• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Five Sea Cucumber Species Through PCR-RFLP Analysis

    2014-04-20 09:24:16LVYingchunZHENGRongZUOTaoWANGYumingLIZhaojieXUEYongXUEChanghuandTANGQingjuan
    Journal of Ocean University of China 2014年5期

    LV Yingchun, ZHENG Rong, ZUO Tao, WANG Yuming, LI Zhaojie, XUE Yong, XUE Changhu, and TANG Qingjuan

    College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China

    Identification of Five Sea Cucumber Species Through PCR-RFLP Analysis

    LV Yingchun#, ZHENG Rong#, ZUO Tao, WANG Yuming, LI Zhaojie, XUE Yong, XUE Changhu, and TANG Qingjuan*

    College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China

    Sea cucumbers are traditional marine food and Chinese medicine in Asia. The rapid expansion of sea cucumber market has resulted in various problems, such as commercial fraud and mislabeling. Conventionally, sea cucumber species could be distinguished by their morphological and anatomical characteristics; however, their identification becomes difficult when they are processed. The aim of this study was to develop a new convenient method of identifying and distinguishing sea cucumber species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial cytochrome oxidase I gene (COI) was used to identifing five sea cucumber species (Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora). A 692 bp fragment of COI was searched for BamHI, KpnI, PstI, XbaI and Eco31I restriction sites with DNAMAN 6.0, which were then used to PCR-RFLP analysis. These five sea cucumber species can be discriminated from mixed sea cucumbers. The developed PCR-RFLP assay will facilitate the identification of sea cucumbers, making their source tracing and quality controlling feasible.

    sea cucumber; mtDNA; COI gene; species identification; PCR-RFLP

    1 Introduction

    Sea cucumber (Echinodermata: Holothuroidea), a traditional seafood in Asia, has recently become an expensive tonic food. Because of its various biological activities including anti-tumor, immunoregulatory, anti-atherosclerotic and anti-aging property, sea cucumber are believed to have high nutritional and medicinal value (Hirata et al., 2005). In the past two decades, sea cucumber have become one of the most valuable seafoods in Asian countries (FAO, 2008). Currently, there are several deepprocessing products, such as dried and canned sea cucumber and sea cucumber capsules. With the rapid expansion and intensification of sea cucumber market, a series of commercial frauds appeared, which included mislabeling and substitution of high-value species with low-value ones. The rapid identification of sea cucumber species is important for maintaining sea cucumber quality and protecting the right of the consumers.

    About 1400 species of sea cucumber around the world belong to 25 families, 6 orders (Smiley, 1994). More than 140 species of sea cucumber have been described in China Sea, of them approximately 20 are believed to have high commercial value as food (Chen, 2003). The traditional methods of identifying sea cucumber to family or order generally based on their morphological characteristics, such as tentacles, tentacular retractor muscles, internal respiratory trees, trunk podia, tube feet, esophageal calcareous rings and dermal ossicles. However, to species, the difference in morphological characteristics is usually too subtle to be used (Arndt et al., 1996). As the ossicles of body walls, the main characteristics of a species, are highly variable, and the composition of body wall spicules are not applicable to the identification of sea cucumber species (Levin and Gudimova, 1997; Gudimova, 1991; Toral-Granda, 2005). In addition, visual authentication of sea cucumbers is often difficult as most of morphological characteristics will disappear during processing, particularly when sea cucumber are pulverized or cut into pieces. An alternative of sea cucumber identification is species-specific chemical constitution. Kalinin et al. (1994) have successfully applied the distribution of different triterpene glycosides to the taxonomy of sea cucumber in order Aspidochirotida. With glycoside distribution and morphological characteristics, Levin et al. (1985, 1986) described the taxonomic relationship between the North Pacific representatives of family Stichopodidae and order Aspidochirotida. However, this chemical approach is not effective for deeply processed sea cucumber, because it requires the purification of species-specificchemical components, which is complicate and difficult when sea cucumber is processed.

    In order to avoid the difficulty of species identification on morphological characteristics and species-specific chemical constitution, diverse methods of identifying marine species through DNA analysis have been reported. These methods included PCR and sequencing, forensically informative nucleotide sequencing (FINS), rapid analysis of polymorphic DNA (RAPD), single-stranded conformation polymorphism and restriction fragment length polymorphism (RFLP) (Lockley and Bardsley, 2000; Comi et al., 2005; Gil, 2007; Aranceta et al., 2011; Espi?eira et al., 2009; Botti and Giuffra, 2010). Of these methods, direct sequencing of PCR products and FINs require expensive equipments and agents. RAPD is complex in bands profile and poor in reproducibility (Mochizuki et al., 1997; Kac, 2000). RFLP is rapid and simple, which has been extensively used to identifying diverse fish species (Di Finizio et al., 2007; Hsieh et al., 2007; Rea et al., 2009; Chuang et al., 2012). The sequence divergence of mitochondrial cytochrome oxidase I gene (COI) can be used to identifing closely related species of most animals (Hebert et al., 2003). Actualy, it has been used to identifying sea cucumber species (Arndt et al., 1996; Zuo et al., 2012). Therefore, the aim of this study was to identify and distinguish sea cucumber species through PCR-RFLP analysis of COI.

