• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temporal changes in nitrogen acquisition of Japanese black pine (Pinus thunbergii) associated with black locust (Robinia pseudoacacia)

    2014-04-19 10:10:28LopezMizotaNoboriSasakiYamanaka
    Journal of Forestry Research 2014年3期

    M.L.Lopez C.? C.Mizota ? Y.Nobori ? T.Sasaki ? T.Yamanaka

    Introduction

    The nitrogen-fixing tree black locust (Robinia pseudoacacia) is the second most abundant deciduous tree species in the world (Malcolm et al.2008).This competitive, early-successional species native to the Appalachian uplands in USA has rapidly invaded several countries (Malcolm et al.2008).Nitrogen-fixing species can impact the structure and function of plant communities by contributing a high annual budget of N-rich litter of up to 100 kg·ha-1·a-1(Binckley et al.1985; Moon and Haruki 1999; Baddey et al.2000; Schulze 2000; Rice et al.2004).Invasion of these species elevates soil N concentration and increases rates of subsequent N cycling, including mineralization and nitrification (and probably denitrification) in forest ecosystems (Binckley et al.1985; Kawata 1987; Shulze et al.1991; Rice et al.2004; Malcolm et al.2008).

    In Japan, black locust was first introduced in the middle of the 19th century to stabilize Japanese black pine (Pinus thunbergii) plantations on coastal sand dunes along the Sea of Japan where N-poor habitat prevails.The legume species has recently invaded gaps caused by the spread of pine nematode (Taniguchi et al.2007).Taniguchi et al.(2007) reported that the invasion reduces N acquisition by the associated black pine due to elevated concentration of nitrate-N.Temporal changes in the process of N acquisition by black locust and associated black pine are expected to be recorded in the annual rings and to represent past interactions (Poulson et al.1995; Sauer et al.2004; Savard 2010).

    Use of the naturally abundant N isotope composition (δ15N/14N ratio), commonly designated as δ15N, (a per mil variation relative to atmospheric nitrogen, where δ15N=0) has been recognized as a method of tracing N nutrition in studies of forest ecosystems (Natelhoffer and Fry 1988; Gebauer and Shulze 1991; Robinson 2001; Hart and Classen 2003; Lopez et al.2010; Mizota et al.2011).Under humid and temperate climatic conditions, δ15N values for wood of black locust are expected to be around zero per mil because limited N isotope fractionation results from biological nitrogen fixation (Robinson 2001).Black pine grown in humid and temperate climates such as those of central to southern Japan has δ15N values in a narrow range for any geographic region.This reflects the sole N source (NH4+and NO3--N) in meteoric precipitation in open soil systems (Lopez et al.2010; Mizota et al.2011).In forest gaps newly formed after nematode disease outbreaks, e.g.those in forests along the Sea of Japan coast, black locust invades, resulting in the formation of mixed forests (Taniguchi et al.2007).In any forest ecosystem, when other nutrients are not limiting, increases in N availability can enhance tree growth (Bouillet et al.2008).Black locust is a fast growing species with high biomass production.Because of its N fixation ability it can be used to reduce the demand for external fertilization, especially if the timing for maximum N transfer from black locust to black pine is determined.The aim of this study was to investigate N acquisition by Japanese black pine associated with black locust by using δ15N analyses of annual tree rings (resolution of one year) at two locations in Japan.We discuss temporal changes in δ15N in relation to the growth of associated N-fixing legumes.

    Materials and methods

    Description of the study sites

    Two study sites were selected to represent different durations of black locust establishment in mixed forest with black pine.Recently invaded forest was represented by the Shohnai site in northeast Japan, while longer black locust presence was represented by the Kita-Kyushu site in southwest Japan.Soils at both study sites were classified as Dystric Regosols (FAO/UNESCO system) developed on coastal dune sands.Mean annual air temperature and annual rainfall at the nearest meteorological stations (Sakata and Fukuoka, respectively) are 12.1 and 16.2°C, and 1857 and 1604 mm, respectively.A brief description of the sites is given below.

    Shohnai site

    This study site is representative of temperate-humid regions in Yamagata Prefecture, northeast Japan.The Shohnai (38°49'14"N, 139°47'47"E) coastal areas in northern Yamagata are subject to strong seasonal winds during winter.For more than 150 years, black pine has been planted along the coast to prevent sand movement, which causes serious damage to agricultural crops in back-dune areas.The site selected for sample collection was located on the west-facing slope of a coastal sand dune where black locust recently (early 1990s) invaded clearings in black pine forests.The growth of black locust is faster than that of the associated black pine (Kawata 1987; Taniguchi et al.2007) and contributes to the increase of N input to soils, providing a new N source for the surrounding black pine.The densities of Pinus thunbergii and Robinia pseudoacacia on the study area was estimated at 2,100 and 2,400 trees per hectare, respectively.Kita-Kyushu site

    This study site represents the warm and humid regions in Fukuoka in southwest Japan.The site (33°39'53" N, 130°21'21" E) was along the Genkai Sea at the location of the flat or nearly flat National Reserve of Marine Park.This area was also invaded by black locust after clearings formed in black pine forests infested by pine nematodes, but invasion occurred about 20 years earlier here (early 1970s) than at the Shohnai site (Gyokusen et al.1991).At this site, decaying large trunks of black locust are common, suggesting that black locust has occurred here for at least two generations.At this site there was no pure black locust stand.The densities of P.thunbergii and R.pseudoacacia during the present study site were estimated at 1760 and 4750 trees per hectare, respectively (Gyokusen et al.1991).

