• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Fucans from Four Species of Sea Cucumber by High Temperature1H NMR

    2014-04-20 09:24:23WUNianCHENShiguoYEXingqianLIGuoyunYINLiangandXUEChanghu
    Journal of Ocean University of China 2014年5期

    WU Nian, CHEN Shiguo,, YE Xingqian, LI Guoyun, YIN Li’ang, and XUE Changhu

    1) College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China

    2) College of Food Science and Engineering, Ocean University of China, Qingdao 266061, P. R. China

    Identification of Fucans from Four Species of Sea Cucumber by High Temperature1H NMR

    WU Nian1), CHEN Shiguo1),*, YE Xingqian1), LI Guoyun2), YIN Li’ang2), and XUE Changhu2)

    1) College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China

    2) College of Food Science and Engineering, Ocean University of China, Qingdao 266061, P. R. China

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei (Pg) from Indo-Pacific, Holothuria vagabunda (Hv) from Norwegian Coast, Stichopus tremulu (St) from Western Indian Ocean, and Isostichopus badionotu (Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature13C NMR. The results indicated that Fuc-Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc-Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc-St from the frigid zone and Fuc-Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature1H NMR than via room temperature1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

    sea cucumber; sulfated fucan; composition analysis;1H NMR; identification

    1 Introduction

    Sea cucumbers in class Holothuroidea are marine invertebrates, which are habitually found in benthic areas and deep seas across the world (Bordbar et al., 2011). Sea cucumbers have been recognized as a traditional tonic food in China and other Asian countries for thousands of years, mainly due to their effectiveness against hypertension, asthma, rheumatism, cuts and burns, impotence, and constipation (Fu et al., 2005; Wen et al., 2010). It has been proven that chemical compounds extracted from different sea cucumber species exhibit several unique biological and pharmacological activities, such as antiangiogenic (Tian et al., 2005), anticancer (Roginsky et al., 2004), anticoagulant (Chen et al., 2011), anti-hypertension (Hamaguchi et al., 2010), anti-inflammatory (Collin, 1999), antimicrobial (Hing et al., 2007), antioxidant (Althunibat et al., 2009), antithrombotic (Pacheco et al., 2000), antitumor (Tong et al., 2005) and wound healing (San Miguel-Ruiz and García-Arrarás, 2007). There are hundreds of varieties of sea cucumbers in ocean. Their commercial value varies geographically between a few and thousands of US dollars per kilogram. However, no detailed distinction of sea cucumber species has been documented in terms of chemical components and nutritional value.

    The major edible part of sea cucumbers is their body wall, which contains mainly collagen, acidic polysaccharides (Mour?o et al., 1996; Trotter et al., 1995; Vieira et al., 1988) and some minor components such as triterpene glycosides, gangliosides and various lipids (Avilov et al., 2000; Kitagawa et al., 1982; Matsuno and Tsushima, 1995). Of these, acidic polysaccharide has various biological activities and is believed to be the most important component of sea cucumbers. It has been reported that polysaccharide isolated from sea cucumbers has anticoagulant and antithrombotic activity (Fonseca and Mour?o, 2006), can modulate angiogenesis (Tapon-Bretaudiere et al., 2002) and inhibit tumor metastasis (Borsig et al., 2007). Two types of polysaccharide isolated from the body wall of sea cucumbers mainly include sea cucumber fucosylated chondroitin sulfate (SC-fCS), an acidic polysaccharide composed of D-N-acetyl galactosamine, D-glucuronic acid and L-fucose (Vieira et al., 1988), and sea cucumber fucan (SC-Fuc), a linear polysaccharide ofL-fucose (Mour?o et al., 1996). There have been several studies on the structure of SC-fCSs isolated from sea cucumbers, such as Stichopus japonicus (Casu et al., 1996) and Ludwigothurea grisea (Mour?o et al., 1996), via mild acid hydrolysis, methylation analysis and1H and13C nuclear magnetic resonance (NMR) spectroscopy. SC-fCSs from these sea cucumbers have a sulfated fucose branch linked to the 3-O position of the glucuronic acid (GlcA) residue, with different sulfation patterns of the fucose branches. However, characteristics of sea cucumber polysaccharide, such as the sulfation inconsistency, the inhomogeneity of microstructure and molecular weight, and the polytrope of residue quantity, cause the complexity of their purification and structural analysis. So far, the majority of studies on SC-Fuc have been focused on the analysis of sugar chain structure and influence of substitutional positions and quantities of sulfate on its activity (Mour?o et al., 1996; Vieira et al., 1988).

    Recently, the development of modern spectroscopic techniques, for example, the NMR spectroscopy, makes the structural characterization of complex carbohydrates possible. Both1H and13C NMR spectroscopy have been used for the sequence analysis of heparin oligosaccharides and the characterization of subtle structural differences among different preparations of heparin (Casu et al., 1996). It is possible to identify sulfated sugar contaminants associated with adverse clinical events via direct analysis of heparin polysaccharide materials (Guerrini et al., 2008).

    In the present study, we isolated SC-Fucs from four species of sea cucumbers with different commercial value from three geographical zones, Pearsonothuria graeffei from Indo-Pacific, Holothuria vagabunda from Western Indian Ocean, Stichopus tremulus from Norwegian Coast and Isostichopus badionotus from Western Atlantic. The composition and structure of SC-Fucs obtained from these four species of sea cucumbers were determined for the first time in this study. Comparative analysis was carried out on anomer proton signals by high temperature1H NMR, and the sulfation pattern of fucose branches was determined. The index of anomer hydrogen signals in SC-Fucs was thus established for identifying species of sea cucumbers from different sea regions. The results will provide reference data for further studies on the structure activity relationship of SC-Fucs.

    2 Materials and Methods

    2.1 Sea Cucumber

    Four species of sea cucumbers (50 g each), Pearsonothuria graeffei (from Indo-Pacific), Holothuria vagabunda (from Norwegian Coast), Stichopus tremulus (from Western Indian Ocean), and Isostichopus badionotus (from Western Atlantic) were purchased from a local market in Qingdao, Shandong, China.

