av免费看| 熟女电影av网| 日韩三级伦理在线观看| 午夜91福利影院| 狠狠精品人妻久久久久久综合| 人妻一区二区av| 男的添女的下面高潮视频| 成人国产av品久久久| 精品一区二区三区四区五区乱码 | 成人漫画全彩无遮挡| 黄色 视频免费看| 欧美日本中文国产一区发布| 69精品国产乱码久久久| 久久午夜综合久久蜜桃| 三级国产精品片| 热99久久久久精品小说推荐| 中文欧美无线码| 免费大片18禁| 自线自在国产av| 成人亚洲欧美一区二区av| 七月丁香在线播放| 国产在视频线精品| 国产色婷婷99| 这个男人来自地球电影免费观看 | 午夜免费男女啪啪视频观看| 久久久亚洲精品成人影院| 七月丁香在线播放| 大香蕉97超碰在线| 美女中出高潮动态图| 人成视频在线观看免费观看| 一级片'在线观看视频| 久久久久国产精品人妻一区二区| 亚洲欧美成人精品一区二区| 制服丝袜香蕉在线| 国产亚洲午夜精品一区二区久久| 亚洲精品成人av观看孕妇| 亚洲精华国产精华液的使用体验| 男的添女的下面高潮视频| 亚洲av福利一区| a 毛片基地| 午夜免费观看性视频| 侵犯人妻中文字幕一二三四区| 晚上一个人看的免费电影| 女人久久www免费人成看片| 精品一区二区免费观看| 国产精品熟女久久久久浪| 亚洲精华国产精华液的使用体验| 在线看a的网站| 男女高潮啪啪啪动态图| 久久久久精品性色| 人妻 亚洲 视频| 一区二区三区精品91| 中国国产av一级| 丝袜在线中文字幕| 国产成人一区二区在线| 欧美日韩成人在线一区二区| 亚洲精品国产色婷婷电影| 亚洲五月色婷婷综合| 久久亚洲国产成人精品v| 街头女战士在线观看网站| 激情五月婷婷亚洲| 狂野欧美激情性bbbbbb| 精品一区二区三卡| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美在线一区| 麻豆乱淫一区二区| 国产一区二区三区综合在线观看 | 高清不卡的av网站| 最近2019中文字幕mv第一页| 免费大片黄手机在线观看| 日本av免费视频播放| 免费不卡的大黄色大毛片视频在线观看| www.熟女人妻精品国产 | 国产爽快片一区二区三区| 免费高清在线观看日韩| 久久久久视频综合| 最近2019中文字幕mv第一页| 日韩,欧美,国产一区二区三区| 99香蕉大伊视频| av电影中文网址| 在线观看免费视频网站a站| 美女主播在线视频| 亚洲,一卡二卡三卡| 久久精品国产鲁丝片午夜精品| av.在线天堂| 国产成人精品婷婷| 亚洲精品456在线播放app| 国产成人精品在线电影| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区| 免费看不卡的av| 日韩伦理黄色片| 又黄又粗又硬又大视频| 成年动漫av网址| freevideosex欧美| 亚洲色图综合在线观看| 国产爽快片一区二区三区| 你懂的网址亚洲精品在线观看| 国产亚洲最大av| 精品99又大又爽又粗少妇毛片| 国产免费一级a男人的天堂| 国产精品欧美亚洲77777| 久久久久久久大尺度免费视频| 亚洲成人av在线免费| 亚洲欧洲精品一区二区精品久久久 | www日本在线高清视频| 欧美老熟妇乱子伦牲交| 亚洲国产av新网站| 亚洲欧美一区二区三区国产| 国产一区二区激情短视频 | 日韩精品免费视频一区二区三区 | 精品久久国产蜜桃| 亚洲精品456在线播放app| 国产福利在线免费观看视频| www.熟女人妻精品国产 | 看非洲黑人一级黄片| 欧美国产精品va在线观看不卡| 亚洲精华国产精华液的使用体验| 久久这里只有精品19| 国产精品久久久久成人av| 久久久精品免费免费高清| 日本av免费视频播放| 日韩欧美精品免费久久| 80岁老熟妇乱子伦牲交| 黄片无遮挡物在线观看| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂| 伊人亚洲综合成人网| 一区二区三区四区激情视频| 国产高清三级在线| 国产黄色免费在线视频| 亚洲国产精品999| 哪个播放器可以免费观看大片| 热99国产精品久久久久久7| 久久亚洲国产成人精品v| 日日撸夜夜添| 狂野欧美激情性bbbbbb| 五月开心婷婷网| 有码 亚洲区| 欧美成人精品欧美一级黄| 好男人视频免费观看在线| 国产亚洲av片在线观看秒播厂| 午夜福利网站1000一区二区三区| 亚洲精品久久午夜乱码| 秋霞伦理黄片| 99热国产这里只有精品6| 国产片特级美女逼逼视频| 国产毛片在线视频| 26uuu在线亚洲综合色| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 亚洲综合色网址| 香蕉精品网在线| 边亲边吃奶的免费视频| 