    Selection of annual tree ring samples

    Representative trees were carefully selected based on observations of their spatial distribution.Tree cores were collected at both sites from Japanese black pine (soft wood) and black locust (porous wood) trees, using an increment borer (diameter of 12 mm, Haglof, Langsele, Sweden).Core samples were collected as follows: One core sample from a pure black pine stand, three core samples from three black pine trees in a mixed forest with black locust (at the Kita-Kyushu site only one sample was collected) and one core sample from a pure black locust stand.The increment borer was inserted into the tree from one side to the other side of the trunk (thus two sides were collected at once with the pith included).All samples were collected at breast height (1.3 m above ground level).The cores were taken to a laboratory for sampling of annual tree-rings (resolution of one year) to quantify δ15N values.One of the core samples from black pine in the mixed forest was analyzed from 1992 while the other two were analyzed from 1999 to 2009.The tree ring series ranged from the first year (1990/1992) to 2009 except for the sample from a pure black pine stand from Shohnai that was approximately 42 years old.All analyzed tree rings corresponded to the sapwood area.Each tree ring was systematically dissected using a sharp, high-quality, stainless blade, and dried at 55 °C overnight.Each ring sample was then cut into small pieces using a nail cutter.

    Nitrogen isotope analysis

    Extraction of labile N was not carried out because there were negligible changes in δ15N values in tree rings after extraction of labile N in previous studies (Couto-Vazquez and Gonzales Prieto 2010; Doucet et al.2011; Lopez et al.2011).δ15N values for dry ring samples were estimated using a CF-IRMS (continuous-flow type mass spectrometer: Iso Prime mass spectrometer, GV Instruments, UK) installed at the Faculty of Science, Okayama University.The evolved gas was first passed through a column packed with solid CaO-NaOH reagent (soda lime) to eliminate excess CO2and then subjected to gas chromatography to separate N2followed by mass spectrometric measurement of15N/14N ratios.The isotopic compositions of samples were expressed relative to atmospheric N2(δ15N=0) on scales normalized to the known δ15N values of laboratory working standards for glycine (δ15N=-0.3‰), which was normalized to L-glutamic acid distributed as USGS-40 (δ15N=-0.2‰) by SI Science Inc., Japan.The working standard was analyzed after every eight to ten samples during CF-IRMS runs to assess the replicability of the isotope measurements and normalization.One pulse of pure N2reference gas from a tank reservoir (δ15N=-2.5‰) was discharged into the IRMS at the beginning of each chromatogram for both standards and samples.The accuracy obtained for standards and samples during the overall analytical procedure was better than ±0.2‰for sample sizes of ≥10 μg N.

    Results and discussion

    Temporal changes in tree ring nitrogen isotope composition

    It is well documented that tree-rings of Japanese black pine retain their intrinsic record of N acquisition (Lopez et al.2010; Mizota et al.2011; Lopez et al.2011).Temporal changes in nitrogen isotope composition of tree-rings grown after 1992/1994 from Shohnai and Kita-Kyushu sites are shown in Fig.1 and 2, respectively.Clear differences were recorded for δ15N values of black locust and black pine.

    Fig.1: Temporal changes in δ15N values of annual tree-rings from Shohnai site.The standard deviation of black pine in the mixed stand corresponds to three core samples per tree-ring.Higher variation in δ15N value of ring samples from black pine, relative to those of black locust is also noticeable.For detailed explanation of the plots described in the legends, see the section Materials and methods.

    Shohnai site

    δ15N values of black locust tree rings from the pure stand varied in a narrow range from -1.1‰ to -0.5‰ (average= -0.9‰, n=18).Such values approximate those of atmospheric N2(δ15N= 0).Because limited N isotope fractionation is associated with N fixation (Robinson 2001), this result confirms the substantial contribution by N fixation in this woody legume.δ15N values of tree rings from the pure black pine stand ranged from -5.3‰ to -2.3‰, averaging -3.9‰.Nitrogen isotope values were similar to those of inorganic nitrogen input from meteoric precipitation as observed at a nearby site (δ15N=-5.5‰ to -1.7‰) (Fukuzaki and Hayasaka 2009) during May 2001 to November 2002.

    Fig.2: Temporal changes in δ15N values of annual tree-rings from Kita-Kyushu site.The δ15N values of ring samples from black pine are more variable, relative to those of black locust.For detailed explanation of the plots described in the legends, see the section Materials and methods.

