• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite element analysis of stress and strain distributions in mortise and loose tenon furniture joints

    2014-06-19 17:22:07MohammadDerikvandGhanbarEbrahimi
    Journal of Forestry Research 2014年3期

    Mohammad Derikvand ? Ghanbar Ebrahimi

    Finite element analysis of stress and strain distributions in mortise and loose tenon furniture joints

    Mohammad Derikvand ? Ghanbar Ebrahimi

    We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M<) furniture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M< joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon surfaces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corresponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.

    bending moment capacity, failure mode, finite element, furniture, mortise and loose tenon joint; stress and strain distributions

    Introduction

    Finite element analysis (FEA) is among the most effective numerical and computer-based techniques used for analyzing and solving a variety of complex problems of engineering, including physical phenomena in the field of structural, solid, and fluid mechanics (Mackerle 2005; ?olako?lu and Apay 2012). Various studies used the finite element (FE) technique on wooden structures as well as furniture using FE modeling (Smardzewski and Prekrat 2002; Smardzewski and Papuga 2004; Smardzewski and O?arska 2005; Kasal 2006; Ko? et al. 2011; Demirci 2011; ?olako?lu and Apay 2012; Mohamadzadeh et al. 2012; Smardzewski 2012). Smardzewski and Papuga (2004) studied the stress distribution in mortise and tenon and double-dowel joints of skeleton furniture using the FE method. They demonstrated that the values of normal stresses directly affect the strength of construction nodes of skeleton furniture. ?olako?lu and Apay (2012) investigated the strength of a wooden chair constructed of three different wood species in free drop by ANSYS FE software. They concluded that, in order to develop the design of furniture and its packaging, the drop of furniture can be simulated by using FE software, such as ANSYS, for performance testing of packaged or unpackaged furniture. Mohamadzadeh et al. (2012) indicated that FE models yield beneficial information, including the location of damage initiation in composite joints. The stress on critical components that caused the failure can be tabulated and recognized using corresponding failure criteria and this is not possible in experimental studies.

    Our aim was to determine the effect of loose tenon dimensions on stress and strain distributions in T-type mortise and loose-tenon (M<) furniture joints. In the first step, we experimentally determined the effects of tenon length and tenon thickness on bending moment capacity of M< joints. Then, we used ANSYS FE software to estimate the stress and strain distributions in the joint elements with varying thicknesses and lengths of tenons. We compared both results from experiment tests and FE models

    Materials and methods

    M< joint specimens

    Eastern beech (Fagus orientalis L.), with 12% moisture content, was utilized in constructing T-type M< joint specimens used in the study (Fig. 1).Tenon were 6- and 8-mm, while tenon lengths were 30, 45, 60, and 90 mm. Tenon width was constantat 50 mm for all joint specimens. Clearance of 0.05 mm was allowed between tenons and mortise walls, while the clearance between the bottom of the mortise and the end of the tenon was a nominal 0.125 mm (Derikvand et al. 2013). Totally, 40 M< joint specimens [2 (tenon thicknesses) × 4 (tenon lengths) × 5 (replicates)] were constructed using polyvinyl acetate (PVAc) adhesive (60%). Prior to performing the tests, the joint specimens were conditioned at 20°C±2°C and relative humidity of 65%±3% for three weeks (Derikvand et al. 2013; Maleki et al. 2012).

    Fig. 1: Geometry and dimensions (mm) of T-type M< joint specimens

    Testing

    Tests were performed on an Instron (4486) testing machine with a loading velocity of 5 mm?min-1(Fig. 2). Bending moment capacities of the joints were estimated by Equ. 1:

    where, M is bending moment capacity (N?m), F is the maximum applied load (N), and L is the moment arm, 0.35 m.

    Fig. 2: Method of loading used to evaluate bending moment capacity of joint specimens

    FE models

    After performing the laboratory tests, 3-dimensional models of T-type M< joints with different tenon dimensions were constructed in the DesignModeler environment of ANSYS Workbench v.14 finite element software. The following actions were:

    (1) The properties of joint members and PVAc glue were defined as orthotropic and isotropic materials, respectively (Table 1).

    Table 1: Technical properties of oriental beech (Fagus orientalis L.) and PVAc adhesive used in the FEA.

    (2) Twenty-node hexahedral elements were applied to the FE models (Fig. 3). The horizontal and vertical members of joints were meshed with 3 mm hexahedral elements. To increase the reliability of analysis, 1 mm hexahedral elements were applied to the tenon and glue line.