    2 Materials and Methods

    2.1 Materials

    Fresh sea cucumber individuals of Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora were purchased from a retail market in Qingdao, China. Species identification was initially performed according to their taxonomic characteristics of dermal ossicles (Liao, 1997; Massin, 1999), and subsequently confirmed by DNA sequence analysis of COI by referring to the deposited in GenBank. After identification, the muscle tissue of these sea cucumber species each was sampled and preserved in ethanol. These sea cucumber species are commonly consumed and easily available in market. Dried and frozen sea cucumber samples were collected from local supermarket and retail market located in the same area, and treated as were done for the fresh sea cucumber individuals.

    2.2 DNA Isolation

    The genomic DNA was isolated from 100 mg of muscle with modified CTAB method (Grewe et al., 1993). The DNA concentration was measured on a UV-2550 spectrophotometer (Shimadzu, Japan). DNA was stored at -20℃.

    2.3 COI Gene Amplification

    To amplify the 692 bp fragment of COI, a pair of primers, COIef, 5’-ATA ATG ATA GGA GGR TTT GG-3’ and COIer, 5’-GCT CGT GTR TCT ACR TCC AT-3’ (Arndt et al., 1996) was used. On a MJ Mini Personal Thermal Cycler (BIO-RAD, USA), PCR was performed in a volume of 50 μL containing 100 ng DNA, 5 μL of 10× PCR buffer, 1 μL of dNTP (10 mmol L-1), 3 μL of MgCl2(25 mmol L-1), 1 μL of each primer (10 μmol L-1), and 1 μL of 5 U μL-1of Taq DNA polymerase (TaKaRa, Japan). The reaction was thermocycled by denaturing at 94℃ 5 min, followed by 30 cycles at denaturing at 94℃ for 50 s, annealing at 46℃ for 1 min, and extending at 72℃ for 1 min, and a extra extension at 72℃ for 10 min. The PCR product was analyzed through electrophoresis in 1% agarose gel, and purified with an AxyGenTMDNA gel extraction kit (Beijing, China). The purified DNA was cloned into a pUCm-T vector (BBI, Sangon, China) following manufacturer’s procedure, and sequenced by Sangon Biotech Co., Ltd. (Shanghai, China).

    2.4 RFLP Analysis

    The 692 bp fragment of five sea cucumbers was analyzed using DNAStar (version 6.1; DNASTAR Inc., Madison, WI) and DNAMAN (version 6.0; Lynnon Biosoft, Quebec, Canada) software to detect the restriction sites suitable for the characterization of these species.

    Five restriction endonucleases, BamHI, KpnI, PstI, XbaI and Eco31I (Fermentas, MBI, USA), were chosen for RFLP analysis. A 30 μL reaction mixture containing 10 μL of PCR product, 1 FDU of each enzyme and 2 μL of 10× Fast Digest Universal Buffer (Fermentas, MBI, USA) was incubated at 37℃ for 15 min. The restriction fragments were separated in 10% native-polyacrylamide gel electrophoresis (PAGE) at 100 V for 2 h with BIO-RAD PowerPac Universal (USA). The length of fragments was determined by referring to a DL2000 marker (TaKaRa, Japan). The gel was visualized under UV light and photographed using Tanon GIS-2008 (Shanghai, China). The analysis was performed at least 3 times for each species.

    To validate species-specific PCR-RFLP assay, two species were discretionarily chosen from the five reference sea cucumber species to prepare ten mixtures of the same amount of DNA. Then, PCR-RFLP was analyzed in order to distinguish each of them.

    3 Results and Discussion

    The mitochondrial DNA (mtDNA) inherits maternally, which acts independently of nuclear DNA (nDNA) (Taanman, 1999). Compared with nDNA, mtDNA is devoid of introns, pseudogenes, repetitive sequences, and recombination sites that are generally associated with sexual processes (Avise et al., 1987; Linacre and Tobe, 2011). The sequence of mtDNA is more conservative than that of nDNA (Rokas et al., 2003). The base substitution rate in mtDNA is higher than that in nDNA; thus, mutations can arise in a population more rapidly (Brown et al., 1979; Cawthorn et al., 2012). Accordingly, several mtDNA genes have been commonly used as genetic markers for species identification, which included COI,16S rRNA, 18S rRNA, and Cytb (Joshi et al., 2004; Chen et al., 2005; Naderi et al., 2007). With BamHI, KpnI, PstI, XbaI and Eco31I, the 692 bp fragment of mitochondrial COI was digested, yielding RFLP among sea cucumber species. Five sea cucumber species, A. japonicus, C. frondosa, T. ananas, P. californicus, and A. lecanora, were easily identifiable with the RFLP yielded.

    3.1 Use of Mitochondrial COI for Species Identification of Sea Cucumbers

    In this study, COI of five sea cucumber species was amplified, yielding a 690 bp fragment as expected (Fig.1). The 690 bp COI from five sea cucumber species fully matched that deposited in GenBank with high similarities ranging from 98% to 100%.

    Fig.1 PCR product of COI of five sea cucumber species. 1% agarose gel; M, DL2000 Marker (Takala); N, negative control; 1, Apostichopus japonicas; 2, Cucumaria frondosa; 3, Thelenota ananas; 4, Parastichopus californicus; 5, Actinopyga lecanora.

