• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite element analysis of stress and strain distributions in mortise and loose tenon furniture joints

    2014-06-19 17:22:07MohammadDerikvandGhanbarEbrahimi
    Journal of Forestry Research 2014年3期

    Mohammad Derikvand ? Ghanbar Ebrahimi

    Finite element analysis of stress and strain distributions in mortise and loose tenon furniture joints

    Mohammad Derikvand ? Ghanbar Ebrahimi

    We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M<) furniture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M< joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon surfaces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corresponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.

    bending moment capacity, failure mode, finite element, furniture, mortise and loose tenon joint; stress and strain distributions

    Introduction

    Finite element analysis (FEA) is among the most effective numerical and computer-based techniques used for analyzing and solving a variety of complex problems of engineering, including physical phenomena in the field of structural, solid, and fluid mechanics (Mackerle 2005; ?olako?lu and Apay 2012). Various studies used the finite element (FE) technique on wooden structures as well as furniture using FE modeling (Smardzewski and Prekrat 2002; Smardzewski and Papuga 2004; Smardzewski and O?arska 2005; Kasal 2006; Ko? et al. 2011; Demirci 2011; ?olako?lu and Apay 2012; Mohamadzadeh et al. 2012; Smardzewski 2012). Smardzewski and Papuga (2004) studied the stress distribution in mortise and tenon and double-dowel joints of skeleton furniture using the FE method. They demonstrated that the values of normal stresses directly affect the strength of construction nodes of skeleton furniture. ?olako?lu and Apay (2012) investigated the strength of a wooden chair constructed of three different wood species in free drop by ANSYS FE software. They concluded that, in order to develop the design of furniture and its packaging, the drop of furniture can be simulated by using FE software, such as ANSYS, for performance testing of packaged or unpackaged furniture. Mohamadzadeh et al. (2012) indicated that FE models yield beneficial information, including the location of damage initiation in composite joints. The stress on critical components that caused the failure can be tabulated and recognized using corresponding failure criteria and this is not possible in experimental studies.

    Our aim was to determine the effect of loose tenon dimensions on stress and strain distributions in T-type mortise and loose-tenon (M<) furniture joints. In the first step, we experimentally determined the effects of tenon length and tenon thickness on bending moment capacity of M< joints. Then, we used ANSYS FE software to estimate the stress and strain distributions in the joint elements with varying thicknesses and lengths of tenons. We compared both results from experiment tests and FE models

    Materials and methods

    M< joint specimens

    Eastern beech (Fagus orientalis L.), with 12% moisture content, was utilized in constructing T-type M< joint specimens used in the study (Fig. 1).Tenon were 6- and 8-mm, while tenon lengths were 30, 45, 60, and 90 mm. Tenon width was constantat 50 mm for all joint specimens. Clearance of 0.05 mm was allowed between tenons and mortise walls, while the clearance between the bottom of the mortise and the end of the tenon was a nominal 0.125 mm (Derikvand et al. 2013). Totally, 40 M< joint specimens [2 (tenon thicknesses) × 4 (tenon lengths) × 5 (replicates)] were constructed using polyvinyl acetate (PVAc) adhesive (60%). Prior to performing the tests, the joint specimens were conditioned at 20°C±2°C and relative humidity of 65%±3% for three weeks (Derikvand et al. 2013; Maleki et al. 2012).

    Fig. 1: Geometry and dimensions (mm) of T-type M< joint specimens

    Testing

    Tests were performed on an Instron (4486) testing machine with a loading velocity of 5 mm?min-1(Fig. 2). Bending moment capacities of the joints were estimated by Equ. 1:

    where, M is bending moment capacity (N?m), F is the maximum applied load (N), and L is the moment arm, 0.35 m.

    Fig. 2: Method of loading used to evaluate bending moment capacity of joint specimens

    FE models

    After performing the laboratory tests, 3-dimensional models of T-type M< joints with different tenon dimensions were constructed in the DesignModeler environment of ANSYS Workbench v.14 finite element software. The following actions were:

    (1) The properties of joint members and PVAc glue were defined as orthotropic and isotropic materials, respectively (Table 1).

    Table 1: Technical properties of oriental beech (Fagus orientalis L.) and PVAc adhesive used in the FEA.