    (3) Based on the experimental results of ultimate bending moment capacities of joints, maximum force values required for loading of each joint were calculated by Equ. 2:

    where F is the required load value (N); M is calculated bending moment capacity (N?m); and L is the moment arm (0.35 m).

    After defining the loading type characteristics, loading direction, and other boundary conditions, we recorded outputs of FE models, including maximum shear stress and shear elastic strain values in joint members.

    Fig. 3: Standard 20-node hexahedral element

    Data evaluation

    Analysis of variance (ANOVA) was applied to quantify differences between mean values for variables.

    Results

    Modulus of failures of joint specimens

    For the joints with 30 mm length tenons, most failures occurred in the glue line of joints. However, along with increase in tenon length from 30 to 90 mm, for both 6 and 8 mm tenon thicknesses, failures occurred mostly in tenons (Fig. 4).

    Fig. 4: Tenon fracture in a test joint with tenon thickness of 6 mm and tenon length of 90 mm

    Bending moment capacity of tested joints

    Average bending moment capacities of joints under uniaxial bending load are shown in Fig. 5.

    Bending moment capacities of the tested joints varied significantly between groups in terms of thickness and length of tenons (Table 2). However, the interaction effect between thickness and length of the tenon was not statistically significant (p >0.05).

    Fig. 5: Average bending moment capacity of joint specimens

    Table 2: Results of ANOVA related to bending moment capacity of M< joints

    The highest bending moment capacity (518.93 Nm) was recorded for joints with tenon length of 90 mm and tenon thickness of 8 mm, while the lowest bending moment capacity (181.62 Nm) was obtained in joints that had tenons of 30 mm length and 6 mm thickness. Bending moment capacity of joints with tenon thickness of 6 mm increased by approximately 106% with increase in tenon length from 30 to 90 mm. In addition, for joints with 8 mm thick tenons, bending moment capacity increased by 107% with increase in tenon length from 30 to 90 mm. The increase of tenon thickness from 6 to 8 mm yielded increased bending moment capacity by 36.6%.

    Stress and strain distributions in joint elements

    Based on the results obtained from FEA, under uniaxial bending load, the horizontal member of the joint moved along the negative direction of the Y-axis (loading direction). Affected by this displacement, the horizontal member separated from the vertical member at the top corner of the joint (Fig. 6). Accordingly, an increasing bending moment occurred at the joint under loading. In this situation, under different bending loads, maximum stress values occurred in the middle parts of the tenon (Fig. 7). For the joints with tenon thickness of 6 mm and tenon lengths of 30, 50, 60, and 90 mm, shear stress values in middle parts of the tenon were 27.09, 44.49, 72.52, and 87.98 MPa, respectively (Fig. 8). With increase in tenon thickness from 6 to 8 mm, along with increase of bending moment capacity of joints, shear stress values in the tenon increased for all joint combinations (Fig. 8). The highest shear stress value (110 MPa) was obtained in the middle parts of joints with tenon thickness of 8 mm and tenon length of 90 mm. Average value of shear stress in joints with 8 mm tenon thickness (70.97 MPa) was approximately 22% higher than for joints with 6 mm tenon thickness (58.02 MPa). Maximum shear elastic strain values in middle parts of the tenon in the joints with 6 mm tenon thickness and tenon lengths of 30, 50, 60, and 90 mm were 0.007, 0.011, 0.016, and 0.018, respectively. For joints with 8 mm tenon thickness and 30, 50, 60, and 90 mm tenon length, maximum shear elastic strain values in middle parts of the tenon were 0.009, 0.012, 0.018, and 0.022, respectively. Horizontal member Separation

    Fig. 6: Total deformation of M< joint with tenon thickness of 8mm and tenon length of 90 mm under loading

    Highest shear elastic strain values were recorded in the glue line between the tenon and walls of the mortise (Fig. 9). Shear elastic strain values in the glue line increased with increasingthickness and length of tenons (Fig. 10). The maximum shear elastic strain values in the glue line of joints with 6 mm tenon thickness and tenon lengths of 30 and 50 mm were higher than those of similar joints with 8 mm tenon thickness (Fig. 10). For joints with 8 mm tenon thickness and 60 and 90 mm length tenons, the maximum shear elastic strain values were greater than for joints with 6 mm tenon thickness and tenon lengths of 60 and 90 mm.