    2.2 Isolation of Crude Polysaccharide

    Crude sea cucumber polysaccharide was prepared following the method reported previously (Matsuno and Tsushima, 1995). Briefly, sea cucumber body wall (about 1 g) was dried, minced and homogenized. The homogenate was treated with CH3Cl3/MeOH (4:1) to remove lipids before autoclaving at 50℃ for 4 h. The resulting residue was digested with 100 mg papain in 30 mL of 0.1 mol L-1sodium acetate buffer solution (pH 6.0) (5 mmol L-1EDTA and 5 mmol L-1cysteine) at 60℃ for 10 h. The digested mixture was centrifuged (2000 r min-1, 15 min, 10℃) and the polysaccharide in the clear supernatant was precipitated with 1.6 mL of 10% aqueous cetylpyridinium chloride solution. After standing at room temperature for 24 h, the mixture was centrifuged (2000 r min-1, 15 min) and the precipitated polysaccharide was collected and redissolved in 1000 mL of 2 mol L-1NaCl:ethanol (100:15) before further precipitation with 2000 mL of 95% ethanol. After standing at 4℃ for 24 h, the precipitate formed was collected by centrifugation (2000 r min-1, 15 min). The precipitate was dissolved in water and dialyzed against distilled water (with two exchanges). The polysaccharide solution was lyophilized before analysis.

    2.3 Isolation of SC-Fucs by Anion Separation Column

    The obtained sea cucumber crude polysaccharides (400 mg each) were dissolved in 10 mL of 25 mmol L-1NaH2PO4-NaOH (pH 6.3). The crude polysaccharide solution was fractionated by anion-exchange chromatography on a DEAE-cellulose column (1.6 cm × 17 cm, Whatman, Brentford, England) with elution by a linear gradient of 0–1.4 mol L-1NaCl in 1000 min at a flow rate of 0.5 mL min-1. Carbohydrate fractions were collected every 10 min with a test tube. Protein content was then determined at 280 nm with an ultraviolet detector (Agilient, California, USA). Polysaccharide content was determined by improved phenol/sulfuric assay (Chen et al., 2011). The single components in test tubes were further determined by HPLC (high performance liquid chromatography) with a TSK gel PWXL-4000 column (Tosoh Bioscience, Tokyo, Japan). The polysaccharide solution collected and dialyzed against distilled water was lyophilized.

    2.4 Molecular Weight Measurement

    GPC measurement was performed by Aglient 1100 HPLC equipped with a refractive index detector. For polysaccharide measurement, a TSK gel PWXL-4000 column (Tosoh Bioscience, Tokyo, Japan) was used. A 0.2 mol L-1NaNO3solution was used as solvent at a flow rate 0.5 mL min-1.

    2.5 Chemical Composition Analysis

    Monosaccharide composition was determined by HPLC as described elsewhere (Strydom, 1994). In brief, sea cucumber polysaccharide (2 mg each) was hydrolyzed with 1 mL of 2 mol L-1TFA at 110℃ for 8 h. The hydrolysate was vacuum dried and conjugated to PMP (Sangon Biotech, Shanghai, China). The derivatization was carried out with 450 μL of PMP solution (0.5 mol L-1, in methanol)and 450 μL of 0.3 mol L-1NaOH at 70℃ for 30 min. The reaction was stopped by neutralization with 450 μL of 0.3 mol L-1HCl and extraction three times with chloroform (1mL).

    HPLC analysis was performed on an Agilent ZORBAX Eclipse XDB-C18 column (5 μm, 4.6 mm×150 mm, Agilient, California, USA) at 25℃ with UV detection at 250 nm. The mobile phase was aqueous 0.05 mol L-1KH2PO4 (pH 6.9) with 15% (solvent A) and 40% acetonitrile (solvent B), respectively. A gradient of B from 8% to 20% in 30 min was used.

    Sulfate content was determined by ion chromatography as described previously (Ohira and Toda, 2006). Briefly, sea cucumber polysaccharide (about 2 mg each) was hydrolyzed with 1 mL of 2 mol L-1TFA at 110℃ under nitrogen for 8 h. The hydrolysate was dried under vacuum and then dissolved in water prior to ion chromatography.

    2.6 NMR Assay

    For NMR (JEOL, Japan) analysis, polysaccharide (50 mg each) was evaporated with 500 μL of D2O (99.8%, Sigma-Aldrich, Missouri, USA) twice by lyophilization before final dissolution in 500 μL of high quality D2O (99.96%) containing 0.1 μL of acetone.1H NMR experiment was carried out at 600 MHz and13C NMR at 150 MHz. Spectrum was recorded at 25℃ for13C NMR and 60℃ for1H NMR. The observed1H and13C chemical shift were reported relative to an internal acetone standard (2.03 and 33.1 ppm, respectively).

    2.7 IR Spectroscopy

    IR spectrum of the polysaccharide (KBr pellets, 0.5 mg sample with 150 mg KBr) was taken on a Perkin-Elmer instrument (Bruke, Genman) .

    2.8 Statistical Analysis

    All the data were statistically evaluated with SPSS/ 13.00 software. P < 0.05 and P < 0.01 were considered to indicate statistical significance. All the results were expressed as mean ± SE.

    3 Results and Discussions

    3.1 SC-Fucs Isolation and Purification

    The yield of polysaccharide isolated from four species of sea cucumbers, Pearsonothuria graeffei (Pg), Holothuria vagabunda (Hv), Stichopus tremulus (St), and Isostichopus badionotus (Ib), was 11.0%, 6.3%, 7.0% and 9.9% by weight, respectively. Ion exchange chromatography of the extracted polysaccharides on the DEAE-cellulose column showed two peaks each sea cucumber (Fig.1), which were respectively identified as SC-fCSs (fractions I) and SC-Fucs (fractions II) based on their chemical composition (Table 1, see 3.2 for discussion on Chemical Compositions). The relative content of two polysaccharide fractions was different in each species of sea cucumbers, as SC-fCSs were abundant in St, Pg and Hv (about 63%, 65%, 64%, respectively) (Figs.1a–c), whereas SC-Fucs was abundant in Ib (65%) (Fig.1d). According to the tube quantity and the eluent concentration in the region of rising peaks, the salinity of the two peaks ranged from 0.63 to 0.99 mol L-1and from 0.88 to 1.28 mol L-1, respectively. The polysaccharide had different salinity of elution peaks, varying in sulfate content. SC-Fucs from these four species of sea cucumbers were called Fuc-Pg, Fuc-Hv, Fuc-St and Fuc-Ib. Fuc-Ib had relatively higher (41.1%) sulfate content than others (29.1%–34.8%) (Fig.1).