    (2) Twenty-node hexahedral elements were applied to the FE models (Fig. 3). The horizontal and vertical members of joints were meshed with 3 mm hexahedral elements. To increase the reliability of analysis, 1 mm hexahedral elements were applied to the tenon and glue line.

    (3) Based on the experimental results of ultimate bending moment capacities of joints, maximum force values required for loading of each joint were calculated by Equ. 2:

    where F is the required load value (N); M is calculated bending moment capacity (N?m); and L is the moment arm (0.35 m).

    After defining the loading type characteristics, loading direction, and other boundary conditions, we recorded outputs of FE models, including maximum shear stress and shear elastic strain values in joint members.

    Fig. 3: Standard 20-node hexahedral element

    Data evaluation

    Analysis of variance (ANOVA) was applied to quantify differences between mean values for variables.

    Results

    Modulus of failures of joint specimens

    For the joints with 30 mm length tenons, most failures occurred in the glue line of joints. However, along with increase in tenon length from 30 to 90 mm, for both 6 and 8 mm tenon thicknesses, failures occurred mostly in tenons (Fig. 4).

    Fig. 4: Tenon fracture in a test joint with tenon thickness of 6 mm and tenon length of 90 mm

    Bending moment capacity of tested joints

    Average bending moment capacities of joints under uniaxial bending load are shown in Fig. 5.

    Bending moment capacities of the tested joints varied significantly between groups in terms of thickness and length of tenons (Table 2). However, the interaction effect between thickness and length of the tenon was not statistically significant (p >0.05).

    Fig. 5: Average bending moment capacity of joint specimens

    Table 2: Results of ANOVA related to bending moment capacity of M< joints

    The highest bending moment capacity (518.93 Nm) was recorded for joints with tenon length of 90 mm and tenon thickness of 8 mm, while the lowest bending moment capacity (181.62 Nm) was obtained in joints that had tenons of 30 mm length and 6 mm thickness. Bending moment capacity of joints with tenon thickness of 6 mm increased by approximately 106% with increase in tenon length from 30 to 90 mm. In addition, for joints with 8 mm thick tenons, bending moment capacity increased by 107% with increase in tenon length from 30 to 90 mm. The increase of tenon thickness from 6 to 8 mm yielded increased bending moment capacity by 36.6%.

    Stress and strain distributions in joint elements

    Based on the results obtained from FEA, under uniaxial bending load, the horizontal member of the joint moved along the negative direction of the Y-axis (loading direction). Affected by this displacement, the horizontal member separated from the vertical member at the top corner of the joint (Fig. 6). Accordingly, an increasing bending moment occurred at the joint under loading. In this situation, under different bending loads, maximum stress values occurred in the middle parts of the tenon (Fig. 7). For the joints with tenon thickness of 6 mm and tenon lengths of 30, 50, 60, and 90 mm, shear stress values in middle parts of the tenon were 27.09, 44.49, 72.52, and 87.98 MPa, respectively (Fig. 8). With increase in tenon thickness from 6 to 8 mm, along with increase of bending moment capacity of joints, shear stress values in the tenon increased for all joint combinations (Fig. 8). The highest shear stress value (110 MPa) was obtained in the middle parts of joints with tenon thickness of 8 mm and tenon length of 90 mm. Average value of shear stress in joints with 8 mm tenon thickness (70.97 MPa) was approximately 22% higher than for joints with 6 mm tenon thickness (58.02 MPa). Maximum shear elastic strain values in middle parts of the tenon in the joints with 6 mm tenon thickness and tenon lengths of 30, 50, 60, and 90 mm were 0.007, 0.011, 0.016, and 0.018, respectively. For joints with 8 mm tenon thickness and 30, 50, 60, and 90 mm tenon length, maximum shear elastic strain values in middle parts of the tenon were 0.009, 0.012, 0.018, and 0.022, respectively. Horizontal member Separation

    Fig. 6: Total deformation of M< joint with tenon thickness of 8mm and tenon length of 90 mm under loading

    Highest shear elastic strain values were recorded in the glue line between the tenon and walls of the mortise (Fig. 9). Shear elastic strain values in the glue line increased with increasingthickness and length of tenons (Fig. 10). The maximum shear elastic strain values in the glue line of joints with 6 mm tenon thickness and tenon lengths of 30 and 50 mm were higher than those of similar joints with 8 mm tenon thickness (Fig. 10). For joints with 8 mm tenon thickness and 60 and 90 mm length tenons, the maximum shear elastic strain values were greater than for joints with 6 mm tenon thickness and tenon lengths of 60 and 90 mm.

