• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Five Sea Cucumber Species Through PCR-RFLP Analysis

    2014-04-20 09:24:16LVYingchunZHENGRongZUOTaoWANGYumingLIZhaojieXUEYongXUEChanghuandTANGQingjuan
    Journal of Ocean University of China 2014年5期

    LV Yingchun, ZHENG Rong, ZUO Tao, WANG Yuming, LI Zhaojie, XUE Yong, XUE Changhu, and TANG Qingjuan

    College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China

    Identification of Five Sea Cucumber Species Through PCR-RFLP Analysis

    LV Yingchun#, ZHENG Rong#, ZUO Tao, WANG Yuming, LI Zhaojie, XUE Yong, XUE Changhu, and TANG Qingjuan*

    College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China

    Sea cucumbers are traditional marine food and Chinese medicine in Asia. The rapid expansion of sea cucumber market has resulted in various problems, such as commercial fraud and mislabeling. Conventionally, sea cucumber species could be distinguished by their morphological and anatomical characteristics; however, their identification becomes difficult when they are processed. The aim of this study was to develop a new convenient method of identifying and distinguishing sea cucumber species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial cytochrome oxidase I gene (COI) was used to identifing five sea cucumber species (Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora). A 692 bp fragment of COI was searched for BamHI, KpnI, PstI, XbaI and Eco31I restriction sites with DNAMAN 6.0, which were then used to PCR-RFLP analysis. These five sea cucumber species can be discriminated from mixed sea cucumbers. The developed PCR-RFLP assay will facilitate the identification of sea cucumbers, making their source tracing and quality controlling feasible.

    sea cucumber; mtDNA; COI gene; species identification; PCR-RFLP

    1 Introduction

    Sea cucumber (Echinodermata: Holothuroidea), a traditional seafood in Asia, has recently become an expensive tonic food. Because of its various biological activities including anti-tumor, immunoregulatory, anti-atherosclerotic and anti-aging property, sea cucumber are believed to have high nutritional and medicinal value (Hirata et al., 2005). In the past two decades, sea cucumber have become one of the most valuable seafoods in Asian countries (FAO, 2008). Currently, there are several deepprocessing products, such as dried and canned sea cucumber and sea cucumber capsules. With the rapid expansion and intensification of sea cucumber market, a series of commercial frauds appeared, which included mislabeling and substitution of high-value species with low-value ones. The rapid identification of sea cucumber species is important for maintaining sea cucumber quality and protecting the right of the consumers.

    About 1400 species of sea cucumber around the world belong to 25 families, 6 orders (Smiley, 1994). More than 140 species of sea cucumber have been described in China Sea, of them approximately 20 are believed to have high commercial value as food (Chen, 2003). The traditional methods of identifying sea cucumber to family or order generally based on their morphological characteristics, such as tentacles, tentacular retractor muscles, internal respiratory trees, trunk podia, tube feet, esophageal calcareous rings and dermal ossicles. However, to species, the difference in morphological characteristics is usually too subtle to be used (Arndt et al., 1996). As the ossicles of body walls, the main characteristics of a species, are highly variable, and the composition of body wall spicules are not applicable to the identification of sea cucumber species (Levin and Gudimova, 1997; Gudimova, 1991; Toral-Granda, 2005). In addition, visual authentication of sea cucumbers is often difficult as most of morphological characteristics will disappear during processing, particularly when sea cucumber are pulverized or cut into pieces. An alternative of sea cucumber identification is species-specific chemical constitution. Kalinin et al. (1994) have successfully applied the distribution of different triterpene glycosides to the taxonomy of sea cucumber in order Aspidochirotida. With glycoside distribution and morphological characteristics, Levin et al. (1985, 1986) described the taxonomic relationship between the North Pacific representatives of family Stichopodidae and order Aspidochirotida. However, this chemical approach is not effective for deeply processed sea cucumber, because it requires the purification of species-specificchemical components, which is complicate and difficult when sea cucumber is processed.

    In order to avoid the difficulty of species identification on morphological characteristics and species-specific chemical constitution, diverse methods of identifying marine species through DNA analysis have been reported. These methods included PCR and sequencing, forensically informative nucleotide sequencing (FINS), rapid analysis of polymorphic DNA (RAPD), single-stranded conformation polymorphism and restriction fragment length polymorphism (RFLP) (Lockley and Bardsley, 2000; Comi et al., 2005; Gil, 2007; Aranceta et al., 2011; Espi?eira et al., 2009; Botti and Giuffra, 2010). Of these methods, direct sequencing of PCR products and FINs require expensive equipments and agents. RAPD is complex in bands profile and poor in reproducibility (Mochizuki et al., 1997; Kac, 2000). RFLP is rapid and simple, which has been extensively used to identifying diverse fish species (Di Finizio et al., 2007; Hsieh et al., 2007; Rea et al., 2009; Chuang et al., 2012). The sequence divergence of mitochondrial cytochrome oxidase I gene (COI) can be used to identifing closely related species of most animals (Hebert et al., 2003). Actualy, it has been used to identifying sea cucumber species (Arndt et al., 1996; Zuo et al., 2012). Therefore, the aim of this study was to identify and distinguish sea cucumber species through PCR-RFLP analysis of COI.