    Fig.1 Isolation of sea cucumber fucosylated chondroitin sulfates (SC-fCSs) and sea cucumber fucans (SC-Fucs) from crude polysaccharides extracted from sea cucumbers by anion-exchange chromatography. (a) Pearsonothuria graeffei, (b) Holothuria vagabunda, (c) Stichopus tremulus, and (d) Isostichopus badionotus.

    Table 1 Molecular weight (MW) and the molar ratio of monosaccharide SC-Fuc

    3.2 Chemical Composition

    Three monosaccharides, glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), and fucose constituted the polysaccharide fraction I (Fig.1). The fraction I was then assigned to be chondroitin sulfate, as GlcA and GalNAc were in an approximately 1:1 ratio, consistent with the polysaccharide backbone structure, -4GlcAβ1-3GalNAcβ1-. On the contrary, only one monosaccharide, fucose, was found to be the major component of polysaccharide fraction II (Fig.1). The fucose and sulfate content in SC-fCSs obtained from different sea cucumber species varied as well. The molecular weight of Fuc-Ib was lager than that of other three SC-Fucs and its sulfate content was the highest (Table 1), consistent with the results regarding the salinity of elution peaks.

    3.3 IR

    In the IR spectrum of SC-Fucs, characteristic signals were assigned to sulfate groups, including S=O asymmetric stretching vibration at 1261–1220 cm-1and symmetric C-O-S stretching vibration at 860–820 cm-1(Matsuhiro, 1996; Matsuhiro et al., 2012) (Fig.2). The absorption at 848 cm-1, 837 cm-1, and 820 cm-1indicated the presence of 4-O-sulfated, 2,4-O-sulfated and 2-O-sulfated Fucs, respectively. Fuc-Pg and Fuc-Hv showed strong absorption at 820 cm-1(Figs.2a, b), indicating the presence of 2-O-sulfated Fuc according to previous reports on sea weed fucoidans (Bernardi and Springer, 1962). Conversely, Fuc-St and Fuc-Ib respectively exhibited strong absorption at 837 cm-1and 848 cm-1, indicating the presence of 2,4-O-sulfated and 4-O-sulfated Fucs (Bernardi and Springer, 1962).

    Fig.2 IR spectra of fucans isolated from sea cucumbers. (A) sea cucumber Pearsonothuria graeffei fucan (FUC-Pg), (B) sea cucumber Holothuria vagabunda fucan (FUC-Hv), (C) sea cucumber Stichopus tremulus fucan (FUC-St), and (D) sea cucumber Isostichopus badionotus fucan (FUC-Ib).

    3.41H NMR

    At first,1H NMR spectrum of Fuc-Ib was obtained at room temperature (Fig.3). In the spectrum, the methyl protons of fucose (CH3) showed a clear signal around 1.2 ppm, but it was difficult to differentiate signals of anomeric protons of sulfated fucose residues between 5.1 and 5.4 ppm. Conversely, high temperature1H NMR spectrum of Fuc-Ib (60℃) provided clearly identifiable signals that were undetectable at room temperature (Fig.4d).

    Fig.3 Room temperature1H NMR spectra of sea cucumber Isostichopus badionotus fucan (FUC-Ib).

    Fig.4 High temperature1H NMR spectra of four sea cucumber fucans (SC-Fucs). (a) sea cucumber Pearsonothuria graeffei fucan (FUC-Pg), (b) sea cucumber Holothuria vagabunda fucan (FUC-Hv), (c) sea cucumber Stichopus tremulus fucan (FUC-St), and (d) sea cucumber Isostichopus badionotus fucan (FUC-Ib).

    Therefore, high temperature1H NMR spectrum (Fig.4 and Table 2) of the four SC-Fucs was acquired and used for comparing their structures. Compared to the spectrum of SC-fCS (Chen et al., 2011), the signals between 1.1 and 1.3 ppm were the methyl protons of fucose (CH3) but without the methyl protons of GalNAc (CH3CO). The results further indicated that the monosaccharide composition of SC-Fucs was only fucose. The protons signals of C-2 to C-6 were between 3.2 and 4.8 ppm. The signals between 5.1 and 5.4 ppm were anomeric protons of sulfated fucose residues (Mour?o et al., 1996; Wu et al., 2012) and apparent difference was observed in this region.

    Table 21H chemical shift of the fucose residue in the SC-Fucs

    Fuc-Pg showed major signals at 5.06 and 5.32 ppm, which were from the non-sulfated fucose and 2,4-O-disulfated fucose, respectively. These two signals were similar to those of Fuc isolated from the sea cucumber L. Grisea (Mour?o et al., 1996). Fuc-Ib exhibited signals at 5.06, 5.22, 5.25 and 5.32 ppm (Fig.4d), indicating the presence of non-sulfated, 2-O-sulfated, 2-O-sulfated, and 2,4-O-disulfated residues, respectively. However, anomeric signals of Fuc-St and Fuc-Hv were more complex and difficult to be assigned, while their anomeric protons were found to be mainly non-sulfated fucose.

    3.513C NMR

    13C NMR spectra of SC-Fucs (Fig.5) did not show any apparent difference in the sulfation patterns. However, the major signals exhibited were useful to assign the fucose backbone sequence, as these carbon signals were similar to those present in the spectrum of a standard fucose.

    In Fig.5, the signals at 16–18 ppm could be readily assigned to the methyl carbon. Differences between anomeric protons in the overlapping signal region of 60–82 ppm were slightly evident. Although the anomeric signals between 90 ppm and 100 ppm in the other three species of sea cucumbers were unclear, Fuc-Ib (Fig.5d) showed clear signals at 99.8, 98.5, 95.2 and 93.8 ppm, assigned to non-sulfated, 2-O-sulfated, 2-O-sulfated, 2,4-O-disulfated residues, respectively. Therefore,13C NMR was as efficient as1H NMR for distinguishing SC-Fucs.