    Fig. 7: Shear stress distribution in M< joint with tenon thickness of 8mm and tenon length of 90 mm

    Fig. 8: Maximum shear stress values in the middle parts of tenon

    Fig. 9: Shear elastic strain distribution in glue line of M< joint with tenon thickness of 8mm and tenon length of 90 mm

    Fig. 10: Maximum shear elastic strain values in the glue line of M< joint specimens

    Discussion

    The bending moment capacity of joints increased significantly with increasing length and thickness of tenons. Increase in total glued area of the tenon and its increasing impact on joint strength was one reason for this result. Along with increase in tenon dimensions and corresponding bending moment capacity, shear stress and shear elastic strain values in joint elements increased. Maximum shear stress values were recorded in the middle parts of tenons, while the highest shear elastic strain values were recorded in the glue line between the tenon surfaces and walls of the mortise. The results of FE models in this study are in agreement with results obtained by Smardzewski and Papuga (2004) for stress distributions in single mortise and tenon joints. However, some of the stress values predicted by FE models in this study exceed allowable values for shear strength of wood. These unusual values can be explained by failure modes of the joints. During the laboratory tests, most fractures occurred in the tenon apart from the adhesive line. Accordingly, since the highest shear stress values were obtained in the middle parts of tenons, it can be said that those stress values of joints predicted by FE models that exceeded the allowable shear strength of the wood indicate failure areas of the joints. Similar results were obtained by Mohamadzadeh et al. (2012) for failure modes of screwed single shear joints in wood plastic composite, and Demirci (2011) for various frame-type furniture corner joints.

    Conclusions

    We studied the effects of loose tenon length and loose tenon thickness on bending moment capacity of M< joints and corresponding stress-strain distribution in the joint elements, and experimentally investigated bending moment capacities of the joints, while using the FEA technique to determine the stress and strain distributions in the joint element.

    We conclude:

    (1) Dimensions of the loose tenon showed significant impacts on bending moment capacity of M< T-type joints.

    (2) Bending moment capacity of M< joints increased with increasing thickness and length of loose tenons.

    (3) Under uniaxial bending load, the highest stress values were in the middle parts of the loose tenon.

    (4) Maximum shear elastic strain values were in the glue line between the loose tenon and walls of the mortise.

    (5) Increase in tenon dimensions and corresponding bending moment capacity caused increase of shear stress and shear elastic strain values in M< joint elements.

    (6) There was consistency between values predicted by FE models for maximum shear stress and failure modes of joints in laboratory tests.

    (7) The FEA technique showed good potential for predicting the failure modes of furniture joints.

    ?olako?lu MH, Apay AC. 2012. Finite element analysis of wooden chair strength in free drop. International Journal of the Physical Sciences, 7(7): 1105-1114.

    Demirci H?. 2011. The experimental and finite element analysis of diagonal tensile tests conducted on frame-type constructed corner joints. Technology, 14(1): 11-21.

    Derikvand M, Smardzewski J, Ebrahimi GH, Dalvand M, Maleki S. 2013. Withdrawal force capacity of T-type mortise and loose tenon furniture joints. Turkish Journal of Agriculture and Forestry, 37: 377-384.

    Gawroński T. 2006. Rigidity-strength models and stress distribution in housed tenon joints subjected to torsion. Electronic Journal of Polish Agricultural Universities, Wood Technology, 9(4).

    Kasal A. 2006. Determination of the strength of various sofa frames with finite element analysis. GUJS, 19(4): 191-203.

    Ko? KH, Kizilkaya K, Erdinler ES, Korkut DS. 2011. The use of finite element method in the furniture industry. African Journal of Business Management, 5(3): 855-865.

    Mackerle J. 2005. Finite element analyses in wood research: a bibliography. Wood Science and Technology, 39: 579-600.

    Maleki S, Derikvand M, Dalvand M, Ebrahimi G. 2012. Load carrying capacity of mitered furniture corner joints with dovetail keys under diagonal tension load. Turkish Journal of Agriculture and Forestry, 36: 636-643.

    Mohamadzadeh M, Rostampour Haftkhani A, Ebrahimi G, Yoshihara H. 2012. Numerical and experimental failure analysis of screwed single shear joints in wood plastic composite. Materials & Design, 35: 404-413.