    δ15N values for tree rings from black pine in the mixed stand were markedly higher than those from the pure stand.A steady increase was observed from 1992 (-2.6‰) to 2009 (-2.1‰±0.6‰).Tree ring δ15N values in 1999 and 2004 were (-3.2±1.4)‰ and (-1.4±0.4)‰, respectively.The δ15N values for 2002 to 2009 approached those of the associated black locust.

    δ15N values of tree rings of black pine for the first and second years (1992 to 1993) in the mixed stand showed clearly higher values (-2.7‰ and -2.6‰) than for the corresponding years for the pure black pine stand (-4.5‰ and -4.3‰).This could indicate that somewhat elevated δ15N values resulted from the N input from past invasion of black locust prior to the present stand of Japanese black pine (Fig.1).

    Kita-Kyushu site

    The overall temporal trend of δ15N values at the Kita-Kyushu site was different from that observed for the Shohnai site.From 1994, δ15N values of black locust tree rings in the mixed stand ranged from -2.0‰ to -0.5‰, averaging -1.2‰.

    δ15N values for black pine tree rings from a pure stand ranged from -4.7‰ to -2.9‰ for the period 1992?2009, averaging -3.7‰.These values were nearly identical to those for the Shohnai site (δ15N=-3.9‰).In contrast, δ15N values for tree rings from black pine in the mixed stand showed higher values that ranged from -2.3‰ to 0 and averaged -1.2‰ for the entire growth period, suggesting incorporation of N derived from N2 fixation from the very first year of Japanese black pine establishment in this area.This indicates that several generations (more than 30 years) of black locust in this area have enriched soil N to the point that it is readily available to newly established Japanese black pine (Fig.2).

    Potential use of nitrogen stable isotope composition in analysis of the acquisition of nitrogen in mixed forests

    From the temporal fluctuations and elevated isotope values observed in tree rings of black pines on both sites, it is clear that the main cause of this change is the acquisition of N derived from N2fixation through association with black locust.To a lesser degree, however, the roles of processes such as mineralization, nitrification and denitrification must also be considered.

    It is well known that woody legumes fix variable amounts of atmospheric N2.Estimates range from nearly 0 to 204 kg·ha-1·a-1(Bouillet et al.2008).The highest value reported for black locust was 110 kg·ha-1·a-1(calculated contribution of atmospheric N2relative to whole N absorbed from the environment = 90%) (Danso et al.1955).The nitrogen isotope analysis for annual tree rings can be applied to forest management practices in which woody legumes are mixed with other species and, as in the case of this study, can enhance growth of black pine forests that provide windbreaks in coastal areas along the Sea of Japan.However, the competition between the two species could counterbalance the positive effect of black locust on the growth of black pine as reported for red alder-Douglas fir forest (Binckley et al.1985).Malcolm et al.(2008) reported that black locust was completely removed prior to the reestablishment of pine-oak forest because of the enhanced growth of these species to soils enriched by high levels of N resulting from the prior presence of black locust.However, this is apparently not the case for black pine since it was not affected by high levels of N in the soil in forest receiving high input of avian N (Lopez et al.2011; Mizota et al.2011).

    Taniguchi et al.(2007) reported that black pine relies on ectomycorrhizal (ECM) colonization for N uptake from the soil.Since the ECM community changes because of N enrichment in the soil, the N enrichment effect of black locust on black pine trees is negative.Nevertheless, black pine trees exposed to high inputs of avian N grow without limitation in other areas of Japan (Lopez et al.2011; Mizota et al.2011), suggesting that even when ECM symbiosis is modified, black pine trees can uptake available N directly from the soil.Changes in ECM functions related to increases in N input remain, however, a topic for future studies.

    Our study results contribute to understanding the positive role of black locust in forest management practices for black pine in coastal areas of the Sea of Japan.Elevation of δ15N values in tree rings of Japanese black pine resulting from biological N fixation from associated black locust saturates within ca.10 years after the black locust invasion (Fig.1).This estimate enables improved scheduling of the removal of black locust during the early growth stages of black pine plantations.Such practices have not yet been implemented, despite the role of black locust in N fixation under low soil fertility conditions.

    Acknowledgement

    We are grateful to two anonymous reviewers for providing constructive comments and to Dr A.L.Cronin for improving the English in the paper.

    Boddey RM, Peoples MB, Palmer B, Dart P.2000.Use of the15N natural abundance technique to quantify biological nitrogen fixation by woody perennials.Nutr Cycl Agroecosys, 57: 235?270.

    Bouillet JP, Laclau JP, Gon?alves JLM, Moreira MZ, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A.2008.Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil.2: Nitrogen accumulation in the stands and biological N2fixation.For Ecol Manag, 255: 3918?3930.

    Couto-Vazquez A, Gonzalez-Prieto SJ.2010.Effects of climate, tree age, dominance and growth on δ15N in young pinewoods.Trees, 24: 507?514.

    Danso SKA, Zapata F, Awonaike KO.1955.Measurement of biological N2fixation in field-grown Robinia pseudoacacia L.Soil Biol Biochem, 27: 415?419.