    2 Materials and Methods

    2.1 Materials

    Fresh sea cucumber individuals of Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora were purchased from a retail market in Qingdao, China. Species identification was initially performed according to their taxonomic characteristics of dermal ossicles (Liao, 1997; Massin, 1999), and subsequently confirmed by DNA sequence analysis of COI by referring to the deposited in GenBank. After identification, the muscle tissue of these sea cucumber species each was sampled and preserved in ethanol. These sea cucumber species are commonly consumed and easily available in market. Dried and frozen sea cucumber samples were collected from local supermarket and retail market located in the same area, and treated as were done for the fresh sea cucumber individuals.

    2.2 DNA Isolation

    The genomic DNA was isolated from 100 mg of muscle with modified CTAB method (Grewe et al., 1993). The DNA concentration was measured on a UV-2550 spectrophotometer (Shimadzu, Japan). DNA was stored at -20℃.

    2.3 COI Gene Amplification

    To amplify the 692 bp fragment of COI, a pair of primers, COIef, 5’-ATA ATG ATA GGA GGR TTT GG-3’ and COIer, 5’-GCT CGT GTR TCT ACR TCC AT-3’ (Arndt et al., 1996) was used. On a MJ Mini Personal Thermal Cycler (BIO-RAD, USA), PCR was performed in a volume of 50 μL containing 100 ng DNA, 5 μL of 10× PCR buffer, 1 μL of dNTP (10 mmol L-1), 3 μL of MgCl2(25 mmol L-1), 1 μL of each primer (10 μmol L-1), and 1 μL of 5 U μL-1of Taq DNA polymerase (TaKaRa, Japan). The reaction was thermocycled by denaturing at 94℃ 5 min, followed by 30 cycles at denaturing at 94℃ for 50 s, annealing at 46℃ for 1 min, and extending at 72℃ for 1 min, and a extra extension at 72℃ for 10 min. The PCR product was analyzed through electrophoresis in 1% agarose gel, and purified with an AxyGenTMDNA gel extraction kit (Beijing, China). The purified DNA was cloned into a pUCm-T vector (BBI, Sangon, China) following manufacturer’s procedure, and sequenced by Sangon Biotech Co., Ltd. (Shanghai, China).

    2.4 RFLP Analysis

    The 692 bp fragment of five sea cucumbers was analyzed using DNAStar (version 6.1; DNASTAR Inc., Madison, WI) and DNAMAN (version 6.0; Lynnon Biosoft, Quebec, Canada) software to detect the restriction sites suitable for the characterization of these species.

    Five restriction endonucleases, BamHI, KpnI, PstI, XbaI and Eco31I (Fermentas, MBI, USA), were chosen for RFLP analysis. A 30 μL reaction mixture containing 10 μL of PCR product, 1 FDU of each enzyme and 2 μL of 10× Fast Digest Universal Buffer (Fermentas, MBI, USA) was incubated at 37℃ for 15 min. The restriction fragments were separated in 10% native-polyacrylamide gel electrophoresis (PAGE) at 100 V for 2 h with BIO-RAD PowerPac Universal (USA). The length of fragments was determined by referring to a DL2000 marker (TaKaRa, Japan). The gel was visualized under UV light and photographed using Tanon GIS-2008 (Shanghai, China). The analysis was performed at least 3 times for each species.

    To validate species-specific PCR-RFLP assay, two species were discretionarily chosen from the five reference sea cucumber species to prepare ten mixtures of the same amount of DNA. Then, PCR-RFLP was analyzed in order to distinguish each of them.

    3 Results and Discussion

    The mitochondrial DNA (mtDNA) inherits maternally, which acts independently of nuclear DNA (nDNA) (Taanman, 1999). Compared with nDNA, mtDNA is devoid of introns, pseudogenes, repetitive sequences, and recombination sites that are generally associated with sexual processes (Avise et al., 1987; Linacre and Tobe, 2011). The sequence of mtDNA is more conservative than that of nDNA (Rokas et al., 2003). The base substitution rate in mtDNA is higher than that in nDNA; thus, mutations can arise in a population more rapidly (Brown et al., 1979; Cawthorn et al., 2012). Accordingly, several mtDNA genes have been commonly used as genetic markers for species identification, which included COI,16S rRNA, 18S rRNA, and Cytb (Joshi et al., 2004; Chen et al., 2005; Naderi et al., 2007). With BamHI, KpnI, PstI, XbaI and Eco31I, the 692 bp fragment of mitochondrial COI was digested, yielding RFLP among sea cucumber species. Five sea cucumber species, A. japonicus, C. frondosa, T. ananas, P. californicus, and A. lecanora, were easily identifiable with the RFLP yielded.

    3.1 Use of Mitochondrial COI for Species Identification of Sea Cucumbers

    In this study, COI of five sea cucumber species was amplified, yielding a 690 bp fragment as expected (Fig.1). The 690 bp COI from five sea cucumber species fully matched that deposited in GenBank with high similarities ranging from 98% to 100%.

    Fig.1 PCR product of COI of five sea cucumber species. 1% agarose gel; M, DL2000 Marker (Takala); N, negative control; 1, Apostichopus japonicas; 2, Cucumaria frondosa; 3, Thelenota ananas; 4, Parastichopus californicus; 5, Actinopyga lecanora.