    3.2 Species Identification by PCR-RFLP of COI

    PCR-RFLP analysis is a well-established technique for rapid identification of species in food science (Lin and Hwang, 2007). After amplification and sequencing, the sequences were analyzed using DNAMAN 6.0 software. According to the restriction map of the sequences, BamHI, KpnI, PstI, XbaI and Eco31I were selected to differentiate each sea cucumber species. The restriction sites and the sizes of the fragments cleaved by each restriction enzyme were listed in Table 1.

    Table 1 Positions of digestion sites of selected endonucleases on the amplified 692 bp fragment of cytochrome oxidase subunit I gene and restriction fragment length in tested sea cucumbers

    The length of these restriction fragments was different from each other and the minimum length difference between them was more than 30 bp which can be easily resolved in PAGE. However, DNA fragments less than 50 bp were not applicable to the identification because these short fragments might be primer dimmers and is difficult to visualize. Thus, to avoid the generation of ambiguous fragments, an endonuclease was selected if its restriction fragments were all more than 100 bp in length.

    RFLP analysis revealed that five sea cucumber species examined in this study could be distinguished using the restriction enzymes selected (Fig.2). Digesting with BamHI generated two specific restriction fragments for P. californicus (205 and 487 bp). Digesting with KpnI generated two specific fragments for C. frondosa (98 and 594 bp). Digesting with PstI and Eco31I generated three specific fragments for A. japonicus (132, 236, and 324 bp). Digesting with Eco31I generated two specific fragments for T. ananas (236 and 456 bp). A common restriction pattern (184, 236, and 272 bp) was observed in A. lecanora when its DNA was digested with XbaI and Eco31I.

    Fig.2 Restriction fragments generated through BamHI, KpnI, PstI, XbaI and Eco31I digestion and 10% native-PAGE. M, DL2000 Marker (Takala); 1, Parastichopus californicus; 2, Cucumaria frondosa; 3, Apostichopus japonicas; 4, Thelenota ananas; 5, Actinopyga lecanora.

    Table 2 Species identification of the artificial mixtures prepared with reference sea cucumbers through PCR-RFLP assay

    PCR-RFLP analysis has the advantage of clearly de-tecting and identifying the target species in mixed products. To assess the capability of the PCR-RFLP assay in simultaneously detecting various species in one sample, artificially generated mixtures containing the same amounts of COI gene from two sea cucumber species discretionarily chosen from the five reference sea cucumbers were analyzed. Our results showed that the two sea cucumber species were simultaneously detected in the ten mixtures (Fig.3 and Table 2), indicating that PCRRFLP analysis can effectively identify at least two sea cucumber species in one sample.

    Fig.3 Species identification through PCR-RFLP analysis. M, DL2000 Marker (Takala); 1, P. cali & C. fron; 2, P. cali & A. japo; 3, P. cali & T. anan; 4, C. fron & A. japo; 5, C. fron & T. anan; 6, A. japo & T. anan; 7, P. cali & A. leca; 8, C. fron & A. leca; 9, A. japo & A. leca; 10, T. anan & A. leca. P. cali, Parastichopus californicus; C. fron, Cucumaria frondosa; A. japo, Apostichopus japonicus; T. anan, Thelenota ananas; A. leca, Actinopyga lecanora.

    In conclusion, PCR-RFLP analysis developed in this study is a reliable, simple and rapid method for the unambiguous identification of sea cucumber species. With appropriate restriction enzymes, this method is applicable to identifying a wider range of sea cucumber species. It will serve as a useful tool for quality control and tracking sea cucumber products, preventing commercial fraud.

    Acknowledgements

    This research was supported by National Natural Science Foundation of China (Nos. 31101281 and 31071525) and National Marine Public Welfare Scientific Research Project of China (No. 201105029).

    Aranceta-G, F., Perez-E, R., and Cruz, P., 2011. PCR-SSCP method for genetic differentiation of canned abalone and commercial gastropods in the Mexican retail market. Food Control, 22: 1015-1020.

    Arndt, A., Marquez, C., Lambert, P., and Smith, M. J., 1996. Molecular phylogeny of eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequence. Molecular Phylogenetics and Evolution, 6 (3): 425-437.

    Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C., 1987. The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18: 489-522.

    Botti, S., and Giuffra, E., 2010. Oligonucleotide indexing of DNA barcode: Identification of tuna and other scombrid species in food products. BMC Biotechnology, 10: 60.

    Brown, M. W., Georage, M., and Wilson, A. C., 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 79: 3246-3250.

    Cawthorn, D., Steinman, H., and Witthuhn, R., 2012. Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa. Gene, 491 (1): 40-48.

    Chen, J. X., 2003. Overview of sea cucumber farming and sea ranching practices in China. Beche-de-mer Information Bulletin, 18: 18-23.

    Chen, S. Y., Su, Y. H., Wu, S. F., Sha, T., and Zhang, Y. P., 2005. Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. Molecular Phylogenetics and Evolution, 37 (3): 804-814.

    Chuang, P., Chen M., and Shiao, J., 2012. Identification of tuna species by a real-time polymerase chain reaction technique. Food Chemistry, 133: 1055-1061.

    Comi, G., Iacumin, L., Rantsiou, K., Cantoni, C., and Cocolin, L., 2005. Molecular methods for the differentiation of species used in production of codfish can detect commercial frauds. Food Control, 16 (1): 37-42.