    Smardzewski J. 2012. Auxetic springs for seating. Turkish Journal of Agriculture and Forestry, 37: 369-376.

    Smardzewski J, O?arska B. 2005. Rigidity of cabinet furniture with semi-rigid joints of the confirmat type. Electronic Journal of Polish Agricultural Universities, Wood Technology, 8(2).

    Smardzewski J, Papuga T. 2004. Stress distribution in angle joints of skeleton furniture. Electronic Journal of Polish Agricultural Universities, Wood Technology, 7(1).

    Smardzewski J, Prekrat S. 2002. Stress distribution in disconnected furniture joints. Electronic Journal of Polish Agricultural Universities, Wood Technology, 5(2).

    2013-01-18; Accepted: 2013-05-29

    DOI 10.1007/s11676-014-0507-5

    The online version is available at http://www.springerlink.com

    Mohammad Derikvand (), Ghanbar Ebrahimi

    Department of Wood and Paper Science and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77878, Iran.

    Tel.: +98 935 100 6032, +98 261 224 9311, Fax: +98 261 224 9311

    E-mail: m.derikvand@ut.ac.ir and ronashmd@yahoo.com

    Corresponding editor: Yu Lei

    ? Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014

    人妻夜夜爽99麻豆av| 欧美xxxx黑人xx丫x性爽| 国产中年淑女户外野战色| 高清在线国产一区| 激情在线观看视频在线高清| 热99在线观看视频| 国产伦人伦偷精品视频| 久久精品国产99精品国产亚洲性色| 99热精品在线国产| 日本免费一区二区三区高清不卡| 高清日韩中文字幕在线| 一区二区三区免费毛片| 中文字幕人妻熟人妻熟丝袜美| 日本熟妇午夜| 久久国产乱子伦精品免费另类| 九九热线精品视视频播放| 欧美色视频一区免费| 直男gayav资源| 熟妇人妻久久中文字幕3abv| 亚洲自拍偷在线| 亚洲最大成人av| 成人性生交大片免费视频hd| 看片在线看免费视频| 人妻夜夜爽99麻豆av| 深夜精品福利| 午夜免费激情av| 亚洲第一电影网av| av福利片在线观看| 国产精品免费一区二区三区在线| 99久久无色码亚洲精品果冻| 国内久久婷婷六月综合欲色啪| 成人国产综合亚洲| 精品一区二区免费观看| 91久久精品国产一区二区成人| 男人狂女人下面高潮的视频| 欧美日韩瑟瑟在线播放| 好男人在线观看高清免费视频| 黄色丝袜av网址大全| 精品福利观看| 国产精品,欧美在线| 午夜福利在线观看吧| 日韩欧美在线二视频| 少妇高潮的动态图| 亚洲片人在线观看| 18禁裸乳无遮挡免费网站照片| 在线播放国产精品三级| 久久国产精品影院| 深夜精品福利| 国产淫片久久久久久久久 | 小说图片视频综合网站| 亚洲av免费在线观看| 高清毛片免费观看视频网站| 夜夜躁狠狠躁天天躁| 999久久久精品免费观看国产| 