啦啦啦中文免费视频观看日本| 在线亚洲精品国产二区图片欧美| 国产福利在线免费观看视频| 日本av手机在线免费观看| 日韩电影二区| 国产成人91sexporn| 久久精品夜色国产| 女人久久www免费人成看片| 黑人高潮一二区| 飞空精品影院首页| 人成视频在线观看免费观看| 91精品国产国语对白视频| 国产午夜精品一二区理论片| 美女国产视频在线观看| 一边摸一边做爽爽视频免费| 免费观看在线日韩| 久久99热这里只频精品6学生| 在线观看免费视频网站a站| 亚洲美女视频黄频| a级毛色黄片| 男女免费视频国产| 亚洲精品久久午夜乱码| 亚洲国产看品久久| 草草在线视频免费看| 欧美成人精品欧美一级黄| av网站免费在线观看视频| 亚洲婷婷狠狠爱综合网| 99re6热这里在线精品视频| 一级a做视频免费观看| 丝袜喷水一区| 制服诱惑二区| 久久久久网色| 在线天堂中文资源库| 男女高潮啪啪啪动态图| 久久久久久久大尺度免费视频| 男女边摸边吃奶| av卡一久久| 尾随美女入室| 中文精品一卡2卡3卡4更新| 涩涩av久久男人的天堂| 精品国产露脸久久av麻豆| av在线播放精品| 久久久欧美国产精品| 精品午夜福利在线看| 97在线人人人人妻| 亚洲精品日韩在线中文字幕| 日本欧美国产在线视频| 老司机影院毛片| av在线播放精品| 国产成人一区二区在线| 精品久久国产蜜桃| av黄色大香蕉| 91午夜精品亚洲一区二区三区| 一本大道久久a久久精品| 伦理电影大哥的女人| 青青草视频在线视频观看| 精品一品国产午夜福利视频| 99久久中文字幕三级久久日本| 国产精品久久久久久精品古装| 成人毛片a级毛片在线播放| 99九九在线精品视频| 99国产精品免费福利视频| 精品一区在线观看国产| 亚洲国产毛片av蜜桃av| 精品一区二区三区四区五区乱码 | 啦啦啦在线观看免费高清www| 欧美日韩亚洲高清精品| 这个男人来自地球电影免费观看 | 亚洲欧美一区二区三区黑人 | 男女边吃奶边做爰视频| av在线老鸭窝| 亚洲美女视频黄频| 亚洲国产欧美日韩在线播放| 欧美xxⅹ黑人| 亚洲婷婷狠狠爱综合网| 亚洲性久久影院| 97在线视频观看| 亚洲国产看品久久| 女人精品久久久久毛片| 久久久久久久国产电影| 日本色播在线视频| 激情视频va一区二区三区| 日韩人妻精品一区2区三区| 婷婷色综合www| 波野结衣二区三区在线| 看免费av毛片| 看免费成人av毛片| 黄片播放在线免费| 免费在线观看完整版高清| 久久午夜综合久久蜜桃| 美女中出高潮动态图| 国产精品国产三级国产av玫瑰| 国产深夜福利视频在线观看| 日本色播在线视频| 久久精品久久久久久久性| 亚洲av国产av综合av卡| 国产精品99久久99久久久不卡 | 国产精品久久久久成人av| 亚洲在久久综合| 9色porny在线观看| 精品人妻在线不人妻| 九色成人免费人妻av| 国产高清三级在线| 亚洲一级一片aⅴ在线观看| 亚洲少妇的诱惑av| 国产麻豆69| 成年av动漫网址| 亚洲国产av影院在线观看| 成人二区视频| 国产精品成人在线| 久久人人爽人人片av| 欧美精品人与动牲交sv欧美| 9191精品国产免费久久| 久久女婷五月综合色啪小说| 18禁在线无遮挡免费观看视频| 免费大片黄手机在线观看| 看免费av毛片| 国产一区二区三区综合在线观看 | av国产久精品久网站免费入址| 精品一品国产午夜福利视频| 大码成人一级视频| 久久久久久久亚洲中文字幕| 成人国语在线视频| 老女人水多毛片| av免费在线看不卡| 日本91视频免费播放| 亚洲av福利一区| 国产免费又黄又爽又色| 免费不卡的大黄色大毛片视频在线观看| 久久精品国产鲁丝片午夜精品| 一本色道久久久久久精品综合| 免费人成在线观看视频色| 伦理电影免费视频| 国产成人一区二区在线| 午夜福利视频精品| 全区人妻精品视频| a级毛片黄视频| 欧美亚洲 丝袜 人妻 在线| 久久久久久久国产电影| 日韩精品有码人妻一区| 亚洲伊人色综图| 精品国产一区二区久久| 亚洲精品一区蜜桃| 日本vs欧美在线观看视频| 新久久久久国产一级毛片| 精品久久蜜臀av无| 日韩电影二区| 男女高潮啪啪啪动态图| 亚洲国产精品999| 中文字幕av电影在线播放| videosex国产| 午夜老司机福利剧场| 亚洲国产精品一区二区三区在线| 99久国产av精品国产电影| 日韩av不卡免费在线播放| 国产精品久久久久久精品电影小说| 亚洲激情五月婷婷啪啪| 日韩一区二区三区影片| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 亚洲欧美成人综合另类久久久| 亚洲图色成人| 成人国语在线视频| h视频一区二区三区| 精品第一国产精品| 免费看光身美女|