    Fig.513C NMR spectra of four sea cucumber fucans (SC-Fucs). (a) sea cucumber Pearsonothuria graeffei fucan (FUC-Pg), (b) sea cucumber Holothuria vagabunda fucan (FUC-Hv), (c) sea cucumber Stichopus tremulus fucan (FUC-St), and (d) sea cucumber Isostichopus badionotus fucan (FUC-Ib).

    4 Conclusions

    Instead of conventional analysis via acid preparation that was easy to cause desulfation and may affect structure determination, high temperature1H NMR and room temperature13C NMR were used for the first time to identify the four SC-Fucs by comparing their structures, especially the substitution positions of sulfate. Fuc-Pg from the torrid zone (the tropics) mostly contained 2,4-O-disulfated and non-sulfated fucose residues; Fuc-Ib from the temperate zone mainly contained non-sulfated, 2-O-sulfated, and 2,4-O-disulfated fucose residues; Fuc-St from the frigid zone and Fuc-Hv from the torrid zone (the tropics) had mainly non-sulfated fucose residues. In comparison with room temperature1H NMR, high temperature1H NMR can better resolve the protons of SCFucs, thus is useful for identifying different species of sea cucumbers.

    Acknowledgements

    This work was supported by the Public Service Project of Zhejiang Province (2011C22026), the Special Award Funding for Postdoc in China (16000-X91009 and 316000 -X91005), the National Natural Science Foundation of China (30972282), the National Natural Science Foundation of China (31301417), and the Zhejiang Province Public Service Project (2011C11016).

    Althunibat, O. Y., Ridzwan, B. H., Taher, M., Jamaludin, M. D., Ikeda, M. A., and Zali, B. I., 2009. In vitro antioxidant and antiproliferative activities of three Malaysian sea cucumber species. European Journal of Scientific Research, 37: 376-387.

    Avilov, S., Antonov, A., Drozdova, O., Kalinin, V., Kalinovsky, A., Riguera, R., Lenis, L., and Jimenez, C., 2000. Triterpene glycosides from the far eastern sea cucumber Pentamera calcigera II: disulfated glycosides. Journal of Natural Products,63: 1349-1355.

    Bernardi, G., and Springer, G., 1962. Properties of highly purified fucan. Journal of Biological Chemistry,237: 75-80.

    Bordbar, S., Anwar, F., and Saari, N., 2011. High-value components and bioactives from sea cucumbers for functional foods: A review. Marine Drugs,9: 1761-1805, DOI: 10.3390/md9101761.

    Borsig, L., Wang, L., Cavalcante, M. C., Cardilo-Reis, L., Ferreira, P. L., Mour?o, P. A., Esko, J. D., and Pavao, M. S., 2007. Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber. Effect on tumor metastasis and neutrophil recruitment. Journal of Biological Chemistry, 282 (20): 14984-14991.

    Casu, B., Guerrini, M., Naggi, A., Torri, G., De-Ambrosi, L., Boveri, G., Gonella, S., Cedro, A., Ferro, L., and Lanzarotti, E., 1996. Characterization of sulfation patterns of beef and pig mucosal heparins by nuclear magnetic resonance spectroscopy. Arzneimittel-Forschung, 46: 472.

    Chen, S., Xue, C., Yin, L., Tang, Q., Yu, G., and Chai, W., 2011. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohydrate Polymers, 83: 688-696.

    Colliec, S., Fischer, A., Tapon-Bretaudiere, J., Boisson, C., Durand, P., and Jozefonvicz, J., 1991. Anticoagulant properties of a fucoidan fraction. Thrombosis Research, 64 (2): 143-154. Collin, P. D., 1999. Process for obtaining medically active fractions from sea cucumber. United State Patent 5,876,762, March 2.

    Fonseca, R. J., and Mour?o, P. A., 2006. Fucosylated chondroitin sulfate as a new oral antithrombotic agent. Thrombosis and haemostasis, 96: 822-829.

    Fu, X. Y., Xue, C. H., Miao, B. C., Li, Z. J., Gao, X., and Yang, W. G., 2005. Characterization of proteases from the digestive tract of sea cucumber (Stichopus japonicus): High alkaline protease activity. Aquaculture, 246 (1-4): 321-329, DOI: 10. 1016/j.aquaculture.2005.01.012.

    Guerrini, M., Beccati, D., Shriver, Z., Naggi, A., Viswanathan, K., Bisio, A., Capila, I., Lansing, J. C., Guglieri, S., Fraser, B., Al-Hakim, A., Gunay, N. S., Zhang, Z., Robinson, L., Buhse, L., Nasr, M., Woodcock, J., Langer, R., Venkataraman, G., Linhardt, R. J., Casu, B., Torri, G., and Sasisekharan, R., 2008. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nature Biotechnology, 26: 669-675, DOI: 10.1038/nbt1407.

    Hamaguchi, P., Geirsdottir, M., Vrac, A., Kristinsson, H. G., Sveinsdottir, H., Fridjonsson, O. H., and Hreggvidsson, G. O., 2010. In vitro antioxidant and antihypertensive properties of Icelandic sea cucumber (Cucumaria frondosa). Presented at IFT 10 Annual Meeting & Food Expo, Chicago, IL, USA, July 17–20, 2010; presentation no. 282-04.

    Hing, H. L., Kaswandi, M. A., Azraul-Mumt azah, R., Hamidah, S. A., Sahalan, A. Z., Normalawati, S., Samsudin, M. W., and Ridzwan, B. H., 2007. Effect of methanol extracts from sea cucumbers Holothuria edulis and Stichopus chloronotus on Candida albicans. Microscopy and Microanalysis, 13: 270-271, DOI: http://dx.doi.org/10.1017/S1431927607071553.

    Kitagawa, I., Kobayashi, M., and Kyogoku, Y., 1982. Marine natural products IX structural elucidation of triterpenoidal oligoglycosides from the bahamean sea cucumber Actinopyga agassizi Selenka. Chemical and Pharmaceutical Bulletin, 30: 2045-2050.