    Fig. 7: Shear stress distribution in M< joint with tenon thickness of 8mm and tenon length of 90 mm

    Fig. 8: Maximum shear stress values in the middle parts of tenon

    Fig. 9: Shear elastic strain distribution in glue line of M< joint with tenon thickness of 8mm and tenon length of 90 mm

    Fig. 10: Maximum shear elastic strain values in the glue line of M< joint specimens

    Discussion

    The bending moment capacity of joints increased significantly with increasing length and thickness of tenons. Increase in total glued area of the tenon and its increasing impact on joint strength was one reason for this result. Along with increase in tenon dimensions and corresponding bending moment capacity, shear stress and shear elastic strain values in joint elements increased. Maximum shear stress values were recorded in the middle parts of tenons, while the highest shear elastic strain values were recorded in the glue line between the tenon surfaces and walls of the mortise. The results of FE models in this study are in agreement with results obtained by Smardzewski and Papuga (2004) for stress distributions in single mortise and tenon joints. However, some of the stress values predicted by FE models in this study exceed allowable values for shear strength of wood. These unusual values can be explained by failure modes of the joints. During the laboratory tests, most fractures occurred in the tenon apart from the adhesive line. Accordingly, since the highest shear stress values were obtained in the middle parts of tenons, it can be said that those stress values of joints predicted by FE models that exceeded the allowable shear strength of the wood indicate failure areas of the joints. Similar results were obtained by Mohamadzadeh et al. (2012) for failure modes of screwed single shear joints in wood plastic composite, and Demirci (2011) for various frame-type furniture corner joints.

    Conclusions

    We studied the effects of loose tenon length and loose tenon thickness on bending moment capacity of M< joints and corresponding stress-strain distribution in the joint elements, and experimentally investigated bending moment capacities of the joints, while using the FEA technique to determine the stress and strain distributions in the joint element.

    We conclude:

    (1) Dimensions of the loose tenon showed significant impacts on bending moment capacity of M< T-type joints.

    (2) Bending moment capacity of M< joints increased with increasing thickness and length of loose tenons.

    (3) Under uniaxial bending load, the highest stress values were in the middle parts of the loose tenon.

    (4) Maximum shear elastic strain values were in the glue line between the loose tenon and walls of the mortise.

    (5) Increase in tenon dimensions and corresponding bending moment capacity caused increase of shear stress and shear elastic strain values in M< joint elements.

    (6) There was consistency between values predicted by FE models for maximum shear stress and failure modes of joints in laboratory tests.

    (7) The FEA technique showed good potential for predicting the failure modes of furniture joints.

    ?olako?lu MH, Apay AC. 2012. Finite element analysis of wooden chair strength in free drop. International Journal of the Physical Sciences, 7(7): 1105-1114.

    Demirci H?. 2011. The experimental and finite element analysis of diagonal tensile tests conducted on frame-type constructed corner joints. Technology, 14(1): 11-21.

    Derikvand M, Smardzewski J, Ebrahimi GH, Dalvand M, Maleki S. 2013. Withdrawal force capacity of T-type mortise and loose tenon furniture joints. Turkish Journal of Agriculture and Forestry, 37: 377-384.

    Gawroński T. 2006. Rigidity-strength models and stress distribution in housed tenon joints subjected to torsion. Electronic Journal of Polish Agricultural Universities, Wood Technology, 9(4).

    Kasal A. 2006. Determination of the strength of various sofa frames with finite element analysis. GUJS, 19(4): 191-203.

    Ko? KH, Kizilkaya K, Erdinler ES, Korkut DS. 2011. The use of finite element method in the furniture industry. African Journal of Business Management, 5(3): 855-865.

    Mackerle J. 2005. Finite element analyses in wood research: a bibliography. Wood Science and Technology, 39: 579-600.

    Maleki S, Derikvand M, Dalvand M, Ebrahimi G. 2012. Load carrying capacity of mitered furniture corner joints with dovetail keys under diagonal tension load. Turkish Journal of Agriculture and Forestry, 36: 636-643.

    Mohamadzadeh M, Rostampour Haftkhani A, Ebrahimi G, Yoshihara H. 2012. Numerical and experimental failure analysis of screwed single shear joints in wood plastic composite. Materials & Design, 35: 404-413.

    Smardzewski J. 2012. Auxetic springs for seating. Turkish Journal of Agriculture and Forestry, 37: 369-376.