    Doucet A, Savard MM, Begin C, Smirnoff A.2011.Is wood pre-treatment essential for tree-ring nitrogen concentration and isotope analysis? Rapid Commu Mass Spectr, 25: 469?475.

    Fukuzaki N, Hayasaka H.2009.Seasonal variations of nitrogen isotope ratios of ammonium and nitrate in precipitations collected in the Yahiko-Kakuda mountains area in Niigata prefecture, Japan.Water, Air, Soil Pollut, 203: 391?397.

    Gebauer G, Schulze ED.1991.Carbon and nitrogen isotope ratios in different compartments of a healthy and declining Picea abies forest in the Fichtelgebirge, NE Bavaria.Oecologia, 87: 198?207.

    Gyokusen K, Iijima Y, Yahata H.1991.Spatial distribution and morphological features of root systems in Niseakashia (Robinia pseudo-acacia L.) growing under a coastal black pine forest.Bull Kyushu Univ Forests, 64: 13?28.(In Japanese)

    Hart SC, Classen AT.2003.Potential for assessing long-term dynamics in soil nitrogen availability from variations in δ15N of tree rings.Isotopes Environ Health Stud, 39: 15?28.

    Kawata H.1987.Difference of nutrient amounts returned to soil by litter falls and their effects on soil properties between Pinus thunbergii and Robinia pseudoacacia forests in coastal sand dune.Bull Niigata Univ For, 20: 51?56.(In Japanese)

    Lopez CML, Mizota C, Yamanaka T, Nobori Y.2010.Temporal changes in tree-ring nitrogen of Pinus thunbergii trees exposed to Black-tailed Gull (Larus crassirostris) breeding colonies.Appl Geochem, 25: 1699?1702.Lopez CML, Mizota C, Yamanaka T, Nobori Y.2011.Effects of pre-treatment on the nitrogen isotope composition of Japanese black pine (Pinus thunbergii) tree-rings as affected by high N input.Rapid Commu Mass Spectr, 25: 3298?3302.

    Malcolm GM, Bush DS, Rice SK.2008.Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a pine-oak ecosystem.Restor Ecol, 16: 70?78.

    Mizota C, Lopez CML, Yamanaka T, Nobori Y.2011.Differential response of two Pinus spp.to avian nitrogen input as revealed by nitrogen isotope analysis for tree-rings.Isot Environ Health Stud, 47: 62?70.

    Montagnini F, Haines B, Boring L, Swank W.1986.Nitrification potentials in early successional black locust and in mixed hardwood forest stands in the southern Appalachians, USA.Biogeochemistry, 2: 197?210.

    Moon HS, Haruki M.1999.Nutrient distribution and content in plant tissue, forest floor, and litterfall in four pioneer stands on volcano Mt.Showa-Shinzan.J For Environ, 41: 7?11.

    Natelhoffer KJ, Fry B.1988.Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter.Soil Sci Soc Am J, 52: 1633?1640.

    Poulson SR, Chamberlain CP, Friedland AJ.1995.Nitrogen isotope variation of tree rings as a potential indicator of environmental change.Chem Geol (Iso.Geosci.Sec.), 125: 307?315.

    Rice SK, Westerman B, Federici R.2004.Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem.Plant Ecol, 174: 97?107.

    Robinson D.2001.δ15N as an integrator of the nitrogen cycle.Trends Ecol Evol, 16: 153?162.

    Sauer M, Cherubini P, Ammann M, De Cinti B, Siegwolf R.2004.First detection of nitrogen from NOxin tree rings: a15N/14N study near a motorway.Atmosp Environ, 38: 2779?2787.

    Savard MM.010.Tree-ring stable isotopes and historical perspectives on pollution – An overview.Environ Pollu, 158: 2007?2013.

    Schulze ED, Gebauer G, Ziegler H, Lange OL.1991.Estimates of nitrogen fixation by trees on an aridity gradient in Namibia.Oecologia, 88: 451?455.

    Schulze ED.2000.Carbon and nitrogen cycling in European forest ecosystems.Ecological Studies, 142: 3?13.

    Taniguchi T, Tamai S, Yamanaka N, Futai K.2007.Inhibition of the regeneration of Japanese black pine (Pinus thunbergii) by black locust (Robinia pseudoacacia) in coastal sand dunes.J For Res, 12: 350?357.