    3.2 Species Identification by PCR-RFLP of COI

    PCR-RFLP analysis is a well-established technique for rapid identification of species in food science (Lin and Hwang, 2007). After amplification and sequencing, the sequences were analyzed using DNAMAN 6.0 software. According to the restriction map of the sequences, BamHI, KpnI, PstI, XbaI and Eco31I were selected to differentiate each sea cucumber species. The restriction sites and the sizes of the fragments cleaved by each restriction enzyme were listed in Table 1.

    Table 1 Positions of digestion sites of selected endonucleases on the amplified 692 bp fragment of cytochrome oxidase subunit I gene and restriction fragment length in tested sea cucumbers

    The length of these restriction fragments was different from each other and the minimum length difference between them was more than 30 bp which can be easily resolved in PAGE. However, DNA fragments less than 50 bp were not applicable to the identification because these short fragments might be primer dimmers and is difficult to visualize. Thus, to avoid the generation of ambiguous fragments, an endonuclease was selected if its restriction fragments were all more than 100 bp in length.

    RFLP analysis revealed that five sea cucumber species examined in this study could be distinguished using the restriction enzymes selected (Fig.2). Digesting with BamHI generated two specific restriction fragments for P. californicus (205 and 487 bp). Digesting with KpnI generated two specific fragments for C. frondosa (98 and 594 bp). Digesting with PstI and Eco31I generated three specific fragments for A. japonicus (132, 236, and 324 bp). Digesting with Eco31I generated two specific fragments for T. ananas (236 and 456 bp). A common restriction pattern (184, 236, and 272 bp) was observed in A. lecanora when its DNA was digested with XbaI and Eco31I.

    Fig.2 Restriction fragments generated through BamHI, KpnI, PstI, XbaI and Eco31I digestion and 10% native-PAGE. M, DL2000 Marker (Takala); 1, Parastichopus californicus; 2, Cucumaria frondosa; 3, Apostichopus japonicas; 4, Thelenota ananas; 5, Actinopyga lecanora.

    Table 2 Species identification of the artificial mixtures prepared with reference sea cucumbers through PCR-RFLP assay

    PCR-RFLP analysis has the advantage of clearly de-tecting and identifying the target species in mixed products. To assess the capability of the PCR-RFLP assay in simultaneously detecting various species in one sample, artificially generated mixtures containing the same amounts of COI gene from two sea cucumber species discretionarily chosen from the five reference sea cucumbers were analyzed. Our results showed that the two sea cucumber species were simultaneously detected in the ten mixtures (Fig.3 and Table 2), indicating that PCRRFLP analysis can effectively identify at least two sea cucumber species in one sample.

    Fig.3 Species identification through PCR-RFLP analysis. M, DL2000 Marker (Takala); 1, P. cali & C. fron; 2, P. cali & A. japo; 3, P. cali & T. anan; 4, C. fron & A. japo; 5, C. fron & T. anan; 6, A. japo & T. anan; 7, P. cali & A. leca; 8, C. fron & A. leca; 9, A. japo & A. leca; 10, T. anan & A. leca. P. cali, Parastichopus californicus; C. fron, Cucumaria frondosa; A. japo, Apostichopus japonicus; T. anan, Thelenota ananas; A. leca, Actinopyga lecanora.

    In conclusion, PCR-RFLP analysis developed in this study is a reliable, simple and rapid method for the unambiguous identification of sea cucumber species. With appropriate restriction enzymes, this method is applicable to identifying a wider range of sea cucumber species. It will serve as a useful tool for quality control and tracking sea cucumber products, preventing commercial fraud.

    Acknowledgements

    This research was supported by National Natural Science Foundation of China (Nos. 31101281 and 31071525) and National Marine Public Welfare Scientific Research Project of China (No. 201105029).

    Aranceta-G, F., Perez-E, R., and Cruz, P., 2011. PCR-SSCP method for genetic differentiation of canned abalone and commercial gastropods in the Mexican retail market. Food Control, 22: 1015-1020.

    Arndt, A., Marquez, C., Lambert, P., and Smith, M. J., 1996. Molecular phylogeny of eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequence. Molecular Phylogenetics and Evolution, 6 (3): 425-437.

    Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C., 1987. The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18: 489-522.

    Botti, S., and Giuffra, E., 2010. Oligonucleotide indexing of DNA barcode: Identification of tuna and other scombrid species in food products. BMC Biotechnology, 10: 60.

    Brown, M. W., Georage, M., and Wilson, A. C., 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 79: 3246-3250.

    Cawthorn, D., Steinman, H., and Witthuhn, R., 2012. Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa. Gene, 491 (1): 40-48.

    Chen, J. X., 2003. Overview of sea cucumber farming and sea ranching practices in China. Beche-de-mer Information Bulletin, 18: 18-23.

    Chen, S. Y., Su, Y. H., Wu, S. F., Sha, T., and Zhang, Y. P., 2005. Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. Molecular Phylogenetics and Evolution, 37 (3): 804-814.

    Chuang, P., Chen M., and Shiao, J., 2012. Identification of tuna species by a real-time polymerase chain reaction technique. Food Chemistry, 133: 1055-1061.

    Comi, G., Iacumin, L., Rantsiou, K., Cantoni, C., and Cocolin, L., 2005. Molecular methods for the differentiation of species used in production of codfish can detect commercial frauds. Food Control, 16 (1): 37-42.