    Smardzewski J, O?arska B. 2005. Rigidity of cabinet furniture with semi-rigid joints of the confirmat type. Electronic Journal of Polish Agricultural Universities, Wood Technology, 8(2).

    Smardzewski J, Papuga T. 2004. Stress distribution in angle joints of skeleton furniture. Electronic Journal of Polish Agricultural Universities, Wood Technology, 7(1).

    Smardzewski J, Prekrat S. 2002. Stress distribution in disconnected furniture joints. Electronic Journal of Polish Agricultural Universities, Wood Technology, 5(2).

    2013-01-18; Accepted: 2013-05-29

    DOI 10.1007/s11676-014-0507-5

    The online version is available at http://www.springerlink.com

    Mohammad Derikvand (), Ghanbar Ebrahimi

    Department of Wood and Paper Science and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77878, Iran.

    Tel.: +98 935 100 6032, +98 261 224 9311, Fax: +98 261 224 9311

    E-mail: m.derikvand@ut.ac.ir and ronashmd@yahoo.com

    Corresponding editor: Yu Lei

    ? Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014

    日韩一卡2卡3卡4卡2021年| 亚洲国产高清在线一区二区三 | 精品日产1卡2卡| 国产伦人伦偷精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 黄色成人免费大全| 中文在线观看免费www的网站 | av超薄肉色丝袜交足视频| 国产精品,欧美在线| 18禁观看日本| 99国产精品一区二区三区| 国产亚洲欧美精品永久| 欧美日韩一级在线毛片| 亚洲无线在线观看| 成人三级黄色视频| 妹子高潮喷水视频| 国产免费男女视频| 观看免费一级毛片| 亚洲人成伊人成综合网2020| 国产成人精品无人区| 19禁男女啪啪无遮挡网站| 国产精品久久久av美女十八| 国产亚洲av高清不卡| 精品国产乱子伦一区二区三区| 国产区一区二久久| www.www免费av| 淫秽高清视频在线观看| 国产免费av片在线观看野外av| 日韩欧美一区视频在线观看| 成年版毛片免费区| 亚洲在线自拍视频| 老司机午夜十八禁免费视频| 日日干狠狠操夜夜爽| 国产91精品成人一区二区三区| 日韩免费av在线播放| 欧美绝顶高潮抽搐喷水| www.