    Matsuhiro, B., 1996. Vibrational spectroscopy of seaweed galactans. Hydrobiologia, 326/327: 481-489.

    Matsuhiro, B., Osorio-Román, I. O., and Torres, R., 2012. Vibrational spectroscopy characterization and anticoagulant activity of a sulfated polysaccharide from sea cucumber Athyonidium chilensis. Carbohydrate Polymers, 88: 959-965.

    Matsuno, T., and Tsushima, M., 1995. Comparative biochemical studies of carotenoids in sea cucumbers. Comparative Biochemistry and Physiology–PartB: Biochemistry and Molecular Biology, 111: 597-605, DOI: 10.1016/0305-0491(95)00028-7.

    Mour?o, P. A., Pereira, M. S., Pavao, M. S., Mulloy, B., Tollefsen, D. M., Mowinckel, M. C., and Abildgaard, U., 1996. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. Journal of Biological Chemistry, 271: 23973-23984.

    Ohira, S., and Toda, K., 2006. Ion chromatographic measurement of sulfide, methanethiolate, sulfite and sulfate in aqueous and air samples. Journal of Chromatography A, 1121: 280-284.

    Pacheco, R. G., Vicente, C. P., Zancan, P., and Mour?o, P. A., 2000. Different antithrombotic mechanisms among glycosaminoglycans revealed with a new fucosylated chondroitin sulfate from an echinoderm. Blood Coagul Fibrinolysi, 11: 563-573.

    Roginsky, A., Singh, B., Ding, X. Z., Collin, P., Woodward, C., Talamonti, M. S., Bell, R. H., and Adrian, T. E., 2004. Frondanol(R)-A5p from the sea cucumber Cucumaria frondosa induces cell cycle arrest and apoptosis in pancreatic cancer cells. Pancreas, 29: 335.

    San Miguel-Ruiz, J. E., and García-Arrarás, J. E., 2007. Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima. BMC Developmental Biology, 7: 1-19, DOI: 10.1186/1471-213X-7-115.

    Strydom, D., 1994. Chromatographic separation of 1-phenyl-3-methyl-5-pyrazolone-derivatized neutral, acidic and basic aldoses. Journal of Chromatography A, 678: 17-23, DOI: 10. 1016/0021-9673(94)87069-1.

    Tapon-Bretaudiere, J., Chabut, D., Zierer, M., Matou, S., Helley, D., Bros, A., Mour?o, P. A., and Fischer, A. M., 2002. A fucosylated chondroitin sulfate from echinoderm modulates in vitro fibroblast growth factor 2-dependent angiogenesis. Molecular Cancer Research, 1: 96-102.

    Tian, F., Zhang, X., Tong, Y., Yi, Y., Zhang, S., Li, L., Sun, P., Lin, L., and Ding, J., 2005. PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biology and Therapy, 4: 874-882.

    Tong, Y., Zhang, X., Tian, F., Yi, Y., Xu, Q., Li, L., Tong, L., Lin, L., and Ding, J., 2005. Philinopside A, a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. International Journal of Cancer, 114: 843-853.

    Trotter, J. A., Lyons-Levy, G., Thurmond, F. A., and Koob, T. J., 1995. Covalent composition of collagen fibrils from the dermis of the sea cucumber, Cucumaria frondosa, a tissue with mutable mechanical properties. Comparative Biochemistry and Physiology–Part A: Physiology, 112: 463-478, DOI: 10.1016/0300-9629(95)02015-2.

    Vieira, R., and Mour?o, P., 1988. Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. Journal of Biological Chemistry, 263: 18176-18183.

    Wen, J., Hu, C., and Fan, S., 2010. Chemical composition and nutritional quality of sea cucumbers. Journal of the Science of Food and Agriculture, 90: 2469-2474, DOI: 10.1002/jsfa. 4108.

    Wu, M., Huang, R., Wen, D., Gao, N., He, J., Li, Z., and Zhao, J., 2012. Structure and effect of sulfated Fuc on anticoagulant activity of the fucosylated chondroitin sulfate from sea cucumber Thelenata ananas. Carbohydrate Polymers, 87: 862-868.

    (Edited by Qiu Yantao)

    (Received March 3, 2013; revised April 18, 2013; accepted April 24, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-571-88982151