深夜精品福利| 午夜激情欧美在线| 国产av麻豆久久久久久久| 国产高潮美女av| 久久人人爽人人爽人人片va | 激情在线观看视频在线高清| 国产91精品成人一区二区三区| 久久久久国内视频| 国内精品久久久久精免费| 午夜福利在线观看免费完整高清在 | 午夜老司机福利剧场| 欧美国产日韩亚洲一区| 三级男女做爰猛烈吃奶摸视频| 久久亚洲精品不卡| 美女cb高潮喷水在线观看| 老女人水多毛片| 中文亚洲av片在线观看爽| 国产精品一及| 亚洲成av人片免费观看| 欧美潮喷喷水| 午夜影院日韩av| 舔av片在线| aaaaa片日本免费| 搡老熟女国产l中国老女人| 欧美日本亚洲视频在线播放| 69av精品久久久久久| 亚洲人成网站在线播| 欧美精品啪啪一区二区三区| 久久久久久久久大av| 性色avwww在线观看| 久久国产精品人妻蜜桃| 欧美三级亚洲精品| 淫秽高清视频在线观看| 国产v大片淫在线免费观看| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 桃红色精品国产亚洲av| 赤兔流量卡办理| 亚洲精品在线观看二区| 亚洲七黄色美女视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品国产高清国产av| 精品国产三级普通话版| 青草久久国产| 欧美高清成人免费视频www| 久久人人精品亚洲av| 午夜亚洲福利在线播放| 午夜久久久久精精品| 中文亚洲av片在线观看爽| 天堂动漫精品| 国内精品久久久久久久电影| 老熟妇乱子伦视频在线观看| 久久中文看片网| 欧美成狂野欧美在线观看| 精品一区二区三区av网在线观看| 国产男靠女视频免费网站| 午夜亚洲福利在线播放| 最近最新中文字幕大全电影3| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 婷婷丁香在线五月| 欧美三级亚洲精品| 一个人免费在线观看的高清视频| 精品99又大又爽又粗少妇毛片 | 国产私拍福利视频在线观看| 午夜激情欧美在线| 国语自产精品视频在线第100页| 久久久久久久久大av| 午夜精品在线福利| 成人永久免费在线观看视频| 精品国产三级普通话版| 精品人妻熟女av久视频| 成人国产综合亚洲| 精品久久久久久久久av| 极品教师在线视频| 亚洲电影在线观看av| 国产一区二区亚洲精品在线观看| 亚洲av电影不卡..在线观看| 我的老师免费观看完整版| 亚洲av日韩精品久久久久久密| 美女高潮的动态| 欧美不卡视频在线免费观看| 国产成年人精品一区二区| 精品人妻熟女av久视频| 国产精品乱码一区二三区的特点| 美女高潮喷水抽搐中文字幕| 欧美黄色淫秽网站| 国产一级毛片七仙女欲春2| 久久久久久久午夜电影| 精品日产1卡2卡| 国产老妇女一区| 波多野结衣高清作品| 午夜激情欧美在线| 99视频精品全部免费 在线| 长腿黑丝高跟| 亚洲男人的天堂狠狠| 日韩中文字幕欧美一区二区| 美女xxoo啪啪120秒动态图 | 最近视频中文字幕2019在线8| 首页视频小说图片口味搜索| 亚洲成人免费电影在线观看| 欧美性猛交╳xxx乱大交人| 人妻久久中文字幕网| 一级黄色大片毛片| 乱人视频在线观看| 午夜久久久久精精品| 久久精品人妻少妇| 久久久久国内视频| 搡老熟女国产l中国老女人| 亚洲美女视频黄频| 三级毛片av免费| 少妇熟女aⅴ在线视频| 亚洲综合色惰| 色视频www国产| 在线观看66精品国产| 久久精品影院6| 久久99热6这里只有精品| 看十八女毛片水多多多| 亚洲最大成人av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品在线观看二区| 欧美乱妇无乱码| 欧美高清性xxxxhd video| 不卡一级毛片| 亚洲国产精品成人综合色| 十八禁国产超污无遮挡网站| 成人三级黄色视频| 简卡轻食公司| 国产精品98久久久久久宅男小说| 99国产综合亚洲精品| 精品人妻熟女av久视频| 欧美乱色亚洲激情| 久久久成人免费电影| 日本免费a在线| 亚洲国产精品久久男人天堂| 亚洲真实伦在线观看| 亚洲黑人精品在线| 9191精品国产免费久久| 波多野结衣高清作品| 国产精品伦人一区二区| 