精华液| 真人一进一出gif抽搐免费| 精品久久久久久久毛片微露脸| 国产精品久久久av美女十八| 亚洲熟女毛片儿| 久久久久久久久中文| www国产在线视频色| 18禁裸乳无遮挡免费网站照片 | 一边摸一边抽搐一进一小说| 啦啦啦 在线观看视频| 91成人精品电影| 亚洲专区国产一区二区| 可以在线观看毛片的网站| 老司机午夜福利在线观看视频| 这个男人来自地球电影免费观看| 国产欧美日韩精品亚洲av| 搡老岳熟女国产| 成人特级黄色片久久久久久久| 成人三级黄色视频| 成人精品一区二区免费| 国产v大片淫在线免费观看| 禁无遮挡网站| 亚洲精华国产精华精| 国产熟女午夜一区二区三区| 精品无人区乱码1区二区| 嫁个100分男人电影在线观看| 美女高潮喷水抽搐中文字幕| 久久精品国产亚洲av香蕉五月| 成人av一区二区三区在线看| 男男h啪啪无遮挡| 狂野欧美激情性xxxx| 老鸭窝网址在线观看| 欧美黄色片欧美黄色片| 国产精品香港三级国产av潘金莲| ponron亚洲| 国产成人啪精品午夜网站| 亚洲精品粉嫩美女一区| 99久久久亚洲精品蜜臀av| 一级a爱视频在线免费观看| 亚洲自偷自拍图片 自拍| 高潮久久久久久久久久久不卡| 十分钟在线观看高清视频www| 18禁裸乳无遮挡免费网站照片 | 日日干狠狠操夜夜爽| 久久中文看片网| 欧美又色又爽又黄视频| 国产99白浆流出| 女人爽到高潮嗷嗷叫在线视频| 亚洲avbb在线观看| 亚洲成a人片在线一区二区| 最近在线观看免费完整版| 亚洲国产欧美一区二区综合| 久久久久久大精品| 久久精品国产亚洲av香蕉五月| 久久欧美精品欧美久久欧美| 在线观看66精品国产| 真人做人爱边吃奶动态| 午夜福利成人在线免费观看| 亚洲第一欧美日韩一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩av在线大香蕉| 日韩视频一区二区在线观看| 国产私拍福利视频在线观看| 无遮挡黄片免费观看| 午夜两性在线视频| 亚洲国产欧美网| 国内久久婷婷六月综合欲色啪| 国产成人欧美在线观看| 久久精品成人免费网站| 男女视频在线观看网站免费 | 婷婷六月久久综合丁香| 欧美亚洲日本最大视频资源| 亚洲av五月六月丁香网| 国产精品电影一区二区三区| 久久草成人影院| 久久久国产成人免费| 嫁个100分男人电影在线观看| 欧美性猛交╳xxx乱大交人| 色综合亚洲欧美另类图片| 午夜福利18| 欧美日本亚洲视频在线播放| 欧美+亚洲+日韩+国产| 亚洲 欧美 日韩 在线 免费| 国产精品乱码一区二三区的特点| 日日夜夜操网爽| 一级毛片女人18水好多| 一级毛片女人18水好多| 国内久久婷婷六月综合欲色啪| 欧美黄色淫秽网站| av福利片在线| 精品熟女少妇八av免费久了| 给我免费播放毛片高清在线观看| 欧美黑人巨大hd| 久久人妻福利社区极品人妻图片| 男女床上黄色一级片免费看| 精品国产一区二区三区四区第35| 久久国产精品男人的天堂亚洲| 人人妻人人澡欧美一区二区| 精品电影一区二区在线| 悠悠久久av| 麻豆久久精品国产亚洲av| 久热爱精品视频在线9| 丁香六月欧美| 中文字幕久久专区| 国产99久久九九免费精品| 国内精品久久久久精免费| 亚洲欧美日韩高清在线视频| 成人亚洲精品av一区二区| 午夜激情av网站| 正在播放国产对白刺激| 成人18禁高潮啪啪吃奶动态图| 国产又黄又爽又无遮挡在线| 亚洲国产精品久久男人天堂| 精品日产1卡2卡| 日韩一卡2卡3卡4卡2021年| 久久精品国产99精品国产亚洲性色| 首页视频小说图片口味搜索| 狂野欧美激情性xxxx| 欧美丝袜亚洲另类 | 午夜精品在线福利| a在线观看视频网站| 免费看十八禁软件| 丝袜人妻中文字幕| x7x7x7水蜜桃| 久久草成人影院| 国产人伦9x9x在线观看| 男女那种视频在线观看| 精品久久久久久久久久免费视频| 精品第一国产精品| 亚洲欧洲精品一区二区精品久久久| 久久精品国产99精品国产亚洲性色| 亚洲成av人片免费观看| 午夜精品在线福利| 女警被强在线播放| 老司机午夜十八禁免费视频| 国内精品久久久久久久电影| 99在线视频只有这里精品首页| 亚洲五月婷婷丁香| 青草久久国产| 男人操女人黄网站| 操出白浆在线播放| 国产熟女午夜一区二区三区| 在线观看免费日韩欧美大片| 欧美日韩一级在线毛片| 99热6这里只有精品| 亚洲一区高清亚洲精品| 99久久精品国产亚洲精品| 午夜激情福利司机影院| 夜夜夜夜夜久久久久| 性欧美人与动物交配| 久久久久国产一级毛片高清牌| 亚洲第一欧美日韩一区二区三区| 亚洲欧美精品综合久久99| 校园春色视频在线观看| 日本一区二区免费在线视频| 久久久国产成人免费| 麻豆成人午夜福利视频| 人人妻人人澡人人看| 