    Di Finizio, A., Guerriero, G., Russo, G. L., and Ciarcia, G., 2007. Identification of gadoid species (Pisces, Gadidae) by sequencing and PCR-RFLP analysis of mitochondrial 12S and 16S rRNA gene fragments. European Food Research and Technology, 225: 337-344.

    Espi?eira, M., González-Lavín, N., Vieites, J. M., and Santaclara, F. J., 2009. Development of a method for the genetic identification of commercial bivalve species based on mitochondrial 18S rRNA sequences. Journal of Agricultural and Food Chemistry, 57: 495-502.

    FAO, 2008. Sea cucumbers: A global review of fisheries and trade. In: Fisheries and Aquaculture Technical Paper, 516. FAO, Rome, 317pp.

    Gil, L. A., 2007. PCR-based methods for fish and fishery products authentication. Trends in Food Science and Technology, 18 (11): 558-566.

    Grewe, P. M., Krueger, C. C., Aquadro, C. F., Bermingham, E., Kincaid, H. L., and May, B., 1993. Mitochondrial DNA variation among lake trout (Salvenilus namaycush) strains stocked into Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 50: 2397-2403.

    Gudimova, E. N., 1991. Methods of quantitative analysis of the sclerite shapes of the sea cucumbers belonging to the genus Cucumaria. Biologia Morya, 6: 80-87.

    Hebert, P. D. N., Ratnasingham, S., and deWaard, J. R., 2003. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B: Biological Sciences, 270: 96-99.

    Hirata, T., Zaima, N., Yamashita, K., Ryoko, N., Xue, C. H., and Sugawara, T., 2005. Recent advances in researches on physiologically active substances in holothurians. Journal of Ocean University of China, 4 (3): 193-197.

    Hsieh, H. S., Chai, T., and Hwang, D. F., 2007. Using the PCR-RFLP method to identify the species of different processed products of billfish meats. Food Control, 18 (4): 369-374.

    Joshi, M. B., Rout, P. K., Mandal, A. K., Tyler-Smith, C., Singh, L., and Thangaraj, K., 2004. Phylogeography and origin ofIndian domestic goats. Molecular Biology and Evolution, 21 (3): 454-462.

    Kac, G., 2000. Molecular approaches to the study of dermatophytes. Medical Mycology, 38 (5): 329-336.

    Kalinin, V. I., Levin, V. S., and Stonik, V. A., 1994. The Chemical Morphology: Triterpene Glycosides of Sea Cucumbers (Holothurioidea, Echinodermata). Dalnauka, Vladivostok, 284pp (in Russian).

    Levin, V. S., Kalinin, V. I., Maltsev, I. I., and Stonik, V. A., 1985. Structure of triterpene glycosides and taxonomy of aspidochirotian sea cucumbers. Biologiya Morya, 2: 3-11.

    Levin, V. S., Kalinin, V. I., Fedorov, S. N., and Smiley, S., 1986. Structure of triterpene glycosides and taxonomical position of two species of the family Stichopodidae. Biologiya Morya, 4: 72-77.

    Levin, V. S., and Gudimova, E. N., 1997. On taxonomical relationships of the sea cucumbers Cucumaria frondosa and C. japonica (Dendrochirotida, Cucumariidae). Zoologichesky Zhurnal, 76: 575-584.

    Liao, Y. L., 1997. Fauna Sincia: Phylum Echinodermata, Class Holothuroidea. Science Press, Beijing, 334pp.

    Lin, W. F., and Hwang, D. F., 2007. Application of PCR-RFLP analysis on species identification of canned tuna. Food Control, 18 (9): 1050-1057.

    Linacre, A., and Tobe, S., 2011. An overview to the investigative approach to species testing in wildlife forensic science. Investigative Genetics, 2 (1): 2.

    Lockley, A. K., and Bardsley, R. G., 2000. DNA based-methods for food authentication. Trends in Food Science and Technology, 11: 67-77.

    Massin, C., 1999. Reef-dwelling Holothuroidea (Echinodermata) of the Spermonde Archipelago (Southwest Sulawesi, Indonesia). Zoologische Verhandelingen, 329: 3-144.

    Mochizuki, T., Sugie, N., and Uehara, M., 1997. Random amplification of polymorphic DNA is useful for the identification of several anthropophilic dermaophytes. Mycoses, 40: 405-409.

    Naderi, S., Rezaei, H. R., Taberlet, P., Zundel, S., Rafat, S. A., Naghash, H. R., el-Barody, M. A., Ertugrul, O., and Pompanon, F., 2007. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One, 2 (10), e1012.

    Rea, S., Storani, G., Mascaro, N., Stocchi, R., and Loschi, A. R., 2009. Species identification in anchovy pastes from the market by PCR-RFLP technique. Food Control, 20 (5): 515-520.

    Rokas, A., Ladoukakis, E., and Zouros, E., 2003. Animal mitochondrial DNA recombination revisited. Trends in Ecology and Evolution, 18: 411-417.

    Smiley, S., 1994. Holothuroidea. In: Microscopic Anatomy of Invertebrates, Echinodermata, 14. Harrison, F. W., and Chia, F. S., eds., Wiley-Liss, New York, 401-471.

    Taanman, J. W., 1999. The mitochondrial genome: Structure, transcription, translation and replication. Biochimica et Biophysica Acta, 1410: 103-123.