    Di Finizio, A., Guerriero, G., Russo, G. L., and Ciarcia, G., 2007. Identification of gadoid species (Pisces, Gadidae) by sequencing and PCR-RFLP analysis of mitochondrial 12S and 16S rRNA gene fragments. European Food Research and Technology, 225: 337-344.

    Espi?eira, M., González-Lavín, N., Vieites, J. M., and Santaclara, F. J., 2009. Development of a method for the genetic identification of commercial bivalve species based on mitochondrial 18S rRNA sequences. Journal of Agricultural and Food Chemistry, 57: 495-502.

    FAO, 2008. Sea cucumbers: A global review of fisheries and trade. In: Fisheries and Aquaculture Technical Paper, 516. FAO, Rome, 317pp.

    Gil, L. A., 2007. PCR-based methods for fish and fishery products authentication. Trends in Food Science and Technology, 18 (11): 558-566.

    Grewe, P. M., Krueger, C. C., Aquadro, C. F., Bermingham, E., Kincaid, H. L., and May, B., 1993. Mitochondrial DNA variation among lake trout (Salvenilus namaycush) strains stocked into Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 50: 2397-2403.

    Gudimova, E. N., 1991. Methods of quantitative analysis of the sclerite shapes of the sea cucumbers belonging to the genus Cucumaria. Biologia Morya, 6: 80-87.

    Hebert, P. D. N., Ratnasingham, S., and deWaard, J. R., 2003. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B: Biological Sciences, 270: 96-99.

    Hirata, T., Zaima, N., Yamashita, K., Ryoko, N., Xue, C. H., and Sugawara, T., 2005. Recent advances in researches on physiologically active substances in holothurians. Journal of Ocean University of China, 4 (3): 193-197.

    Hsieh, H. S., Chai, T., and Hwang, D. F., 2007. Using the PCR-RFLP method to identify the species of different processed products of billfish meats. Food Control, 18 (4): 369-374.

    Joshi, M. B., Rout, P. K., Mandal, A. K., Tyler-Smith, C., Singh, L., and Thangaraj, K., 2004. Phylogeography and origin ofIndian domestic goats. Molecular Biology and Evolution, 21 (3): 454-462.

    Kac, G., 2000. Molecular approaches to the study of dermatophytes. Medical Mycology, 38 (5): 329-336.

    Kalinin, V. I., Levin, V. S., and Stonik, V. A., 1994. The Chemical Morphology: Triterpene Glycosides of Sea Cucumbers (Holothurioidea, Echinodermata). Dalnauka, Vladivostok, 284pp (in Russian).

    Levin, V. S., Kalinin, V. I., Maltsev, I. I., and Stonik, V. A., 1985. Structure of triterpene glycosides and taxonomy of aspidochirotian sea cucumbers. Biologiya Morya, 2: 3-11.

    Levin, V. S., Kalinin, V. I., Fedorov, S. N., and Smiley, S., 1986. Structure of triterpene glycosides and taxonomical position of two species of the family Stichopodidae. Biologiya Morya, 4: 72-77.

    Levin, V. S., and Gudimova, E. N., 1997. On taxonomical relationships of the sea cucumbers Cucumaria frondosa and C. japonica (Dendrochirotida, Cucumariidae). Zoologichesky Zhurnal, 76: 575-584.

    Liao, Y. L., 1997. Fauna Sincia: Phylum Echinodermata, Class Holothuroidea. Science Press, Beijing, 334pp.

    Lin, W. F., and Hwang, D. F., 2007. Application of PCR-RFLP analysis on species identification of canned tuna. Food Control, 18 (9): 1050-1057.

    Linacre, A., and Tobe, S., 2011. An overview to the investigative approach to species testing in wildlife forensic science. Investigative Genetics, 2 (1): 2.

    Lockley, A. K., and Bardsley, R. G., 2000. DNA based-methods for food authentication. Trends in Food Science and Technology, 11: 67-77.

    Massin, C., 1999. Reef-dwelling Holothuroidea (Echinodermata) of the Spermonde Archipelago (Southwest Sulawesi, Indonesia). Zoologische Verhandelingen, 329: 3-144.

    Mochizuki, T., Sugie, N., and Uehara, M., 1997. Random amplification of polymorphic DNA is useful for the identification of several anthropophilic dermaophytes. Mycoses, 40: 405-409.

    Naderi, S., Rezaei, H. R., Taberlet, P., Zundel, S., Rafat, S. A., Naghash, H. R., el-Barody, M. A., Ertugrul, O., and Pompanon, F., 2007. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One, 2 (10), e1012.

    Rea, S., Storani, G., Mascaro, N., Stocchi, R., and Loschi, A. R., 2009. Species identification in anchovy pastes from the market by PCR-RFLP technique. Food Control, 20 (5): 515-520.

    Rokas, A., Ladoukakis, E., and Zouros, E., 2003. Animal mitochondrial DNA recombination revisited. Trends in Ecology and Evolution, 18: 411-417.

    Smiley, S., 1994. Holothuroidea. In: Microscopic Anatomy of Invertebrates, Echinodermata, 14. Harrison, F. W., and Chia, F. S., eds., Wiley-Liss, New York, 401-471.

    Taanman, J. W., 1999. The mitochondrial genome: Structure, transcription, translation and replication. Biochimica et Biophysica Acta, 1410: 103-123.