    精品人妻熟女毛片av久久网站| 观看av在线不卡| 色吧在线观看| 高清欧美精品videossex| 亚洲五月色婷婷综合| 国产在线一区二区三区精| 18禁国产床啪视频网站| 午夜日本视频在线| 观看av在线不卡| 久久久国产一区二区| 亚洲国产最新在线播放| 久久久久久人人人人人| 亚洲视频免费观看视频| 女人久久www免费人成看片| 日韩人妻精品一区2区三区| 99久久精品国产亚洲精品| 日日摸夜夜添夜夜爱| 妹子高潮喷水视频| 久久av网站| 亚洲精品日韩在线中文字幕| 亚洲av男天堂| 9191精品国产免费久久| 欧美av亚洲av综合av国产av | av卡一久久| 老司机靠b影院| 国产一卡二卡三卡精品 | 日日爽夜夜爽网站| 午夜激情av网站| 亚洲av在线观看美女高潮| 欧美在线黄色| 亚洲少妇的诱惑av| 性色av一级| 国产精品麻豆人妻色哟哟久久| 黄色视频不卡| 亚洲人成电影观看| 亚洲成国产人片在线观看| 国产亚洲午夜精品一区二区久久| 国产一区二区 视频在线| av卡一久久| 九色亚洲精品在线播放| 亚洲av成人不卡在线观看播放网 | 亚洲精品国产一区二区精华液| 精品久久蜜臀av无| √禁漫天堂资源中文www| 精品第一国产精品| 欧美精品av麻豆av| 亚洲欧洲日产国产| www.熟女人妻精品国产| 国精品久久久久久国模美| 久久人人爽av亚洲精品天堂| 99国产精品免费福利视频| 搡老岳熟女国产| 亚洲视频免费观看视频| 不卡视频在线观看欧美| 久久久精品免费免费高清| 男女床上黄色一级片免费看| 国产成人精品在线电影| 亚洲av日韩在线播放| 两性夫妻黄色片| 精品久久久久久电影网| 高清av免费在线| 国产日韩一区二区三区精品不卡| 久久精品国产综合久久久| 9热在线视频观看99| 亚洲国产成人一精品久久久| 欧美av亚洲av综合av国产av | 精品一区在线观看国产| 一边摸一边做爽爽视频免费| 亚洲成人国产一区在线观看 | 午夜福利视频在线观看免费| 99re6热这里在线精品视频| 亚洲七黄色美女视频| 久久久久精品久久久久真实原创| 免费久久久久久久精品成人欧美视频| xxxhd国产人妻xxx| 秋霞在线观看毛片| 国产精品香港三级国产av潘金莲 | 午夜日本视频在线| 免费久久久久久久精品成人欧美视频| av卡一久久| 一边摸一边抽搐一进一出视频| 久久久国产欧美日韩av| 亚洲一区二区三区欧美精品| 我的亚洲天堂| videos熟女内射| 免费女性裸体啪啪无遮挡网站| 色综合欧美亚洲国产小说| 亚洲一区中文字幕在线| 国产伦理片在线播放av一区| 亚洲欧洲国产日韩| 男人爽女人下面视频在线观看| 秋霞伦理黄片| 街头女战士在线观看网站| 人人妻人人添人人爽欧美一区卜| 高清在线视频一区二区三区| 欧美激情高清一区二区三区 | 美女视频免费永久观看网站| 黄色视频不卡| 少妇人妻久久综合中文| 曰老女人黄片| 深夜精品福利| 亚洲伊人久久精品综合| 一边摸一边抽搐一进一出视频| 欧美变态另类bdsm刘玥| 午夜av观看不卡| 啦啦啦在线免费观看视频4| 成年av动漫网址| 99精国产麻豆久久婷婷| 国产视频首页在线观看| 久久人人97超碰香蕉20202| 亚洲成人av在线免费| 日韩一卡2卡3卡4卡2021年| 欧美日韩视频高清一区二区三区二| 国产一级毛片在线| 免费高清在线观看日韩| 多毛熟女@视频| 国产亚洲av高清不卡| 国产精品二区激情视频| 中国三级夫妇交换| 亚洲欧美激情在线| 国产在线免费精品| 国产精品人妻久久久影院| 又黄又粗又硬又大视频| 乱人伦中国视频| 欧美日韩一区二区视频在线观看视频在线| 久久久精品94久久精品| 亚洲精品第二区| 亚洲视频免费观看视频| 又大又黄又爽视频免费| 曰老女人黄片| 黄色一级大片看看| 国产熟女午夜一区二区三区| 国产精品女同一区二区软件| 天堂俺去俺来也www色官网| 成年人免费黄色播放视频| 精品一区二区三区四区五区乱码 | 亚洲熟女毛片儿| 两个人免费观看高清视频| 日韩大码丰满熟妇| 男男h啪啪无遮挡| 久久精品国产a三级三级三级| 天堂中文最新版在线下载| 欧美国产精品一级二级三级| av线在线观看网站| 麻豆av在线久日| 啦啦啦中文免费视频观看日本| 亚洲伊人色综图| 在线天堂最新版资源| 国产精品秋霞免费鲁丝片| 黑人欧美特级aaaaaa片| 精品少妇一区二区三区视频日本电影 | 黄色毛片三级朝国网站| 成年人午夜在线观看视频| 女人被躁到高潮嗷嗷叫费观| 国产又色又爽无遮挡免| 99热国产这里只有精品6| 夜夜骑夜夜射夜夜干| 日韩欧美一区视频在线观看| 纵有疾风起免费观看全集完整版| 