    Toral-Granda, M., 2005. The use of calcareous spicules for the identification of the Galápagos sea cucumber Isostichopus fuscus on the international market. SPC Beche-de-mer Information Bulletin, 22: 3-5.

    Zuo, T., Li, Z., Lv, Y., Duan, G., Wang, C., Tang, Q., Xue, Y., and Xue, C., 2012. Rapid identification of sea cucumber species with multiplex-PCR. Food Control, 26 (1): 58-62.

    (Edited by Qiu Yantao)

    (Received July 7, 2013; revised November 4, 2013; accepted May 28, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82032597

    E-mail: tangqingjuan@ouc.edu.cn

    # These two authors contributed equally to the present work.

    干丝袜人妻中文字幕| 日本-黄色视频高清免费观看| 女人被狂操c到高潮| 国产精品国产三级国产av玫瑰| 免费无遮挡裸体视频| 成人鲁丝片一二三区免费| 久久精品国产自在天天线| 成年女人永久免费观看视频| 日本与韩国留学比较| 精品国产露脸久久av麻豆 | 永久免费av网站大全| 又爽又黄a免费视频| 国产v大片淫在线免费观看| 日本一二三区视频观看| 七月丁香在线播放| 一个人看的www免费观看视频| 99热这里只有是精品在线观看| 91久久精品国产一区二区三区| 国产精品久久久久久久电影| av黄色大香蕉| 美女内射精品一级片tv| 最近最新中文字幕免费大全7| av福利片在线观看| av在线老鸭窝| 国内精品宾馆在线| 国产男人的电影天堂91| 国内精品美女久久久久久| 亚洲人成网站在线观看播放| 美女高潮的动态| 青青草视频在线视频观看| 亚洲乱码一区二区免费版| 岛国毛片在线播放| 可以在线观看毛片的网站| 久久6这里有精品| 日韩中字成人| 欧美区成人在线视频| 老师上课跳d突然被开到最大视频| 日韩av在线大香蕉| 精品久久久久久电影网 | 少妇被粗大猛烈的视频| 成人亚洲欧美一区二区av| av在线老鸭窝| 国产黄色视频一区二区在线观看 | 中文字幕亚洲精品专区| 国产高清有码在线观看视频| 日韩欧美精品v在线| 中文字幕av在线有码专区| 插阴视频在线观看视频| 国产又色又爽无遮挡免| av在线天堂中文字幕| 国产精品福利在线免费观看| 国产成人freesex在线| 乱码一卡2卡4卡精品| 免费黄色在线免费观看| 色播亚洲综合网| 国产私拍福利视频在线观看| 三级国产精品欧美在线观看| 日韩成人伦理影院| 中文字幕免费在线视频6| 18禁裸乳无遮挡免费网站照片| 亚洲熟妇中文字幕五十中出| 国产爱豆传媒在线观看| 三级经典国产精品| 国产在视频线在精品| 少妇人妻精品综合一区二区| 美女内射精品一级片tv| 狂野欧美激情性xxxx在线观看| 精品久久久久久久久亚洲| 在线a可以看的网站| 亚洲av电影不卡..在线观看| www.av在线官网国产| 国产午夜精品论理片| 久久热精品热| 深爱激情五月婷婷| 久久欧美精品欧美久久欧美| 黄色配什么色好看| 精品国内亚洲2022精品成人| 极品教师在线视频| 国产片特级美女逼逼视频| 精品免费久久久久久久清纯| 国产成年人精品一区二区| 久久99精品国语久久久| .国产精品久久| 国产亚洲av片在线观看秒播厂 | av在线观看视频网站免费| 欧美最新免费一区二区三区| 免费黄网站久久成人精品| 97热精品久久久久久| 亚洲五月天丁香| 色吧在线观看| 神马国产精品三级电影在线观看| 亚洲,欧美,日韩| 欧美一级a爱片免费观看看| 麻豆av噜噜一区二区三区| 国产精品久久视频播放| 国产一区亚洲一区在线观看| 在线观看一区二区三区| 亚洲国产高清在线一区二区三| 亚洲在线观看片| 人妻少妇偷人精品九色| 狂野欧美激情性xxxx在线观看| 少妇被粗大猛烈的视频| 波多野结衣高清无吗| 欧美最新免费一区二区三区| 亚洲欧美成人精品一区二区| 成人亚洲精品av一区二区| 国产人妻一区二区三区在| 午夜免费激情av| 国产免费视频播放在线视频 | 亚洲av日韩在线播放| 91精品一卡2卡3卡4卡| 午夜福利成人在线免费观看| 国产亚洲精品久久久com| 欧美性感艳星| 麻豆国产97在线/欧美| 在线观看一区二区三区| 