    Toral-Granda, M., 2005. The use of calcareous spicules for the identification of the Galápagos sea cucumber Isostichopus fuscus on the international market. SPC Beche-de-mer Information Bulletin, 22: 3-5.

    Zuo, T., Li, Z., Lv, Y., Duan, G., Wang, C., Tang, Q., Xue, Y., and Xue, C., 2012. Rapid identification of sea cucumber species with multiplex-PCR. Food Control, 26 (1): 58-62.

    (Edited by Qiu Yantao)

    (Received July 7, 2013; revised November 4, 2013; accepted May 28, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82032597

    E-mail: tangqingjuan@ouc.edu.cn

    # These two authors contributed equally to the present work.

    国产成人免费无遮挡视频| 日韩,欧美,国产一区二区三区| 熟女少妇亚洲综合色aaa.| 99香蕉大伊视频| 最近中文字幕2019免费版| 久热这里只有精品99| 嫩草影视91久久| 欧美乱码精品一区二区三区| 久久国产亚洲av麻豆专区| 日日摸夜夜添夜夜爱| 咕卡用的链子| 久久精品久久久久久久性| 成人国产一区最新在线观看 | 色94色欧美一区二区| 18禁国产床啪视频网站| 一区福利在线观看| 18禁国产床啪视频网站| 另类亚洲欧美激情| 久久狼人影院| 久久国产精品男人的天堂亚洲| 午夜福利乱码中文字幕| 国产亚洲欧美在线一区二区| 午夜福利在线免费观看网站| 国产女主播在线喷水免费视频网站| 亚洲精品自拍成人| 制服诱惑二区| 18禁黄网站禁片午夜丰满| 只有这里有精品99| 欧美成狂野欧美在线观看| a级毛片在线看网站| 最新的欧美精品一区二区| 一区在线观看完整版| 欧美日韩成人在线一区二区| 在线看a的网站| 汤姆久久久久久久影院中文字幕| av片东京热男人的天堂| 国产成人av激情在线播放| 日本欧美国产在线视频| 黄色视频在线播放观看不卡| 好男人电影高清在线观看| 午夜福利一区二区在线看| 欧美日韩综合久久久久久| 免费观看人在逋| 国产伦人伦偷精品视频| 视频区欧美日本亚洲| 美女高潮到喷水免费观看| 中文字幕人妻丝袜一区二区| av视频免费观看在线观看| av在线老鸭窝| 亚洲 国产 在线| 又紧又爽又黄一区二区| 男男h啪啪无遮挡| 午夜久久久在线观看| 日韩制服骚丝袜av| 亚洲精品自拍成人| 国产伦人伦偷精品视频| av有码第一页| videosex国产| 国产成人精品久久久久久| 最新的欧美精品一区二区| 别揉我奶头~嗯~啊~动态视频 | 国产成人精品久久二区二区91| 岛国毛片在线播放| 美女高潮到喷水免费观看| 亚洲第一青青草原| 国产淫语在线视频| 亚洲视频免费观看视频| 久久精品人人爽人人爽视色| 亚洲五月婷婷丁香| 狂野欧美激情性xxxx| 亚洲免费av在线视频| 国产麻豆69| 精品久久蜜臀av无| 国产成人免费观看mmmm| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区黑人| 国产免费现黄频在线看| 国产欧美日韩一区二区三 | 亚洲伊人久久精品综合| 免费人妻精品一区二区三区视频| 亚洲第一av免费看| 日韩视频在线欧美| 人妻 亚洲 视频| 九草在线视频观看| 久久人妻熟女aⅴ| 久久精品国产亚洲av高清一级| 亚洲欧美一区二区三区黑人| 香蕉丝袜av| 人妻人人澡人人爽人人| 2018国产大陆天天弄谢| 人成视频在线观看免费观看| 亚洲国产精品999| 久久久精品免费免费高清| 精品人妻一区二区三区麻豆| 国产精品久久久久久精品古装| a 毛片基地| 一本综合久久免费| 国产成人精品久久二区二区免费| 在线观看国产h片| 777米奇影视久久| 欧美精品一区二区免费开放| 国产女主播在线喷水免费视频网站| 国产精品av久久久久免费| 国产不卡av网站在线观看| 一区福利在线观看| 国产精品久久久人人做人人爽| 免费黄频网站在线观看国产| 久久久久久久国产电影| 99热全是精品| 男人爽女人下面视频在线观看| 九色亚洲精品在线播放| 国产精品久久久久成人av| 99国产精品99久久久久| 亚洲av电影在线观看一区二区三区| 大码成人一级视频| 国产成人啪精品午夜网站| 自拍欧美九色日韩亚洲蝌蚪91| 极品人妻少妇av视频| 首页视频小说图片口味搜索 | 欧美国产精品一级二级三级| 黑人猛操日本美女一级片| 