十分钟在线观看高清视频www| 成人亚洲精品av一区二区| 欧美中文综合在线视频| 午夜成年电影在线免费观看| 日韩大尺度精品在线看网址| 国产精品98久久久久久宅男小说| 久久久久亚洲av毛片大全| 国产精品日韩av在线免费观看| 操出白浆在线播放| 久久久久免费精品人妻一区二区 | 欧美午夜高清在线| 午夜亚洲福利在线播放| 成熟少妇高潮喷水视频| 手机成人av网站| 亚洲精品久久成人aⅴ小说| 亚洲精品中文字幕一二三四区| 十分钟在线观看高清视频www| 在线国产一区二区在线| 人人妻人人澡欧美一区二区| 夜夜爽天天搞| 精品国产乱子伦一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | aaaaa片日本免费| 最新在线观看一区二区三区| 亚洲第一电影网av| 91大片在线观看| 91老司机精品| 精品第一国产精品| 精品高清国产在线一区| 欧美国产精品va在线观看不卡| 侵犯人妻中文字幕一二三四区| 亚洲 欧美 日韩 在线 免费| 亚洲全国av大片| 久久人人精品亚洲av| 久热这里只有精品99| 亚洲精品美女久久久久99蜜臀| 琪琪午夜伦伦电影理论片6080| 视频区欧美日本亚洲| 嫩草影院精品99| 日韩av在线大香蕉| 久久久国产成人免费| 性欧美人与动物交配| 国产成人av激情在线播放| 亚洲中文日韩欧美视频| 欧美日韩精品网址| 日韩欧美 国产精品| 亚洲成人精品中文字幕电影| 久久狼人影院| 国产精品免费一区二区三区在线| 日本精品一区二区三区蜜桃| 亚洲av第一区精品v没综合| 一级片免费观看大全| 中文字幕人妻熟女乱码| 99在线视频只有这里精品首页| 夜夜夜夜夜久久久久| 在线播放国产精品三级| 热re99久久国产66热| 日韩精品中文字幕看吧| 国产一级毛片七仙女欲春2 | 视频在线观看一区二区三区| 国产av又大| 非洲黑人性xxxx精品又粗又长| 欧洲精品卡2卡3卡4卡5卡区| 国内精品久久久久精免费| 男男h啪啪无遮挡| 亚洲午夜精品一区,二区,三区| 午夜激情av网站| 欧美又色又爽又黄视频| 日韩欧美一区二区三区在线观看| 国产精品九九99| 免费搜索国产男女视频| www.www免费av| 午夜老司机福利片| 久久久久久久久免费视频了| 一本综合久久免费| 欧美精品啪啪一区二区三区| 不卡一级毛片| 日韩精品免费视频一区二区三区| 琪琪午夜伦伦电影理论片6080| 中亚洲国语对白在线视频| 亚洲人成电影免费在线| www国产在线视频色| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品合色在线| 男人舔女人的私密视频| 在线永久观看黄色视频| 成人免费观看视频高清| 18禁美女被吸乳视频| 十八禁人妻一区二区| 成年女人毛片免费观看观看9| 黄片播放在线免费| 757午夜福利合集在线观看| 每晚都被弄得嗷嗷叫到高潮| 2021天堂中文幕一二区在线观 | 亚洲一区高清亚洲精品| 国内精品久久久久精免费| 一本综合久久免费| 国产爱豆传媒在线观看 | 久久国产乱子伦精品免费另类| 亚洲第一青青草原| 亚洲欧美一区二区三区黑人| 成人手机av| 少妇的丰满在线观看| 两个人看的免费小视频| 美女国产高潮福利片在线看| 男人舔奶头视频| 欧美午夜高清在线| or卡值多少钱| 欧美日韩一级在线毛片| 天堂影院成人在线观看| 日韩国内少妇激情av| 国产99白浆流出| 午夜福利在线在线| 国产精品久久久久久精品电影 | 久久午夜亚洲精品久久| cao死你这个sao货| 国产欧美日韩一区二区精品| 正在播放国产对白刺激| 超碰成人久久| 午夜福利高清视频| 国内揄拍国产精品人妻在线 | a在线观看视频网站| 久久久国产成人精品二区| 亚洲av中文字字幕乱码综合 | 欧美激情极品国产一区二区三区| a级毛片在线看网站| 国内精品久久久久久久电影| 91老司机精品| 欧美日韩瑟瑟在线播放| 日本免费一区二区三区高清不卡| 丰满的人妻完整版| 亚洲欧美一区二区三区黑人| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久久久久久久 | 