日韩精品青青久久久久久| 久久99热这里只频精品6学生 | 久久久久性生活片| 日日摸夜夜添夜夜爱| 午夜a级毛片| 日韩一本色道免费dvd| 夜夜看夜夜爽夜夜摸| 中文资源天堂在线| 直男gayav资源| 能在线免费观看的黄片| 亚洲精品影视一区二区三区av| 久久人人爽人人爽人人片va| 欧美日本亚洲视频在线播放| 精品少妇黑人巨大在线播放 | 中文欧美无线码| 亚洲精品自拍成人| 国产毛片a区久久久久| 国产探花在线观看一区二区| 嘟嘟电影网在线观看| 国产乱来视频区| 久久久国产成人免费| 日日摸夜夜添夜夜爱| 18禁在线播放成人免费| 精品久久久久久久久av| 日日撸夜夜添| 少妇被粗大猛烈的视频| 蜜臀久久99精品久久宅男| 永久网站在线| 一级黄色大片毛片| av在线亚洲专区| 成人综合一区亚洲| 亚洲av成人精品一区久久| 亚洲国产精品久久男人天堂| 亚洲美女搞黄在线观看| 麻豆av噜噜一区二区三区| 亚洲一区高清亚洲精品| 久久草成人影院| 又爽又黄无遮挡网站| 国产单亲对白刺激| 麻豆乱淫一区二区| 日韩一区二区三区影片| 一区二区三区乱码不卡18| 一区二区三区免费毛片| 两个人视频免费观看高清| 一级毛片久久久久久久久女| 深爱激情五月婷婷| 丝袜美腿在线中文| 91在线精品国自产拍蜜月| 成人特级av手机在线观看| 亚洲国产精品专区欧美| 人人妻人人澡欧美一区二区| 永久免费av网站大全| 亚洲av二区三区四区| 亚洲欧美日韩东京热| 国产在线男女| 色5月婷婷丁香| 亚洲天堂国产精品一区在线| 能在线免费观看的黄片| 国产淫片久久久久久久久| 国内精品宾馆在线| 能在线免费看毛片的网站| 女人十人毛片免费观看3o分钟| 天美传媒精品一区二区| 成人漫画全彩无遮挡| 国产成人福利小说| 丰满乱子伦码专区| 国产成人福利小说| 国产亚洲最大av| 亚洲精品色激情综合| www.色视频.com| 日韩中字成人| 久久99精品国语久久久| 免费播放大片免费观看视频在线观看 | 免费在线观看成人毛片| 久热久热在线精品观看| av线在线观看网站| 亚洲人成网站高清观看| 可以在线观看毛片的网站| 汤姆久久久久久久影院中文字幕 | 色视频www国产| 国产69精品久久久久777片| 建设人人有责人人尽责人人享有的 | www.av在线官网国产| 伊人久久精品亚洲午夜| 看十八女毛片水多多多| 寂寞人妻少妇视频99o| 日本免费在线观看一区| 国内精品美女久久久久久| 婷婷色麻豆天堂久久 | 91久久精品国产一区二区成人| 91在线精品国自产拍蜜月| 亚洲欧美日韩卡通动漫| 性色avwww在线观看| 51国产日韩欧美| 午夜精品国产一区二区电影 | 亚洲成人久久爱视频| 国产精品熟女久久久久浪| 午夜免费激情av| 免费观看的影片在线观看| 丰满少妇做爰视频| 毛片女人毛片| 午夜福利视频1000在线观看| 大香蕉97超碰在线| 日韩欧美精品免费久久| 丝袜美腿在线中文| 久久6这里有精品| 18禁裸乳无遮挡免费网站照片| 能在线免费观看的黄片| 国产美女午夜福利| 午夜激情福利司机影院| 中文字幕精品亚洲无线码一区| 国产黄色视频一区二区在线观看 | 亚洲在久久综合| 麻豆一二三区av精品| 精品国内亚洲2022精品成人| 成人综合一区亚洲| 秋霞伦理黄片| 青春草视频在线免费观看| 九草在线视频观看| 最近中文字幕2019免费版| 纵有疾风起免费观看全集完整版 | 久久久久性生活片| 国产单亲对白刺激| 直男gayav资源| 青春草视频在线免费观看| 午夜精品一区二区三区免费看| 久久人妻av系列| 看黄色毛片网站| 欧美日韩国产亚洲二区| 国产成人freesex在线| 久久久久免费精品人妻一区二区| 少妇熟女aⅴ在线视频| 大话2 男鬼变身卡| 日本五十路高清| 国产 一区精品| 菩萨蛮人人尽说江南好唐韦庄 | 搡老妇女老女人老熟妇| 国产精品嫩草影院av在线观看| 熟女人妻精品中文字幕| 国产麻豆成人av免费视频| 成人亚洲精品av一区二区| 国产在线一区二区三区精 | 成人毛片a级毛片在线播放| 成人三级黄色视频| 午夜福利在线在线| 成人欧美大片| 我要看日韩黄色一级片| 简卡轻食公司| 亚洲欧美精品自产自拍| 人妻制服诱惑在线中文字幕| 白带黄色成豆腐渣| 免费观看在线日韩| 2021天堂中文幕一二区在线观| 久久久久久久亚洲中文字幕| 午夜久久久久精精品| 中文资源天堂在线| 日本黄色视频三级网站网址| 国产精品国产三级专区第一集| 国产成人免费观看mmmm| 久久久精品94久久精品| 天天躁日日操中文字幕| 非洲黑人性xxxx精品又粗又长| 高清毛片免费看| kizo精华| 免费观看在线日韩| 午夜日本视频在线| av又黄又爽大尺度在线免费看 | 欧美zozozo另类| 国产精品美女特级片免费视频播放器| 免费看日本二区| 日韩一区二区视频免费看| 久久久久久久久久久免费av| 日韩欧美 国产精品| 亚洲自偷自拍三级| 亚洲欧美日韩卡通动漫| 