一进一出抽搐gif免费好疼| 男女之事视频高清在线观看| 国产在线精品亚洲第一网站| 久久精品国产自在天天线| 最近在线观看免费完整版| 搞女人的毛片| 国产av不卡久久| 欧美成人免费av一区二区三区| 动漫黄色视频在线观看| 色播亚洲综合网| 国产探花在线观看一区二区| 色综合亚洲欧美另类图片| 精品无人区乱码1区二区| av天堂中文字幕网| 露出奶头的视频| 日韩欧美国产在线观看| 国产不卡一卡二| 国产真实乱freesex| 欧美激情久久久久久爽电影| 我要看日韩黄色一级片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久天躁狠狠躁夜夜2o2o| 天堂av国产一区二区熟女人妻| 精品久久久久久久久亚洲 | 国产av麻豆久久久久久久| 男人舔女人下体高潮全视频| 老司机午夜十八禁免费视频| 欧美日韩黄片免| 两个人视频免费观看高清| 午夜精品一区二区三区免费看| 婷婷色综合大香蕉| 老司机午夜十八禁免费视频| 九九在线视频观看精品| 丝袜美腿在线中文| 国产熟女xx| 亚洲av美国av| 亚洲avbb在线观看| 久久人人精品亚洲av| 国产亚洲精品久久久com| 国产成+人综合+亚洲专区| 亚洲精品色激情综合| 又爽又黄无遮挡网站| 麻豆久久精品国产亚洲av| 69人妻影院| 国产精品野战在线观看| 精品午夜福利在线看| 蜜桃亚洲精品一区二区三区| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩高清专用| 小说图片视频综合网站| 一个人观看的视频www高清免费观看| av专区在线播放| 亚洲片人在线观看| 如何舔出高潮| 午夜福利18| 一本一本综合久久| 成年版毛片免费区| 日本a在线网址| 免费一级毛片在线播放高清视频| 国产伦精品一区二区三区视频9| 国产日本99.免费观看| 夜夜看夜夜爽夜夜摸| 一夜夜www| 麻豆一二三区av精品| 免费av毛片视频| 亚洲一区高清亚洲精品| 午夜免费成人在线视频| 无人区码免费观看不卡| 国产免费一级a男人的天堂| 69av精品久久久久久| 9191精品国产免费久久| 九色成人免费人妻av| 亚洲精品乱码久久久v下载方式| 男人舔奶头视频| 男人的好看免费观看在线视频| 亚洲,欧美,日韩| 国产av不卡久久| av黄色大香蕉| 久久久成人免费电影| 男人狂女人下面高潮的视频| 午夜影院日韩av| 亚洲人成电影免费在线| 日韩中文字幕欧美一区二区| 亚洲精品久久国产高清桃花| 波野结衣二区三区在线| 丝袜美腿在线中文| 午夜免费男女啪啪视频观看 | 少妇被粗大猛烈的视频| 欧美丝袜亚洲另类 | 国产国拍精品亚洲av在线观看| 色尼玛亚洲综合影院| 2021天堂中文幕一二区在线观| 国产真实乱freesex| 国产视频一区二区在线看| 日本a在线网址| 18+在线观看网站| 88av欧美| 久久人妻av系列| 久久精品国产自在天天线| 久久99热6这里只有精品| ponron亚洲| 日韩高清综合在线| 一个人看的www免费观看视频| 国产精品精品国产色婷婷| 窝窝影院91人妻| 免费电影在线观看免费观看| av黄色大香蕉| 高清日韩中文字幕在线| 亚洲精品乱码久久久v下载方式| 亚洲国产精品999在线| 欧美xxxx性猛交bbbb| 精品一区二区三区视频在线观看免费| 亚洲精品久久国产高清桃花| 麻豆成人av在线观看| 狠狠狠狠99中文字幕| 9191精品国产免费久久| 乱人视频在线观看| 日日摸夜夜添夜夜添av毛片 | 国内精品久久久久久久电影| 午夜福利在线在线| 亚洲人与动物交配视频| 成人av一区二区三区在线看| 男插女下体视频免费在线播放| h日本视频在线播放| 两个人视频免费观看高清| 国产精品亚洲美女久久久| 一个人免费在线观看的高清视频| 免费av观看视频| 国产欧美日韩精品亚洲av| 九色国产91popny在线| 午夜福利欧美成人| 亚洲欧美精品综合久久99| 久久热精品热| 99在线视频只有这里精品首页| 国产乱人伦免费视频| 亚洲av一区综合| a级一级毛片免费在线观看| 免费av毛片视频| 成年女人毛片免费观看观看9| 欧美一区二区精品小视频在线| 午夜老司机福利剧场| 国产精品国产高清国产av| 亚洲性夜色夜夜综合| 