日本猛色少妇xxxxx猛交久久| 国产97色在线日韩免费| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美在线观看 | 免费看十八禁软件| 国产极品粉嫩免费观看在线| 国产男人的电影天堂91| av在线播放精品| 国产精品久久久久久精品电影小说| 每晚都被弄得嗷嗷叫到高潮| 999久久久国产精品视频| 亚洲欧美色中文字幕在线| a级片在线免费高清观看视频| 视频区欧美日本亚洲| 国产亚洲精品久久久久5区| 国产免费福利视频在线观看| 免费观看人在逋| 免费观看a级毛片全部| 国产欧美日韩综合在线一区二区| 婷婷丁香在线五月| 日日夜夜操网爽| 曰老女人黄片| 啦啦啦啦在线视频资源| 日韩视频在线欧美| 亚洲精品美女久久av网站| 一级片免费观看大全| 国产成人一区二区三区免费视频网站 | 极品人妻少妇av视频| 观看av在线不卡| 一级毛片黄色毛片免费观看视频| 久久精品国产亚洲av涩爱| 波野结衣二区三区在线| 人体艺术视频欧美日本| 国产黄频视频在线观看| 各种免费的搞黄视频| 激情五月婷婷亚洲| av天堂久久9| 在线 av 中文字幕| 女性被躁到高潮视频| 丰满饥渴人妻一区二区三| 亚洲精品一卡2卡三卡4卡5卡 | xxx大片免费视频| 午夜激情久久久久久久| 青春草亚洲视频在线观看| 啦啦啦在线观看免费高清www| 欧美精品av麻豆av| 久久综合国产亚洲精品| 精品少妇久久久久久888优播| 久久99热这里只频精品6学生| 精品少妇内射三级| 午夜91福利影院| 一二三四在线观看免费中文在| 激情视频va一区二区三区| 纯流量卡能插随身wifi吗| 国产主播在线观看一区二区 | 欧美久久黑人一区二区| 久久青草综合色| 中文乱码字字幕精品一区二区三区| 热re99久久精品国产66热6| 欧美精品av麻豆av| 国产精品久久久久久人妻精品电影 | 国产精品久久久av美女十八| 精品人妻1区二区| 欧美成人精品欧美一级黄| 亚洲欧美精品综合一区二区三区| 国产精品免费视频内射| 精品亚洲成a人片在线观看| avwww免费| 捣出白浆h1v1| 丝袜美腿诱惑在线| 人人妻人人澡人人看| 9色porny在线观看| 色视频在线一区二区三区| 免费在线观看完整版高清| 国产一区二区 视频在线| 婷婷色综合www| 午夜两性在线视频| 欧美在线黄色| 久久免费观看电影| 中文字幕色久视频| 国产成人免费无遮挡视频| 狂野欧美激情性bbbbbb| 国产深夜福利视频在线观看| 91麻豆精品激情在线观看国产 | 男男h啪啪无遮挡| 亚洲成人免费电影在线观看 | 日日爽夜夜爽网站| 久久久久国产精品人妻一区二区| 中文字幕制服av| 久久精品熟女亚洲av麻豆精品| 国产精品久久久人人做人人爽| 久久亚洲国产成人精品v| 中文字幕另类日韩欧美亚洲嫩草| 成人黄色视频免费在线看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲三区欧美一区| 亚洲av在线观看美女高潮| 亚洲精品久久成人aⅴ小说| 国产有黄有色有爽视频| 男女之事视频高清在线观看 | 日本wwww免费看| 高潮久久久久久久久久久不卡| 美国免费a级毛片| 性色av一级| 国产又爽黄色视频| 久久av网站| 天堂中文最新版在线下载| 男人操女人黄网站| 少妇人妻久久综合中文| av网站在线播放免费| 啦啦啦在线免费观看视频4| 老司机亚洲免费影院| 悠悠久久av| 午夜影院在线不卡| 十八禁网站网址无遮挡| 亚洲av日韩在线播放| 99香蕉大伊视频| 精品欧美一区二区三区在线| 91老司机精品| 欧美日韩av久久| 国产深夜福利视频在线观看| 国产91精品成人一区二区三区 | 99国产精品99久久久久| 国产精品99久久99久久久不卡| 天天躁夜夜躁狠狠躁躁| 午夜免费男女啪啪视频观看| 国产免费现黄频在线看| 成人手机av| 国产男人的电影天堂91| 美女福利国产在线| 777久久人妻少妇嫩草av网站| 亚洲伊人色综图| 久久av网站| 汤姆久久久久久久影院中文字幕| 高清av免费在线| xxxhd国产人妻xxx| 亚洲精品国产av成人精品| 亚洲欧美日韩另类电影网站| 日本五十路高清| 国产欧美日韩精品亚洲av| 一级片免费观看大全| 在线av久久热| 天堂8中文在线网| 超碰成人久久| 国产成人欧美| 亚洲人成网站在线观看播放| 精品国产乱码久久久久久男人| 日本色播在线视频| 欧美国产精品一级二级三级| 国产在视频线精品| 美女视频免费永久观看网站| 日韩电影二区| 国产高清不卡午夜福利| 青草久久国产| 69精品国产乱码久久久| 亚洲成国产人片在线观看| 国产av国产精品国产| 一级a爱视频在线免费观看| 国产在线一区二区三区精| 国产一区二区三区综合在线观看| 天堂中文最新版在线下载| 午夜老司机福利片| av天堂久久9| 美女国产高潮福利片在线看| 精品亚洲成国产av| 啦啦啦 在线观看视频| a级毛片在线看网站| 欧美黄色淫秽网站| 中文字幕高清在线视频| 91字幕亚洲| 日韩,欧美,国产一区二区三区| 日韩大码丰满熟妇| 