成人性生交大片免费视频hd| 蜜桃久久精品国产亚洲av| 午夜免费男女啪啪视频观看| 亚洲成人av在线免费| 91久久精品电影网| 在线观看一区二区三区| 成人特级av手机在线观看| 大香蕉97超碰在线| 91精品国产九色| 久久久精品大字幕| 欧美激情久久久久久爽电影| 日韩av不卡免费在线播放| 男人舔女人下体高潮全视频| 男女边吃奶边做爰视频| 嫩草影院新地址| 一本一本综合久久| 嫩草影院入口| 青青草视频在线视频观看| 中文精品一卡2卡3卡4更新| 草草在线视频免费看| 国产一区二区三区av在线| 男人舔奶头视频| 国产精品久久久久久久电影| 国产探花极品一区二区| 亚洲在久久综合| 日日摸夜夜添夜夜添av毛片| 国产伦精品一区二区三区四那| 高清在线视频一区二区三区 | 国产黄色小视频在线观看| 亚洲av成人av| 男人舔女人下体高潮全视频| 人妻夜夜爽99麻豆av| 天天一区二区日本电影三级| 午夜视频国产福利| 黄色欧美视频在线观看| 亚洲在线自拍视频| 国产精品蜜桃在线观看| 午夜激情福利司机影院| 久久精品久久久久久久性| 黄色欧美视频在线观看| 少妇熟女aⅴ在线视频| 婷婷色麻豆天堂久久 | 国产人妻一区二区三区在| 亚洲美女搞黄在线观看| 国产午夜精品一二区理论片| 伦理电影大哥的女人| 中文字幕av成人在线电影| 九九久久精品国产亚洲av麻豆| 观看美女的网站| 一本一本综合久久| 国产 一区 欧美 日韩| 国产探花极品一区二区| 国产精品综合久久久久久久免费| 久久这里只有精品中国| 听说在线观看完整版免费高清| 国产人妻一区二区三区在| 午夜免费男女啪啪视频观看| 日本黄大片高清| 久久婷婷人人爽人人干人人爱| 久久久精品欧美日韩精品| 日韩高清综合在线| 亚洲人成网站在线播| 欧美高清成人免费视频www| 中文字幕av成人在线电影| 亚洲自偷自拍三级| 国产在视频线精品| 极品教师在线视频| 日日摸夜夜添夜夜添av毛片| 欧美日韩一区二区视频在线观看视频在线 | 99久久精品一区二区三区| 欧美不卡视频在线免费观看| 又粗又爽又猛毛片免费看| 爱豆传媒免费全集在线观看| 亚洲婷婷狠狠爱综合网| 99久国产av精品| 不卡视频在线观看欧美| 精品人妻视频免费看| 最近视频中文字幕2019在线8| 2021少妇久久久久久久久久久| av黄色大香蕉| 人体艺术视频欧美日本| 高清日韩中文字幕在线| 最近手机中文字幕大全| 日本一本二区三区精品| 男人舔女人下体高潮全视频| 亚洲欧洲日产国产| 久久久国产成人免费| 国产大屁股一区二区在线视频| 一级黄色大片毛片| 亚洲av男天堂| av视频在线观看入口| 美女高潮的动态| 18+在线观看网站| 日本黄大片高清| 国产欧美另类精品又又久久亚洲欧美| 狠狠狠狠99中文字幕| 青春草国产在线视频| 午夜视频国产福利| 插逼视频在线观看| 男女下面进入的视频免费午夜| 久久精品影院6| 一区二区三区乱码不卡18| 欧美成人精品欧美一级黄| 人妻制服诱惑在线中文字幕| 欧美日本亚洲视频在线播放| 成人特级av手机在线观看| 国产精品久久久久久精品电影小说 | 欧美日韩在线观看h| 高清日韩中文字幕在线| 美女内射精品一级片tv| 中文字幕亚洲精品专区| 搞女人的毛片| 哪个播放器可以免费观看大片| 国产一区亚洲一区在线观看| 在线观看美女被高潮喷水网站| 久久久久性生活片| 欧美日韩国产亚洲二区| 神马国产精品三级电影在线观看| 噜噜噜噜噜久久久久久91| 麻豆成人午夜福利视频| 看片在线看免费视频| 亚洲真实伦在线观看| 久久99热这里只频精品6学生 | av专区在线播放| 午夜福利网站1000一区二区三区| 色综合站精品国产| 久久人人爽人人片av| 欧美人与善性xxx| 亚洲伊人久久精品综合 | 成人鲁丝片一二三区免费| 欧美日韩国产亚洲二区| 欧美日韩精品成人综合77777| videossex国产| 成人美女网站在线观看视频| 夜夜看夜夜爽夜夜摸| 久久精品影院6| 午夜精品在线福利| 欧美97在线视频| 国产三级中文精品| 视频中文字幕在线观看| 精品久久久久久成人av| 天堂中文最新版在线下载 | 舔av片在线| 国产精品伦人一区二区| 欧美激情久久久久久爽电影| 色吧在线观看| 国产中年淑女户外野战色| 色5月婷婷丁香| 九九久久精品国产亚洲av麻豆| 能在线免费看毛片的网站| 国产av一区在线观看免费| 免费观看在线日韩| a级毛片免费高清观看在线播放| 女人被狂操c到高潮| 在线观看66精品国产| 麻豆国产97在线/欧美| 久久草成人影院| 国产老妇女一区| 久久久精品94久久精品| 国产v大片淫在线免费观看| 成年女人看的毛片在线观看| 国产av不卡久久| 国产亚洲一区二区精品| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| 国产麻豆成人av免费视频| www.av在线官网国产| 欧美成人一区二区免费高清观看| 