    E-mail: chenshiguo210@163.com

    亚洲最大成人手机在线| 男插女下体视频免费在线播放| 亚洲欧美日韩高清专用| 久久久久精品国产欧美久久久| 国产精品99久久久久久久久| 婷婷精品国产亚洲av在线| 五月玫瑰六月丁香| 精品一区二区三区视频在线| 又黄又爽又刺激的免费视频.| 少妇高潮的动态图| 欧美日韩综合久久久久久| 久久精品人妻少妇| 久久婷婷人人爽人人干人人爱| 亚洲内射少妇av| 午夜亚洲福利在线播放| 精品人妻熟女av久视频| 日本撒尿小便嘘嘘汇集6| 亚洲在线自拍视频| 尾随美女入室| 国产熟女欧美一区二区| 午夜福利18| avwww免费| 亚洲av免费在线观看| av在线天堂中文字幕| 久久久久国内视频| 夜夜爽天天搞| 嫩草影院精品99| 亚洲五月天丁香| 国产麻豆成人av免费视频| 久久草成人影院| 精品久久久久久久久久久久久| 中文字幕久久专区| 欧美人与善性xxx| 夜夜看夜夜爽夜夜摸| 婷婷精品国产亚洲av在线| 久久婷婷人人爽人人干人人爱| 波多野结衣高清作品| 男女之事视频高清在线观看| 一本一本综合久久| 女的被弄到高潮叫床怎么办| 国产探花在线观看一区二区| 真实男女啪啪啪动态图| 欧美三级亚洲精品| 天堂动漫精品| 老司机影院成人| 亚洲av成人精品一区久久| 91在线观看av| 日韩欧美 国产精品| 草草在线视频免费看| 亚洲av美国av| 好男人在线观看高清免费视频| 欧美一级a爱片免费观看看| 欧美最新免费一区二区三区| 99久久精品热视频| 18禁在线无遮挡免费观看视频 | 热99在线观看视频| 最近手机中文字幕大全| 日日摸夜夜添夜夜添小说| 成人毛片a级毛片在线播放| 国产黄a三级三级三级人| 麻豆成人午夜福利视频| 亚洲三级黄色毛片| 日本黄色视频三级网站网址| 变态另类丝袜制服| 97超级碰碰碰精品色视频在线观看| 亚洲成av人片在线播放无| 99国产极品粉嫩在线观看| 露出奶头的视频| 三级毛片av免费| 日韩在线高清观看一区二区三区| 久久国产乱子免费精品| 日韩欧美精品免费久久| 亚洲国产精品国产精品| 精品熟女少妇av免费看| 国产成年人精品一区二区| 在现免费观看毛片| 国产av麻豆久久久久久久| 在线观看av片永久免费下载| 综合色丁香网| 日本三级黄在线观看| av天堂中文字幕网| 有码 亚洲区| 亚洲人与动物交配视频| 国产成人freesex在线 | 国产av麻豆久久久久久久| 大型黄色视频在线免费观看| 两个人视频免费观看高清| 国产日本99.免费观看| 精品久久久久久久久久久久久| 亚洲av电影不卡..在线观看| 女的被弄到高潮叫床怎么办| 级片在线观看| 欧美日韩国产亚洲二区| 身体一侧抽搐| 久久精品国产自在天天线| a级毛片免费高清观看在线播放| 亚洲aⅴ乱码一区二区在线播放| 国产美女午夜福利| 久久久久精品国产欧美久久久| 久久久久免费精品人妻一区二区| 亚洲电影在线观看av| 亚洲成人中文字幕在线播放| 99在线人妻在线中文字幕| 欧美xxxx黑人xx丫x性爽| 夜夜夜夜夜久久久久| 国产精品99久久久久久久久| av免费在线看不卡| 美女 人体艺术 gogo| 欧美日韩国产亚洲二区| 九九久久精品国产亚洲av麻豆| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久免费视频| 亚洲av中文av极速乱| 免费观看人在逋| 女的被弄到高潮叫床怎么办| 三级男女做爰猛烈吃奶摸视频| 97超视频在线观看视频| 免费在线观看成人毛片| 国产探花极品一区二区| 久久这里只有精品中国| 亚洲人与动物交配视频| 伊人久久精品亚洲午夜| 国产私拍福利视频在线观看| 国产日本99.免费观看| 日本熟妇午夜| 蜜臀久久99精品久久宅男| 国产亚洲精品久久久久久毛片| 亚洲av美国av| 午夜爱爱视频在线播放| 成人高潮视频无遮挡免费网站| 亚洲自拍偷在线| 亚洲欧美日韩卡通动漫| 午夜精品一区二区三区免费看| 免费在线观看影片大全网站| а√天堂www在线а√下载| 亚洲久久久久久中文字幕| 亚洲经典国产精华液单| 免费在线观看影片大全网站| 亚洲丝袜综合中文字幕| 国产免费男女视频| 99视频精品全部免费 在线| 深夜a级毛片| 亚洲最大成人av| 久久久国产成人免费| 国产久久久一区二区三区| 尾随美女入室| 久久精品人妻少妇| 哪里可以看免费的av片| 久久久久国内视频| 国产v大片淫在线免费观看| 免费av观看视频| 22中文网久久字幕| 免费高清视频大片| 男人和女人高潮做爰伦理| 国产精品永久免费网站| 日本熟妇午夜| 久久人人精品亚洲av| 国产精品一及| av在线播放精品| 18禁裸乳无遮挡免费网站照片| 国产亚洲欧美98| 国产伦精品一区二区三区四那| 国产亚洲精品久久久久久毛片| 精品一区二区免费观看| 亚洲国产精品成人综合色| 亚洲欧美精品综合久久99| 免费观看精品视频网站| av卡一久久| 欧美另类亚洲清纯唯美| 欧美极品一区二区三区四区| 国产毛片a区久久久久| 久久精品国产自在天天线| 国产成人a∨麻豆精品| 日本撒尿小便嘘嘘汇集6| 成人永久免费在线观看视频| 少妇人妻一区二区三区视频| 日韩成人av中文字幕在线观看 | 一个人看视频在线观看www免费| 寂寞人妻少妇视频99o| 亚洲自偷自拍三级| 国产成人影院久久av| 久久精品国产鲁丝片午夜精品| 搞女人的毛片| 嫩草影视91久久| 日韩av不卡免费在线播放| 久久久久久久午夜电影| 狂野欧美白嫩少妇大欣赏| 真人做人爱边吃奶动态| 日韩一本色道免费dvd| 99九九线精品视频在线观看视频| 亚洲成a人片在线一区二区| 特级一级黄色大片| 欧美日韩精品成人综合77777| 在线观看美女被高潮喷水网站| 99热这里只有是精品在线观看| 久久久欧美国产精品| 欧美+亚洲+日韩+国产| 亚洲久久久久久中文字幕| 国内精品一区二区在线观看| 成人三级黄色视频| 国产精品日韩av在线免费观看| 亚洲va在线va天堂va国产| 亚洲国产精品国产精品| 免费av不卡在线播放| 久久久久久久久大av| 亚洲va在线va天堂va国产| 久久久久久久亚洲中文字幕| 亚洲成人av在线免费| 菩萨蛮人人尽说江南好唐韦庄 | 最近的中文字幕免费完整| 