国产精品亚洲一级av第二区| 亚洲片人在线观看| 男女视频在线观看网站免费 | 亚洲精品av麻豆狂野| 一进一出抽搐gif免费好疼| 在线永久观看黄色视频| 亚洲国产精品成人综合色| 成年女人毛片免费观看观看9| 中文字幕高清在线视频| 动漫黄色视频在线观看| 美女免费视频网站| 亚洲狠狠婷婷综合久久图片| 日韩有码中文字幕| 午夜免费鲁丝| 国产精品98久久久久久宅男小说| 国产亚洲精品第一综合不卡| 欧美日韩中文字幕国产精品一区二区三区| 大香蕉久久成人网| 日本三级黄在线观看| 亚洲午夜理论影院| 国产精品综合久久久久久久免费| 国产精品,欧美在线| 精品久久久久久久末码| 特大巨黑吊av在线直播 | 亚洲熟妇熟女久久| 国产欧美日韩一区二区精品| 成人18禁高潮啪啪吃奶动态图| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 在线十欧美十亚洲十日本专区| 亚洲国产看品久久| 免费看美女性在线毛片视频| 亚洲成人久久爱视频| 成人18禁高潮啪啪吃奶动态图| 国产精品免费视频内射| 久久精品夜夜夜夜夜久久蜜豆 | 女同久久另类99精品国产91| 亚洲国产精品sss在线观看| 午夜福利免费观看在线| 久9热在线精品视频| 啦啦啦观看免费观看视频高清| 夜夜看夜夜爽夜夜摸| 色综合亚洲欧美另类图片| 在线观看午夜福利视频| www.熟女人妻精品国产| 手机成人av网站| 18禁黄网站禁片免费观看直播| 99国产综合亚洲精品| 欧美中文日本在线观看视频| 亚洲专区字幕在线| 美女大奶头视频| 性色av乱码一区二区三区2| 久久这里只有精品19| 亚洲午夜理论影院| 亚洲欧美日韩无卡精品| 99国产综合亚洲精品| 无人区码免费观看不卡| 国产激情偷乱视频一区二区| 精品电影一区二区在线| 国产精品日韩av在线免费观看| 在线观看免费午夜福利视频| 黄色a级毛片大全视频| 黄色成人免费大全| 国产精品久久久人人做人人爽| 在线观看午夜福利视频| xxx96com| 黄色 视频免费看| 久久香蕉国产精品| 国产国语露脸激情在线看| 精品国内亚洲2022精品成人| 亚洲一区二区三区色噜噜| 中文字幕人妻丝袜一区二区| 香蕉国产在线看| 国产精品野战在线观看| 日韩免费av在线播放| 国产精品九九99| 中文字幕人妻熟女乱码| 男男h啪啪无遮挡| 午夜影院日韩av| 国产成人精品无人区| 人妻久久中文字幕网| 搞女人的毛片| 日韩欧美一区视频在线观看| 午夜免费激情av| 免费在线观看日本一区| 亚洲成人久久性| 国产黄a三级三级三级人| 国内精品久久久久久久电影| 中文资源天堂在线| 久久国产精品男人的天堂亚洲| 国产伦人伦偷精品视频| 亚洲精品国产一区二区精华液| 国产精品1区2区在线观看.| 美女高潮喷水抽搐中文字幕| 男人操女人黄网站| 看免费av毛片| 自线自在国产av| 99在线人妻在线中文字幕| 国产麻豆成人av免费视频| 91在线观看av| 亚洲真实伦在线观看| 国产精品,欧美在线| 麻豆av在线久日| 老司机午夜福利在线观看视频| 成人一区二区视频在线观看| 好男人电影高清在线观看| 精品国产乱码久久久久久男人| 熟女少妇亚洲综合色aaa.| 午夜两性在线视频| 琪琪午夜伦伦电影理论片6080| 无人区码免费观看不卡| 在线观看舔阴道视频| 99精品在免费线老司机午夜| 在线观看www视频免费| 女生性感内裤真人,穿戴方法视频| aaaaa片日本免费| 又黄又爽又免费观看的视频| 婷婷六月久久综合丁香| 老鸭窝网址在线观看| xxx96com| 一进一出抽搐gif免费好疼| 日韩欧美免费精品| 欧美中文综合在线视频| 久久香蕉精品热| 91成年电影在线观看| 成人三级做爰电影| 久久香蕉精品热| 国产黄a三级三级三级人| aaaaa片日本免费| 国产乱人伦免费视频| 长腿黑丝高跟| 少妇的丰满在线观看| 黄色成人免费大全| 男女床上黄色一级片免费看| 99热6这里只有精品| 色老头精品视频在线观看| 1024香蕉在线观看| av福利片在线| 欧美日韩精品网址| 黄色视频不卡| 午夜福利成人在线免费观看| 亚洲五月色婷婷综合| 久久久国产精品麻豆| 色av中文字幕| 身体一侧抽搐| 