18禁裸乳无遮挡动漫免费视频| 国产1区2区3区精品| 韩国高清视频一区二区三区| 亚洲精品久久成人aⅴ小说| 国产有黄有色有爽视频| 黄色片一级片一级黄色片| 精品一区二区三区av网在线观看 | 美女视频免费永久观看网站| 少妇被粗大的猛进出69影院| 男女免费视频国产| 国产成人av教育| 亚洲欧美日韩高清在线视频 | 久久中文字幕一级| 欧美日韩福利视频一区二区| 黄片播放在线免费| 亚洲欧美日韩另类电影网站| av欧美777| 亚洲欧美精品自产自拍| 视频区图区小说| 丁香六月欧美| 女人被躁到高潮嗷嗷叫费观| 一本一本久久a久久精品综合妖精| 久久久久久久久久久久大奶| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久精品久久久| 乱人伦中国视频| 看十八女毛片水多多多| 亚洲天堂av无毛| 国产精品一区二区免费欧美 | 国产老妇伦熟女老妇高清| av天堂在线播放| 99国产综合亚洲精品| 女警被强在线播放| 91精品伊人久久大香线蕉| 妹子高潮喷水视频| 蜜桃在线观看..| 欧美精品一区二区大全| 久久久久国产一级毛片高清牌| 老司机深夜福利视频在线观看 | 中文字幕制服av| 欧美人与善性xxx| 青草久久国产| 青青草视频在线视频观看| 丰满饥渴人妻一区二区三| 免费在线观看完整版高清| 久久性视频一级片| 丰满人妻熟妇乱又伦精品不卡| 亚洲自偷自拍图片 自拍| 精品人妻1区二区| 成年人免费黄色播放视频| 久久免费观看电影| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美中文字幕日韩二区| 日韩电影二区| 伊人亚洲综合成人网| 亚洲综合色网址| 免费在线观看视频国产中文字幕亚洲 | 伊人亚洲综合成人网| 国产亚洲欧美精品永久| 老司机在亚洲福利影院| 赤兔流量卡办理| 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 晚上一个人看的免费电影| 免费在线观看完整版高清| 日本av免费视频播放| 色视频在线一区二区三区| 狂野欧美激情性bbbbbb| 一二三四社区在线视频社区8| 国产一区二区在线观看av| 女人爽到高潮嗷嗷叫在线视频| videos熟女内射| 99国产综合亚洲精品| 成年女人毛片免费观看观看9 | 欧美大码av| 国产精品久久久久久精品古装| 女人久久www免费人成看片| bbb黄色大片| 亚洲精品久久午夜乱码| 久久精品久久久久久久性| 日本黄色日本黄色录像| 国产欧美日韩综合在线一区二区| 咕卡用的链子| 国产精品久久久av美女十八| 男的添女的下面高潮视频| 成人影院久久| 久久久久久久国产电影| 天天添夜夜摸| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 91麻豆精品激情在线观看国产 | 纯流量卡能插随身wifi吗| 亚洲人成77777在线视频| 国产精品人妻久久久影院| 不卡av一区二区三区| 午夜福利乱码中文字幕| 天天操日日干夜夜撸| 国产免费视频播放在线视频| 老司机在亚洲福利影院| 老汉色av国产亚洲站长工具| 日韩一卡2卡3卡4卡2021年| 一区二区三区乱码不卡18| 亚洲成人国产一区在线观看 | 飞空精品影院首页| 日韩一本色道免费dvd| www日本在线高清视频| 国产一区二区激情短视频 | 国产精品一区二区在线不卡| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 50天的宝宝边吃奶边哭怎么回事| tube8黄色片| 国产熟女午夜一区二区三区| 97人妻天天添夜夜摸| 午夜福利在线免费观看网站| 国产成人av激情在线播放| 搡老岳熟女国产| 中文字幕人妻熟女乱码| 亚洲自偷自拍图片 自拍| 老汉色av国产亚洲站长工具| 熟女少妇亚洲综合色aaa.| 久久久久久久大尺度免费视频| 天堂中文最新版在线下载| 欧美日韩视频高清一区二区三区二| 巨乳人妻的诱惑在线观看| 只有这里有精品99| 老司机深夜福利视频在线观看 | 国产精品九九99| 国产亚洲午夜精品一区二区久久| 亚洲精品国产av蜜桃| 国产黄色免费在线视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美色中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| netflix在线观看网站| 一区二区日韩欧美中文字幕| 又大又黄又爽视频免费| 国产精品熟女久久久久浪| av视频免费观看在线观看| 国产成人免费观看mmmm| 国产日韩欧美视频二区| 久久99一区二区三区| 最近手机中文字幕大全| 91精品三级在线观看| 各种免费的搞黄视频| 亚洲av成人不卡在线观看播放网 | 天堂中文最新版在线下载| 久久久久久久大尺度免费视频| 蜜桃在线观看..