真人做人爱边吃奶动态| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 别揉我奶头~嗯~啊~动态视频| 大又大粗又爽又黄少妇毛片口| 身体一侧抽搐| 少妇的逼好多水| 精品欧美国产一区二区三| 黄色欧美视频在线观看| 亚洲一区二区三区色噜噜| 99在线人妻在线中文字幕| 国产淫片久久久久久久久| 久久精品国产清高在天天线| 成人漫画全彩无遮挡| 1024手机看黄色片| 亚洲在线观看片| 国产爱豆传媒在线观看| 亚洲精品粉嫩美女一区| 久久久久国内视频| 精品99又大又爽又粗少妇毛片| 亚洲色图av天堂| 2021天堂中文幕一二区在线观| 18禁在线播放成人免费| 国产v大片淫在线免费观看| 婷婷亚洲欧美| 亚洲综合色惰| 久久久久九九精品影院| 成人美女网站在线观看视频| 身体一侧抽搐| 久久精品综合一区二区三区| 午夜激情欧美在线| 内射极品少妇av片p| 精华霜和精华液先用哪个| 性插视频无遮挡在线免费观看| 老师上课跳d突然被开到最大视频| 国产极品精品免费视频能看的| 九色成人免费人妻av| 桃色一区二区三区在线观看| 黄色日韩在线| 国产蜜桃级精品一区二区三区| 日本欧美国产在线视频| 国产高清三级在线| 18+在线观看网站| 久久久久久久久中文| 永久网站在线| 国产黄a三级三级三级人| 国产人妻一区二区三区在| 99热精品在线国产| 久久久午夜欧美精品| 国产精品女同一区二区软件| 亚洲精品456在线播放app| 黄色一级大片看看| 日韩精品有码人妻一区| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 国产爱豆传媒在线观看| 久久久精品欧美日韩精品| 欧美丝袜亚洲另类| 亚洲最大成人中文| 久久久久久伊人网av| 一本一本综合久久| 91狼人影院| 国产精品福利在线免费观看| 国产国拍精品亚洲av在线观看| 欧美xxxx性猛交bbbb| 97超碰精品成人国产| 99久久久亚洲精品蜜臀av| www.色视频.com| 亚洲精品久久国产高清桃花| 国产色爽女视频免费观看| 国产高潮美女av| a级毛片a级免费在线| 极品教师在线视频| 全区人妻精品视频| 久久久久久国产a免费观看| 亚洲一区高清亚洲精品| 大香蕉久久网| 天堂动漫精品| 日本撒尿小便嘘嘘汇集6| 成人高潮视频无遮挡免费网站| 日日撸夜夜添| 国产真实乱freesex| 熟妇人妻久久中文字幕3abv| 国产精品,欧美在线| 午夜激情福利司机影院| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久精品电影| 99久国产av精品国产电影| 联通29元200g的流量卡| 国产av在哪里看| 毛片一级片免费看久久久久| 亚洲在线观看片| av中文乱码字幕在线| 少妇猛男粗大的猛烈进出视频 | 夜夜爽天天搞| 大又大粗又爽又黄少妇毛片口| 日本五十路高清| 嫩草影院新地址| 国产综合懂色| 最好的美女福利视频网| 一级毛片我不卡| 啦啦啦观看免费观看视频高清| 免费看a级黄色片| 中国美女看黄片| 大又大粗又爽又黄少妇毛片口| 精品一区二区三区人妻视频| 久久久精品欧美日韩精品| 99热这里只有精品一区| 人妻夜夜爽99麻豆av| 久久精品综合一区二区三区| 亚洲精品456在线播放app| 插逼视频在线观看| 色哟哟·www| 国产精品久久久久久久久免| 亚洲国产高清在线一区二区三| 成人特级av手机在线观看| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 美女xxoo啪啪120秒动态图| 一本精品99久久精品77| 久久欧美精品欧美久久欧美| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 一区福利在线观看| 最近的中文字幕免费完整| 国产白丝娇喘喷水9色精品| 亚洲精品色激情综合| 干丝袜人妻中文字幕| 中文亚洲av片在线观看爽| 国产精品三级大全| 成人性生交大片免费视频hd| 国产精品不卡视频一区二区| 久久亚洲精品不卡| 国产精品一区www在线观看| 黄色一级大片看看| 色哟哟·www| 别揉我奶头 嗯啊视频| 国产一级毛片七仙女欲春2| 亚洲精品一卡2卡三卡4卡5卡| av.在线天堂| 国产精品三级大全| 人妻久久中文字幕网| 亚洲中文字幕一区二区三区有码在线看| 嫩草影院精品99| 国产大屁股一区二区在线视频| 99国产极品粉嫩在线观看| 亚洲va在线va天堂va国产| 欧美激情国产日韩精品一区| 日韩成人av中文字幕在线观看 | a级毛片免费高清观看在线播放| 可以在线观看毛片的网站| 免费高清视频大片| 国产在线男女| 久久久精品欧美日韩精品| 18+在线观看网站| 舔av片在线| 亚洲无线观看免费| av在线播放精品| 亚洲国产精品合色在线| 亚洲精品影视一区二区三区av| 免费无遮挡裸体视频| 99久久无色码亚洲精品果冻| 日本成人三级电影网站| 给我免费播放毛片高清在线观看| 熟女电影av网| 亚洲av第一区精品v没综合| 亚洲精品国产av成人精品 | 国产伦一二天堂av在线观看| 精品久久久久久久久亚洲| 亚洲欧美中文字幕日韩二区| 黄色配什么色好看| 麻豆国产97在线/欧美| 精品99又大又爽又粗少妇毛片| 男女啪啪激烈高潮av片| 春色校园在线视频观看| 99久久九九国产精品国产免费| 亚洲欧美日韩卡通动漫| 日本成人三级电影网站| 在现免费观看毛片| 欧美+亚洲+日韩+国产| 99热6这里只有精品| 最好的美女福利视频网| 成熟少妇高潮喷水视频| 精品国产三级普通话版| 久久久a久久爽久久v久久| 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 成人特级av手机在线观看| 97超碰精品成人国产| 我要搜黄色片| 三级经典国产精品| 国内精品宾馆在线| 日韩精品青青久久久久久| 亚洲成a人片在线一区二区| 久久欧美精品欧美久久欧美| 男插女下体视频免费在线播放| 看免费成人av毛片| 我要看日韩黄色一级片| 国产欧美日韩精品一区二区| 亚洲av.av天堂| 桃色一区二区三区在线观看| 我的老师免费观看完整版| 