久久久久久国产a免费观看| 成年免费大片在线观看| 亚洲午夜精品一区,二区,三区| 亚洲av美国av| 亚洲人成伊人成综合网2020| 白带黄色成豆腐渣| 国产欧美日韩精品亚洲av| 美女午夜性视频免费| 这个男人来自地球电影免费观看| 免费在线观看日本一区| 亚洲国产看品久久| 久久香蕉激情| 日韩国内少妇激情av| 色综合亚洲欧美另类图片| 精品无人区乱码1区二区| 午夜激情av网站| 变态另类丝袜制服| 性欧美人与动物交配| 亚洲精品国产区一区二| 日韩欧美免费精品| 精品第一国产精品| 久久久久亚洲av毛片大全| 色播亚洲综合网| 精品久久久久久久人妻蜜臀av| 巨乳人妻的诱惑在线观看| www.www免费av| 人人妻人人看人人澡| 久久婷婷人人爽人人干人人爱| bbb黄色大片| 少妇 在线观看| 亚洲狠狠婷婷综合久久图片| 正在播放国产对白刺激| 波多野结衣av一区二区av| 国产av又大| 亚洲av五月六月丁香网| 99在线人妻在线中文字幕| 日本三级黄在线观看| 大型黄色视频在线免费观看| 99久久无色码亚洲精品果冻| 国产亚洲精品av在线| 国产精品二区激情视频| www国产在线视频色| 国产一级毛片七仙女欲春2 | 成人欧美大片| 在线永久观看黄色视频| 首页视频小说图片口味搜索| 12—13女人毛片做爰片一| 69av精品久久久久久| 夜夜躁狠狠躁天天躁| 欧美av亚洲av综合av国产av| 女警被强在线播放| 国产午夜福利久久久久久| 两个人视频免费观看高清| 怎么达到女性高潮| 国产免费av片在线观看野外av| 免费在线观看亚洲国产| 夜夜看夜夜爽夜夜摸| а√天堂www在线а√下载| 脱女人内裤的视频| 草草在线视频免费看| 一级作爱视频免费观看| 变态另类成人亚洲欧美熟女| 日日干狠狠操夜夜爽| 麻豆一二三区av精品| 欧美午夜高清在线| 国产单亲对白刺激| 欧美又色又爽又黄视频| 亚洲五月婷婷丁香| 久久久久国产精品人妻aⅴ院| 日韩三级视频一区二区三区| 国产片内射在线| 在线视频色国产色| 精品欧美国产一区二区三| 在线十欧美十亚洲十日本专区| 女生性感内裤真人,穿戴方法视频| 亚洲天堂国产精品一区在线| 国产在线观看jvid| 久99久视频精品免费| 亚洲三区欧美一区| 满18在线观看网站| 国产精品亚洲美女久久久| 琪琪午夜伦伦电影理论片6080| 午夜久久久久精精品| 日韩 欧美 亚洲 中文字幕| 国产日本99.免费观看| 黄色 视频免费看| 久久天躁狠狠躁夜夜2o2o| 国产免费男女视频| 日韩视频一区二区在线观看| 黄色a级毛片大全视频| 两个人免费观看高清视频| 精品久久蜜臀av无| 国产男靠女视频免费网站| tocl精华| 国产一区二区三区视频了| 又大又爽又粗| 美女国产高潮福利片在线看| 中文字幕另类日韩欧美亚洲嫩草| 国产1区2区3区精品| 国产精品二区激情视频| √禁漫天堂资源中文www| 97人妻精品一区二区三区麻豆 | 少妇裸体淫交视频免费看高清 | 97碰自拍视频| 国产真实乱freesex| 亚洲精品国产区一区二| 午夜福利在线观看吧| 手机成人av网站| 国产精品 国内视频| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 国产熟女xx| 成人免费观看视频高清| 99国产精品99久久久久| 国产av不卡久久| 中文在线观看免费www的网站 | 身体一侧抽搐| 亚洲成av人片免费观看| 欧美成人午夜精品| 免费看十八禁软件| 变态另类成人亚洲欧美熟女| 亚洲一码二码三码区别大吗| 欧美性长视频在线观看| 满18在线观看网站| 国产免费男女视频| 欧美激情高清一区二区三区| 香蕉久久夜色| 亚洲人成77777在线视频| 亚洲精品av麻豆狂野| 久久久久久久午夜电影| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 男女那种视频在线观看| 18禁国产床啪视频网站| 亚洲第一电影网av| 久久99热这里只有精品18| 色尼玛亚洲综合影院| 亚洲激情在线av| 午夜久久久久精精品| 一进一出好大好爽视频| 日韩欧美在线二视频| 久久精品国产亚洲av香蕉五月|