| bbb黄色大片| 美国免费a级毛片| 18禁国产床啪视频网站| 亚洲国产av新网站| 老司机在亚洲福利影院| 看免费成人av毛片| 亚洲综合色网址| 成人国产一区最新在线观看 | 免费在线观看视频国产中文字幕亚洲 | 亚洲av男天堂| 久久人人爽人人片av| 欧美激情极品国产一区二区三区| 国产亚洲欧美精品永久| 蜜桃国产av成人99| 久久99一区二区三区| 人人妻人人添人人爽欧美一区卜| 丁香六月天网| 青草久久国产| 高清欧美精品videossex| 亚洲,欧美,日韩| 91麻豆av在线| 久久久久久久大尺度免费视频| 欧美精品一区二区大全| 日本av手机在线免费观看| 男人舔女人的私密视频| 母亲3免费完整高清在线观看| 精品少妇久久久久久888优播| 国产成人系列免费观看| 欧美日韩福利视频一区二区| 五月天丁香电影| 女人久久www免费人成看片| 国产亚洲午夜精品一区二区久久| 亚洲 国产 在线| 最新的欧美精品一区二区| 一区二区三区乱码不卡18| 亚洲成av片中文字幕在线观看| 国产亚洲欧美精品永久| 亚洲av成人不卡在线观看播放网 | 久久99一区二区三区| 99久久综合免费| 午夜福利,免费看| 国产精品三级大全| 丝袜在线中文字幕| 天天躁夜夜躁狠狠久久av| 黄色视频在线播放观看不卡| 一级,二级,三级黄色视频| 亚洲午夜精品一区,二区,三区| 一级片免费观看大全| 秋霞在线观看毛片| 91国产中文字幕| 蜜桃国产av成人99| 最黄视频免费看| 国产欧美日韩一区二区三区在线| 久久99精品国语久久久| 黄色视频在线播放观看不卡| 精品福利永久在线观看| 日日爽夜夜爽网站| 午夜免费观看性视频| 两人在一起打扑克的视频| 美女视频免费永久观看网站| 精品福利永久在线观看| 99久久99久久久精品蜜桃| 国产一区二区三区综合在线观看| 国产片内射在线| 国产亚洲精品第一综合不卡| 成人黄色视频免费在线看| 久热爱精品视频在线9| 免费观看av网站的网址| 高清不卡的av网站| 考比视频在线观看| 大码成人一级视频| 成人国产一区最新在线观看 | 欧美精品亚洲一区二区| 久久精品国产亚洲av高清一级| 午夜日韩欧美国产| 亚洲国产精品999| 日本猛色少妇xxxxx猛交久久| 97在线人人人人妻| 亚洲色图 男人天堂 中文字幕| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜制服| 大片免费播放器 马上看| 伊人久久大香线蕉亚洲五| 精品国产一区二区三区久久久樱花| 久久久久精品国产欧美久久久 | 一本综合久久免费| 精品少妇黑人巨大在线播放| 视频区图区小说| 久久久久久久大尺度免费视频| 久久性视频一级片| 99热全是精品| 亚洲五月婷婷丁香| 下体分泌物呈黄色| 性色av乱码一区二区三区2| 国产1区2区3区精品| 黄色一级大片看看| 精品少妇久久久久久888优播| www.999成人在线观看| 我的亚洲天堂| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 欧美日本中文国产一区发布| 看免费av毛片| a级片在线免费高清观看视频| 在线观看国产h片| 尾随美女入室| 国产有黄有色有爽视频| 视频在线观看一区二区三区| 久久久久网色| 狠狠婷婷综合久久久久久88av| 国产免费一区二区三区四区乱码| 亚洲av日韩精品久久久久久密 | 老司机影院成人| 日本a在线网址| 中文乱码字字幕精品一区二区三区| 黄频高清免费视频| 中文字幕精品免费在线观看视频| 久久国产精品大桥未久av| 亚洲欧美一区二区三区久久| 免费高清在线观看日韩| 一级毛片我不卡| 少妇裸体淫交视频免费看高清 | 女性被躁到高潮视频| 色94色欧美一区二区| 午夜日韩欧美国产| 女性生殖器流出的白浆| 中文字幕高清在线视频| 久久久久精品人妻al黑| 国产av国产精品国产| 国产主播在线观看一区二区 | 男人添女人高潮全过程视频| 日韩中文字幕视频在线看片| 一个人免费看片子| 老司机午夜十八禁免费视频| 精品人妻一区二区三区麻豆| 首页视频小说图片口味搜索 | 国产极品粉嫩免费观看在线| 成年av动漫网址| 国产成人91sexporn| 午夜福利视频在线观看免费| 国产成人91sexporn| 欧美av亚洲av综合av国产av| 亚洲国产欧美在线一区| h视频一区二区三区| 国产亚洲午夜精品一区二区久久| 久久久精品免费免费高清| 黑人猛操日本美女一级片| 亚洲人成网站在线观看播放| 丰满迷人的少妇在线观看| www.999成人在线观看| 精品少妇内射三级| 天堂中文最新版在线下载| 免费日韩欧美在线观看| 亚洲激情五月婷婷啪啪| 久久久久久久大尺度免费视频| 在线av久久热| 亚洲精品一二三| 国产免费视频播放在线视频| 久久99一区二区三区| 一边摸一边抽搐一进一出视频| 免费高清在线观看视频在线观看| 欧美+亚洲+日韩+国产| av网站在线播放免费| 尾随美女入室| 男男h啪啪无遮挡| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 免费高清在线观看视频在线观看| 婷婷色av中文字幕| 久久这里只有精品19| h视频一区二区三区| 中国国产av一级| 国产一区二区激情短视频 |