亚洲精品影视一区二区三区av| 色5月婷婷丁香| 国产黄a三级三级三级人| 日韩欧美国产在线观看| 3wmmmm亚洲av在线观看| 97超级碰碰碰精品色视频在线观看| 神马国产精品三级电影在线观看| 中出人妻视频一区二区| 一进一出好大好爽视频| 啦啦啦观看免费观看视频高清| 97在线视频观看| 精品乱码久久久久久99久播| a级一级毛片免费在线观看| 我要看日韩黄色一级片| 99久久九九国产精品国产免费| 在线观看午夜福利视频| av在线蜜桃| 国产麻豆成人av免费视频| 自拍偷自拍亚洲精品老妇| 精品午夜福利视频在线观看一区| 99久久中文字幕三级久久日本| 成人综合一区亚洲| 俄罗斯特黄特色一大片| 伦理电影大哥的女人| 一级毛片我不卡| 亚洲成人久久性| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 真实男女啪啪啪动态图| 91久久精品国产一区二区三区| 国产精品99久久久久久久久| 国语自产精品视频在线第100页| 欧美zozozo另类| 久久久久国产网址| 免费大片18禁| 少妇的逼水好多| 有码 亚洲区| 99精品在免费线老司机午夜| 97超视频在线观看视频| 内地一区二区视频在线| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 欧美日韩综合久久久久久| 夜夜爽天天搞| 黄色配什么色好看| 一级毛片久久久久久久久女| 免费一级毛片在线播放高清视频| 精品午夜福利在线看| 国产综合懂色| 国产欧美日韩精品亚洲av| 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 人妻久久中文字幕网| 亚洲精品一区av在线观看| 人妻少妇偷人精品九色| 亚洲一区二区三区色噜噜| 午夜老司机福利剧场| 久久久久国产网址| 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 深夜精品福利| 日日摸夜夜添夜夜添小说| 免费观看人在逋| 亚洲成人av在线免费| 99riav亚洲国产免费| 黄色日韩在线| 日日干狠狠操夜夜爽| 日韩成人伦理影院| 有码 亚洲区| 亚洲在线观看片| 五月玫瑰六月丁香| 国产在线精品亚洲第一网站| 久久久久久久久大av| 精品久久久久久久久久久久久| 婷婷六月久久综合丁香| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区视频9| 国产色婷婷99| 校园人妻丝袜中文字幕| 精品熟女少妇av免费看| 国产69精品久久久久777片| www.色视频.com| 亚洲av中文字字幕乱码综合| 色播亚洲综合网| 色哟哟哟哟哟哟| 欧美丝袜亚洲另类| 日韩欧美一区二区三区在线观看| 麻豆一二三区av精品| 欧美zozozo另类| 亚洲一区二区三区色噜噜| 麻豆av噜噜一区二区三区| 99热网站在线观看| 国产亚洲精品综合一区在线观看| 一个人观看的视频www高清免费观看| 国产午夜福利久久久久久| 国产亚洲欧美98| 久久精品国产清高在天天线| 国产精品不卡视频一区二区| 久久久久国内视频| 日本五十路高清| 尤物成人国产欧美一区二区三区| 九九热线精品视视频播放| 日韩精品中文字幕看吧| 亚洲欧美日韩高清专用| 婷婷色综合大香蕉| 亚洲美女搞黄在线观看 | 国产v大片淫在线免费观看| av国产免费在线观看| a级毛色黄片| 国产真实伦视频高清在线观看| 久久久国产成人精品二区| 欧美+亚洲+日韩+国产| 亚洲欧美日韩高清专用| 人妻夜夜爽99麻豆av| 能在线免费观看的黄片| 国产高潮美女av| 国产黄色视频一区二区在线观看 | 日本一本二区三区精品| 深爱激情五月婷婷| 日本-黄色视频高清免费观看| 啦啦啦啦在线视频资源| 国产一区亚洲一区在线观看| 伊人久久精品亚洲午夜| 在线免费十八禁| 日韩中字成人| 日韩一区二区视频免费看| av视频在线观看入口| 国产高潮美女av| 欧美丝袜亚洲另类| av国产免费在线观看| 内地一区二区视频在线| 美女黄网站色视频| 国产精品电影一区二区三区| 噜噜噜噜噜久久久久久91| 欧美日韩国产亚洲二区| 99九九线精品视频在线观看视频| 亚洲国产日韩欧美精品在线观看| 日韩欧美免费精品| 少妇熟女aⅴ在线视频| 天天躁日日操中文字幕| 九九在线视频观看精品| 一本一本综合久久| 亚洲精品亚洲一区二区| 久久久久精品国产欧美久久久| 中国国产av一级| 日本黄色视频三级网站网址| 老司机午夜福利在线观看视频| 长腿黑丝高跟| 看十八女毛片水多多多| 99热全是精品| 国产私拍福利视频在线观看| 熟妇人妻久久中文字幕3abv| 麻豆国产av国片精品| 午夜a级毛片| 午夜免费男女啪啪视频观看 | 久久精品人妻少妇| 级片在线观看| 天美传媒精品一区二区| 国产高清视频在线播放一区| 欧洲精品卡2卡3卡4卡5卡区| 我要看日韩黄色一级片| 亚洲中文字幕一区二区三区有码在线看| 极品教师在线视频| 久久精品综合一区二区三区| 亚洲人成网站在线播放欧美日韩| 成人二区视频| 国产一区二区激情短视频| 欧美最新免费一区二区三区| 色视频www国产| 五月玫瑰六月丁香| 亚洲av五月六月丁香网| 麻豆乱淫一区二区| 天堂动漫精品| 亚洲色图av天堂| 国产黄色视频一区二区在线观看 | 日韩大尺度精品在线看网址| 久久久久久久午夜电影| 久久精品国产亚洲av涩爱 | 国模一区二区三区四区视频| 你懂的网址亚洲精品在线观看 | 日产精品乱码卡一卡2卡三| 女人被狂操c到高潮| 亚洲欧美成人综合另类久久久 | 一个人观看的视频www高清免费观看| 国产熟女欧美一区二区| 可以在线观看的亚洲视频| 亚洲自拍偷在线| 天堂影院成人在线观看| 精品久久久久久久久av| 波野结衣二区三区在线| 女人被狂操c到高潮| 男女边吃奶边做爰视频| 夜夜看夜夜爽夜夜摸| 午夜精品国产一区二区电影 | 久久欧美精品欧美久久欧美| 免费看av在线观看网站| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久免费视频| 综合色av麻豆| 亚洲色图av天堂| 麻豆成人午夜福利视频| 日韩欧美精品v在线| 精品人妻一区二区三区麻豆 |