亚洲精品456在线播放app| 色网站视频免费| 淫秽高清视频在线观看| 成人亚洲精品av一区二区| 亚洲电影在线观看av| or卡值多少钱| 亚洲精品一区蜜桃| 久久久午夜欧美精品| av卡一久久| 成人一区二区视频在线观看| 中文欧美无线码| 2021少妇久久久久久久久久久| 色5月婷婷丁香| 亚洲欧洲日产国产| 九九爱精品视频在线观看| 在线观看av片永久免费下载| 69人妻影院| 免费一级毛片在线播放高清视频| 久久精品久久久久久噜噜老黄 | 少妇高潮的动态图| 97在线视频观看| 亚洲人成网站在线播| 亚洲欧美成人精品一区二区| 久久99精品国语久久久| 能在线免费看毛片的网站| 久久久久免费精品人妻一区二区| 免费不卡的大黄色大毛片视频在线观看 | 日韩中字成人| 天美传媒精品一区二区| 日韩视频在线欧美| 欧美日韩精品成人综合77777| 亚洲欧美中文字幕日韩二区| 黄色一级大片看看| 床上黄色一级片| 亚洲精品一区蜜桃| 日韩av不卡免费在线播放| 欧美zozozo另类| 久久久欧美国产精品| 九九久久精品国产亚洲av麻豆| 久久久久性生活片| 欧美日韩一区二区视频在线观看视频在线 | 内射极品少妇av片p| av又黄又爽大尺度在线免费看 | 成人午夜精彩视频在线观看| 日本色播在线视频| 亚洲aⅴ乱码一区二区在线播放| 91精品国产九色| av在线亚洲专区| 亚洲欧美精品自产自拍| 亚洲综合色惰| 69人妻影院| 久久精品国产99精品国产亚洲性色| 99久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 69人妻影院| 看片在线看免费视频| 亚洲欧美成人综合另类久久久 | 在线天堂最新版资源| 一级二级三级毛片免费看| 啦啦啦观看免费观看视频高清| 久久这里只有精品中国| a级毛色黄片| 人妻夜夜爽99麻豆av| 欧美成人a在线观看| 国产精品熟女久久久久浪| 国产毛片a区久久久久| 欧美性猛交╳xxx乱大交人| 欧美一级a爱片免费观看看| 国产一区二区在线观看日韩| 一级黄片播放器| 天堂中文最新版在线下载 | 久久久久性生活片| 三级国产精品欧美在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品乱码一区二三区的特点| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕| 国产不卡一卡二| 婷婷色av中文字幕| 两个人的视频大全免费| 成人无遮挡网站| 人妻制服诱惑在线中文字幕| 国产高清国产精品国产三级 | 亚洲国产精品国产精品| 国产激情偷乱视频一区二区| 最近最新中文字幕免费大全7| 国产精品蜜桃在线观看| 国产av在哪里看| 国产片特级美女逼逼视频| 欧美三级亚洲精品| 少妇猛男粗大的猛烈进出视频 | 国产精品女同一区二区软件| 麻豆一二三区av精品| 亚洲熟妇中文字幕五十中出| 国产 一区 欧美 日韩| 国产成人免费观看mmmm| 日本三级黄在线观看| 久久精品久久久久久噜噜老黄 | 天天躁夜夜躁狠狠久久av| 日韩亚洲欧美综合| 国产极品精品免费视频能看的| 一区二区三区乱码不卡18| 日韩中字成人| 久久人人爽人人片av| 国内少妇人妻偷人精品xxx网站| 在现免费观看毛片| 国产午夜福利久久久久久| 亚洲国产最新在线播放| 内射极品少妇av片p| 偷拍熟女少妇极品色| 欧美日本视频| 97在线视频观看| 波多野结衣巨乳人妻| 国产高清视频在线观看网站| 欧美一级a爱片免费观看看| 99久久中文字幕三级久久日本| av线在线观看网站| 精品国产三级普通话版| 亚洲久久久久久中文字幕| 久久亚洲精品不卡| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄 | 国产探花极品一区二区| 日本av手机在线免费观看| 日韩国内少妇激情av| 狠狠狠狠99中文字幕| 大香蕉久久网| 日韩av在线大香蕉| 人妻制服诱惑在线中文字幕| 久久精品久久精品一区二区三区| 少妇熟女aⅴ在线视频| 日本免费a在线| 日韩国内少妇激情av| 日日干狠狠操夜夜爽| 成年版毛片免费区| 日韩欧美精品免费久久| 看十八女毛片水多多多| 精品久久久久久久末码| 国产精品一区二区三区四区免费观看| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av涩爱| 两个人视频免费观看高清| www.av在线官网国产| 欧美激情在线99| 亚洲经典国产精华液单| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜 | 婷婷色综合大香蕉| 亚洲人成网站在线播| 久久99热这里只有精品18| 久久久久久久久久久丰满| 国产私拍福利视频在线观看| 国产精品麻豆人妻色哟哟久久 | 久久婷婷人人爽人人干人人爱| 中文字幕人妻熟人妻熟丝袜美| 亚洲一级一片aⅴ在线观看|