久久久久国产一级毛片高清牌| 好男人视频免费观看在线| 久久久久久人妻| 欧美xxⅹ黑人| 久久久久久久久免费视频了| 国产野战对白在线观看| 国产精品国产三级专区第一集| 啦啦啦视频在线资源免费观看| 欧美av亚洲av综合av国产av | 亚洲精品国产av成人精品| 日韩制服丝袜自拍偷拍| 久久精品熟女亚洲av麻豆精品| 国产一卡二卡三卡精品 | 国产熟女午夜一区二区三区| 成人影院久久| 国产精品久久久久久精品电影小说| av线在线观看网站| 欧美老熟妇乱子伦牲交| 男女边摸边吃奶| 欧美日韩亚洲国产一区二区在线观看 | 99九九在线精品视频| 99久久人妻综合| 国产成人精品在线电影| 亚洲av成人精品一二三区| 久久国产亚洲av麻豆专区| 国产xxxxx性猛交| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频精品| 日韩电影二区| 国产一区二区在线观看av| 老司机在亚洲福利影院| 女性生殖器流出的白浆| 在线观看国产h片| www.自偷自拍.com| 精品亚洲乱码少妇综合久久| 亚洲激情五月婷婷啪啪| 女人爽到高潮嗷嗷叫在线视频| 亚洲视频免费观看视频| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 男女免费视频国产| av卡一久久| 国产精品久久久人人做人人爽| 亚洲欧美成人综合另类久久久| av女优亚洲男人天堂| 啦啦啦 在线观看视频| 日韩中文字幕视频在线看片| 男人舔女人的私密视频| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区久久| 国产成人一区二区在线| 亚洲一级一片aⅴ在线观看| 天堂俺去俺来也www色官网| 丝袜美腿诱惑在线| 一二三四中文在线观看免费高清| 尾随美女入室| 日本猛色少妇xxxxx猛交久久| 亚洲熟女毛片儿| 国产不卡av网站在线观看| 1024视频免费在线观看| 男女国产视频网站| 侵犯人妻中文字幕一二三四区| 久久精品熟女亚洲av麻豆精品| av.在线天堂| 爱豆传媒免费全集在线观看| 丰满少妇做爰视频| 亚洲图色成人| 欧美日韩综合久久久久久| 国产国语露脸激情在线看| 男女国产视频网站| 在线 av 中文字幕| 少妇精品久久久久久久| 亚洲七黄色美女视频| 亚洲成国产人片在线观看| 国产精品久久久久成人av| 在线观看人妻少妇| 亚洲av日韩在线播放| 亚洲国产av影院在线观看| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 国产免费现黄频在线看| 操美女的视频在线观看| 国产在视频线精品| 国产一区有黄有色的免费视频| 国产伦人伦偷精品视频| 可以免费在线观看a视频的电影网站 | 亚洲国产成人一精品久久久| 伦理电影大哥的女人| 国产精品秋霞免费鲁丝片| 一本大道久久a久久精品| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 亚洲国产精品一区三区| 中文字幕亚洲精品专区| 夫妻性生交免费视频一级片| 色吧在线观看| 午夜福利影视在线免费观看| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| 国产xxxxx性猛交| 日韩av不卡免费在线播放| 免费av中文字幕在线| 晚上一个人看的免费电影| 亚洲欧美一区二区三区黑人| 一级毛片电影观看| 国产爽快片一区二区三区| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 如何舔出高潮| 免费观看人在逋| 国产精品欧美亚洲77777| 女人被躁到高潮嗷嗷叫费观| 丝袜美腿诱惑在线| 欧美国产精品一级二级三级| 久久久久久久国产电影| 狠狠婷婷综合久久久久久88av| 中文字幕最新亚洲高清| 日韩制服丝袜自拍偷拍| 在线看a的网站| 亚洲欧洲精品一区二区精品久久久 | 国产日韩欧美视频二区| 国产精品.久久久| 中文字幕色久视频| 国产乱来视频区| av有码第一页| 久久久久国产一级毛片高清牌| 久热爱精品视频在线9| 国产一区二区三区综合在线观看| 亚洲国产av影院在线观看| 曰老女人黄片| 亚洲,欧美精品.