九色国产91popny在线| 午夜a级毛片| 久久99热6这里只有精品| 一区二区三区高清视频在线| 久久久色成人| 国内精品美女久久久久久| 一边摸一边抽搐一进一小说| 成人性生交大片免费视频hd| 久久久久久九九精品二区国产| 99在线视频只有这里精品首页| 精品一区二区三区视频在线观看免费| 日韩亚洲欧美综合| 亚洲成人免费电影在线观看| 午夜亚洲福利在线播放| 国产在线精品亚洲第一网站| 人人妻,人人澡人人爽秒播| 给我免费播放毛片高清在线观看| 一区二区三区激情视频| 亚洲欧美清纯卡通| 国产精品一区二区性色av| 午夜福利视频1000在线观看| 永久网站在线| 日韩亚洲欧美综合| 亚洲专区中文字幕在线| 久久久久性生活片| 日本与韩国留学比较| 国内精品久久久久久久电影| 日韩欧美精品v在线| 国产亚洲欧美98| 村上凉子中文字幕在线| 成年女人毛片免费观看观看9| 成人三级黄色视频| 免费黄网站久久成人精品 | 啦啦啦韩国在线观看视频| 波多野结衣高清作品| 啦啦啦观看免费观看视频高清| 天堂动漫精品| 午夜视频国产福利| 有码 亚洲区| 老女人水多毛片| 亚洲片人在线观看| 免费在线观看影片大全网站| 一级毛片久久久久久久久女| 久久国产精品人妻蜜桃| 可以在线观看毛片的网站| 日韩精品青青久久久久久| 性色avwww在线观看| 日韩欧美在线乱码| 一级a爱片免费观看的视频| 青草久久国产| 亚洲欧美日韩东京热| 床上黄色一级片| www.熟女人妻精品国产| 久久欧美精品欧美久久欧美| 男人的好看免费观看在线视频| 亚洲一区二区三区不卡视频| 波多野结衣高清作品| 精品99又大又爽又粗少妇毛片 | 亚洲人成网站在线播放欧美日韩| 美女xxoo啪啪120秒动态图 | 十八禁网站免费在线| 成人亚洲精品av一区二区| av中文乱码字幕在线| 真人一进一出gif抽搐免费| 国产乱人伦免费视频| 亚洲狠狠婷婷综合久久图片| 搡老熟女国产l中国老女人| 日本免费a在线| 又黄又爽又免费观看的视频| 国产成人影院久久av| 亚洲电影在线观看av| 久9热在线精品视频| 日韩人妻高清精品专区| 99热这里只有是精品在线观看 | 十八禁国产超污无遮挡网站| 国产精品三级大全| 色5月婷婷丁香| 51午夜福利影视在线观看| 少妇高潮的动态图| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 国产美女午夜福利| 日本与韩国留学比较| 精品日产1卡2卡| 国产蜜桃级精品一区二区三区| 久久人妻av系列| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 超碰av人人做人人爽久久| 日本熟妇午夜| 国产成人影院久久av| 麻豆久久精品国产亚洲av| 三级毛片av免费| 久久国产乱子伦精品免费另类| 校园春色视频在线观看| 国产精品,欧美在线| 欧美最黄视频在线播放免费| 俄罗斯特黄特色一大片| 婷婷亚洲欧美| 给我免费播放毛片高清在线观看| 国产三级中文精品| 91麻豆av在线| 国产私拍福利视频在线观看| 国产伦精品一区二区三区四那| av在线天堂中文字幕| 国产精品乱码一区二三区的特点| 18禁裸乳无遮挡免费网站照片| 1000部很黄的大片| aaaaa片日本免费| 国产不卡一卡二| 国产大屁股一区二区在线视频| 国产高清视频在线观看网站| netflix在线观看网站| 国产高清有码在线观看视频| 精品不卡国产一区二区三区| 亚洲成人久久爱视频| 久久国产乱子伦精品免费另类| 日韩欧美在线二视频| 五月玫瑰六月丁香| 亚洲国产日韩欧美精品在线观看| 男女视频在线观看网站免费| 不卡一级毛片| 欧美丝袜亚洲另类 | 欧美成人a在线观看| 在线天堂最新版资源| 成人av在线播放网站| 午夜免费成人在线视频| 亚洲精品乱码久久久v下载方式| 欧美黑人欧美精品刺激| 国产精品人妻久久久久久| 91在线精品国自产拍蜜月| 国产午夜精品论理片| 成人午夜高清在线视频| 亚洲第一区二区三区不卡| 亚洲人与动物交配视频| 国产不卡一卡二| 男女那种视频在线观看| 综合色av麻豆| 成人国产综合亚洲| 国产欧美日韩一区二区精品| 国产三级在线视频| 天堂影院成人在线观看| 国产一区二区亚洲精品在线观看| 