| 日韩精品有码人妻一区| 亚洲综合精品二区| 人妻 亚洲 视频| 亚洲av成人精品一二三区| av不卡在线播放| 美女中出高潮动态图| 制服诱惑二区| 亚洲精品国产av成人精品| av视频免费观看在线观看| 少妇被粗大猛烈的视频| 一区二区三区乱码不卡18| 丝袜喷水一区| 母亲3免费完整高清在线观看| 青青草视频在线视频观看| 极品少妇高潮喷水抽搐| 国产女主播在线喷水免费视频网站| 丰满迷人的少妇在线观看| 日韩制服丝袜自拍偷拍| 国产成人精品无人区| 黑人欧美特级aaaaaa片| 91成人精品电影| 久久久久久久久久久久大奶| 亚洲欧洲精品一区二区精品久久久 | 国产精品免费视频内射| 男女床上黄色一级片免费看| 最近最新中文字幕免费大全7| 老司机在亚洲福利影院| 亚洲欧美成人精品一区二区| 色吧在线观看| 女的被弄到高潮叫床怎么办| 亚洲欧美一区二区三区黑人| av一本久久久久| 中文字幕亚洲精品专区| 天堂中文最新版在线下载| 久久热在线av| 极品少妇高潮喷水抽搐| 最新的欧美精品一区二区| 在线观看免费高清a一片| 久久国产精品男人的天堂亚洲| 只有这里有精品99| 99久久综合免费| 久久国产精品男人的天堂亚洲| 国产精品久久久久久人妻精品电影 | 日韩av免费高清视频| 国产老妇伦熟女老妇高清| 午夜免费观看性视频| 欧美日韩一级在线毛片| 一本久久精品| 宅男免费午夜| 国产麻豆69| 97精品久久久久久久久久精品| www.av在线官网国产| 午夜激情久久久久久久| 亚洲熟女毛片儿| 精品免费久久久久久久清纯 | 精品一品国产午夜福利视频| 人体艺术视频欧美日本| 国产男女内射视频| 国产精品久久久久久久久免| 美女脱内裤让男人舔精品视频| 亚洲欧洲精品一区二区精品久久久 | 成年人免费黄色播放视频| 中文字幕色久视频| 免费看av在线观看网站| 肉色欧美久久久久久久蜜桃| av国产久精品久网站免费入址| 欧美激情极品国产一区二区三区| 国产精品久久久人人做人人爽| 免费久久久久久久精品成人欧美视频| 久热这里只有精品99| 高清av免费在线| 国产精品香港三级国产av潘金莲 | 欧美日韩精品网址| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 观看av在线不卡| 女的被弄到高潮叫床怎么办| 国产麻豆69| 亚洲av在线观看美女高潮| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久| 爱豆传媒免费全集在线观看| 久久婷婷青草| 制服人妻中文乱码| 日本黄色日本黄色录像| 在线观看免费高清a一片| 国产成人精品福利久久| 一级毛片电影观看| 亚洲第一av免费看| 日本猛色少妇xxxxx猛交久久| 午夜福利乱码中文字幕| 久久久精品94久久精品| 人妻一区二区av| 欧美日韩视频高清一区二区三区二| 人妻一区二区av| 人人妻人人添人人爽欧美一区卜| 五月开心婷婷网| 大片免费播放器 马上看| 夫妻性生交免费视频一级片| 亚洲四区av| 纵有疾风起免费观看全集完整版| 免费黄色在线免费观看| 亚洲色图 男人天堂 中文字幕| 婷婷成人精品国产| 久久这里只有精品19| 男女午夜视频在线观看| 啦啦啦在线观看免费高清www| 国产免费又黄又爽又色| 国产精品 欧美亚洲| 久久久精品免费免费高清| 国产视频首页在线观看| 亚洲在久久综合| xxxhd国产人妻xxx| 国产男女超爽视频在线观看| 99久国产av精品国产电影| 亚洲一码二码三码区别大吗| 久久人人爽人人片av| 街头女战士在线观看网站| 飞空精品影院首页| 少妇人妻久久综合中文| 亚洲国产看品久久| 制服人妻中文乱码| 国产一区二区激情短视频 | 久久热在线av| 国产精品.久久久| 天天躁日日躁夜夜躁夜夜| 欧美xxⅹ黑人| 亚洲五月色婷婷综合| 亚洲美女黄色视频免费看| 在线亚洲精品国产二区图片欧美| 亚洲免费av在线视频| 男人添女人高潮全过程视频| 久久久精品94久久精品| 日本黄色日本黄色录像| 一二三四中文在线观看免费高清| 免费在线观看完整版高清| 国产高清国产精品国产三级| 国产探花极品一区二区| 午夜日韩欧美国产| 亚洲欧美一区二区三区黑人| 亚洲国产欧美网| 国产在线免费精品| 亚洲精品国产av成人精品| 国产女主播在线喷水免费视频网站| 在线免费观看不下载黄p国产| 欧美日韩成人在线一区二区| 天天躁夜夜躁狠狠躁躁| 国产精品人妻久久久影院| 欧美黑人精品巨大| 久久久久久久精品精品| 国产成人精品福利久久| 校园人妻丝袜中文字幕| 亚洲成av片中文字幕在线观看| 国产免费视频播放在线视频| 一级毛片黄色毛片免费观看视频| 男人爽女人下面视频在线观看| 成年美女黄网站色视频大全免费| 久热爱精品视频在线9| 国产一区二区三区av在线| 亚洲美女搞黄在线观看| xxx大片免费视频| 国产精品国产av在线观看| 精品一区二区三区av网在线观看 | 精品第一国产精品| 成人免费观看视频高清| 日本欧美国产在线视频| 