亚洲国产精品合色在线| 国产亚洲av嫩草精品影院| 91午夜精品亚洲一区二区三区 | 色尼玛亚洲综合影院| 午夜影院日韩av| 亚洲av免费在线观看| 天美传媒精品一区二区| 国产精品一区二区三区四区免费观看 | 久久久久精品国产欧美久久久| 日韩欧美三级三区| 国产精品永久免费网站| 久久亚洲精品不卡| 国产av一区在线观看免费| 精品国产三级普通话版| 色尼玛亚洲综合影院| 精品一区二区免费观看| 婷婷丁香在线五月| 人人妻人人澡欧美一区二区| 首页视频小说图片口味搜索| av欧美777| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久黄片| 欧美一级a爱片免费观看看| 十八禁网站免费在线| 午夜免费男女啪啪视频观看 | 全区人妻精品视频| 中国美女看黄片| 日韩中文字幕欧美一区二区| 午夜精品久久久久久毛片777| 成人国产一区最新在线观看| 成年免费大片在线观看| 97人妻精品一区二区三区麻豆| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| 久久人妻av系列| 久久精品影院6| 丁香六月欧美| a级毛片免费高清观看在线播放| 午夜视频国产福利| 欧美性猛交╳xxx乱大交人| 成人永久免费在线观看视频| 69人妻影院| 欧美最新免费一区二区三区 | 亚洲av中文字字幕乱码综合| 国产主播在线观看一区二区| 亚洲美女搞黄在线观看 | 搡老熟女国产l中国老女人| 久久久精品欧美日韩精品| 欧美一级a爱片免费观看看| 亚洲自偷自拍三级| 亚洲在线观看片| 丰满人妻一区二区三区视频av| 欧美极品一区二区三区四区| 成人三级黄色视频| 国产v大片淫在线免费观看| 精品久久久久久久久亚洲 | 亚洲第一电影网av| 国产欧美日韩一区二区三| 国产精品永久免费网站| 欧美午夜高清在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一夜夜www| 伦理电影大哥的女人| 男女视频在线观看网站免费| 在线a可以看的网站| 久久久久性生活片| 精品乱码久久久久久99久播| 一本综合久久免费| 午夜福利视频1000在线观看| 少妇人妻一区二区三区视频| 又黄又爽又刺激的免费视频.| 乱人视频在线观看| 99视频精品全部免费 在线| 色视频www国产| 亚洲自偷自拍三级| 久久久久国产精品人妻aⅴ院| 好男人在线观看高清免费视频| 3wmmmm亚洲av在线观看| 成人一区二区视频在线观看| 日韩av在线大香蕉| 国产三级中文精品| 观看免费一级毛片| 嫩草影院新地址| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片 | 老司机午夜十八禁免费视频| 黄片小视频在线播放| 国产探花极品一区二区| 国产人妻一区二区三区在| 国产精品av视频在线免费观看| 亚洲午夜理论影院| 成年人黄色毛片网站| 少妇被粗大猛烈的视频| 小蜜桃在线观看免费完整版高清| 成人无遮挡网站| 国产三级在线视频| 国产高清三级在线| 日日干狠狠操夜夜爽| 1000部很黄的大片| 亚洲国产精品久久男人天堂| 欧美性猛交╳xxx乱大交人| 国产一级毛片七仙女欲春2| 蜜桃亚洲精品一区二区三区| 国产一区二区亚洲精品在线观看| 日本成人三级电影网站| 国产成人欧美在线观看| 精品久久久久久久久av| 日本成人三级电影网站| 欧美3d第一页| 精品久久国产蜜桃| 99视频精品全部免费 在线| 成年女人毛片免费观看观看9| 麻豆国产97在线/欧美| 黄色日韩在线| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久精品电影| 久久久久免费精品人妻一区二区| 欧美色视频一区免费| 午夜a级毛片| 日日夜夜操网爽| 精品久久久久久久末码| 精品人妻视频免费看| 亚洲av中文字字幕乱码综合| 午夜免费激情av| 亚洲成人中文字幕在线播放| 赤兔流量卡办理| 亚洲成av人片免费观看| 热99在线观看视频| 成人永久免费在线观看视频| 1024手机看黄色片| 久久精品夜夜夜夜夜久久蜜豆| 18+在线观看网站| 一边摸一边抽搐一进一小说| 国产野战对白在线观看| 99热这里只有是精品50|