汤姆久久久久久久影院中文字幕| 亚洲国产成人一精品久久久| 青草久久国产| 精品国产超薄肉色丝袜足j| 中文字幕人妻熟女乱码| 亚洲国产毛片av蜜桃av| 久久久久精品国产欧美久久久 | 一级毛片我不卡| 老司机影院毛片| 美女福利国产在线| 精品少妇黑人巨大在线播放| 在线观看国产h片| 赤兔流量卡办理| 黑人猛操日本美女一级片| 国产日韩欧美在线精品| 日韩大片免费观看网站| 亚洲伊人色综图| 久久久久精品久久久久真实原创| 国产精品久久久久久久久免| 只有这里有精品99| 一边摸一边做爽爽视频免费| 一级,二级,三级黄色视频| 亚洲欧美中文字幕日韩二区| 黄频高清免费视频| 国产精品久久久久成人av| 香蕉丝袜av| 欧美日韩国产mv在线观看视频| 国产精品.久久久| 国产成人免费无遮挡视频| 日韩,欧美,国产一区二区三区| 伦理电影免费视频| 久久精品aⅴ一区二区三区四区| 午夜激情久久久久久久| 日本欧美视频一区| 大码成人一级视频| 欧美av亚洲av综合av国产av | 人人妻,人人澡人人爽秒播 | 亚洲av中文av极速乱| 亚洲av欧美aⅴ国产| 另类精品久久| 最新在线观看一区二区三区 | 色94色欧美一区二区| 国产片特级美女逼逼视频| 大香蕉久久成人网| 女人高潮潮喷娇喘18禁视频| 国产人伦9x9x在线观看| 免费高清在线观看日韩| 在线免费观看不下载黄p国产| 99热国产这里只有精品6| 欧美在线黄色| 观看美女的网站| 你懂的网址亚洲精品在线观看| 秋霞在线观看毛片| 日本vs欧美在线观看视频| 考比视频在线观看| 嫩草影院入口| 日韩一本色道免费dvd| 男人舔女人的私密视频| 亚洲国产中文字幕在线视频| 亚洲欧美成人精品一区二区| 黑人欧美特级aaaaaa片| 大香蕉久久网| 色播在线永久视频| 肉色欧美久久久久久久蜜桃| 啦啦啦啦在线视频资源| 成年女人毛片免费观看观看9 | 日本91视频免费播放| 精品一区在线观看国产| 色94色欧美一区二区| 国产精品99久久99久久久不卡 | 亚洲第一av免费看| 日本爱情动作片www.在线观看| 亚洲欧美一区二区三区黑人| 国产一级毛片在线| 久久久国产一区二区| 啦啦啦 在线观看视频| 成年人午夜在线观看视频| 日本色播在线视频| 一个人免费看片子| 日本av手机在线免费观看| 亚洲欧美精品自产自拍| 晚上一个人看的免费电影| 大片电影免费在线观看免费| 日本黄色日本黄色录像| 曰老女人黄片| 又大又黄又爽视频免费| 久久久精品免费免费高清| 午夜日韩欧美国产| 汤姆久久久久久久影院中文字幕| videos熟女内射| 久久久久久久久免费视频了| 亚洲七黄色美女视频| 美女视频免费永久观看网站| 2018国产大陆天天弄谢| 99国产精品免费福利视频| 午夜福利视频精品| 久久99一区二区三区| 悠悠久久av| 2018国产大陆天天弄谢| 午夜福利免费观看在线| 一级黄片播放器| 国产成人免费观看mmmm| 久久精品aⅴ一区二区三区四区| 精品第一国产精品| 老司机影院毛片| 建设人人有责人人尽责人人享有的| 日韩大片免费观看网站| 十八禁网站网址无遮挡| 老司机在亚洲福利影院| 亚洲伊人久久精品综合| 午夜福利,免费看| 欧美 亚洲 国产 日韩一| 午夜av观看不卡| 国产淫语在线视频| 嫩草影院入口| 大香蕉久久成人网| 欧美在线黄色| 久久韩国三级中文字幕| 国产极品天堂在线| 国产精品麻豆人妻色哟哟久久| 看免费av毛片| 久久99一区二区三区| 熟妇人妻不卡中文字幕| 久久久久人妻精品一区果冻| 成年美女黄网站色视频大全免费| 晚上一个人看的免费电影| 2018国产大陆天天弄谢| 亚洲人成77777在线视频| 久久精品久久久久久久性| 一本—道久久a久久精品蜜桃钙片| 亚洲久久久国产精品| 久久精品亚洲熟妇少妇任你| 操出白浆在线播放| 国产又色又爽无遮挡免| 2021少妇久久久久久久久久久| 欧美人与性动交α欧美精品济南到| 在线观看免费视频网站a站| av国产久精品久网站免费入址| 亚洲美女黄色视频免费看| 国产精品香港三级国产av潘金莲 | 亚洲国产精品国产精品| 在线观看国产h片| 亚洲av电影在线进入| 午夜激情av网站| 中文字幕人妻熟女乱码| 久久毛片免费看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 欧美人与性动交α欧美精品济南到| 日韩欧美一区视频在线观看| 一本久久精品| 日韩伦理黄色片| 另类亚洲欧美激情| 人妻人人澡人人爽人人| 中文字幕人妻熟女乱码| kizo精华| 美女国产高潮福利片在线看| 精品一区二区三区四区五区乱码 | 国产av精品麻豆|