• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    再生障礙性貧血病因?qū)W的新探索:異常免疫誘導(dǎo)骨髓間充質(zhì)干細胞的過度脂肪化

    2014-04-01 01:38:38盧學(xué)春楊波遲小華于睿莉
    解放軍醫(yī)學(xué)雜志 2014年3期
    關(guān)鍵詞:病因?qū)W楊波障礙性

    盧學(xué)春,楊波,遲小華,于睿莉

    It has generally been accepted that the defects of hematopoietic stem cells /hematopoietic progenitors (HSCs/HPCs), which are immune system disorders and abnormalities of the bone marrow microenvironment, are concomitant in acquired aplastic anemia (AA). Currently, most investigative efforts have concentrated on the elucidation of the immune-mediated mechanisms of hematopoietic cell destruction[1-3]. Although the replacement of hematopoietic active marrow with fat cells is another characteristic feature of AA, the fat cells themselves have received little attention, and the mechanisms and underlying significance of fatty marrow replacement remain unclear. When discussing the replacement of hematopoietic active marrow by fat cells in AA, it appears that an apparent fatty marrow infiltration has been considered a secondary phenomenon.

    It is generally accepted that the bone marrow microenvironment consists of adipocytes, fibroblasts, osteoblasts, osteoclasts and endothelial cells that are derived from mesenchymal stem cells (MSCs). MSCs support hematopoiesis and regulate the function of many immune cells. Thus, abnormal MSCs affect hematopoiesis. When MSCs abnormally differentiate to fibroblasts, osteoblasts and osteoclasts, this can cause anemia with myelofibrosis, osteoporosis and osteopetrosis, respectively. AA is characterized by fatty replacement in bone marrow (BM) that results in pancytopenia. As with myelofibrosis, osteoporosis and osteopetrosis, AA appears to share this mechanism of abnormal MSC differentiation.

    Effective AA treatments, such as cyclosporine[4], androgen[5], lithium chloride[6]and Bojungbangdocktang[7], inhibit the differentiation of MSCs to adipocytes, but this characteristic is often overlooked. The same is true for the pathogenic factors related to acquired AA. The infrequently used antibiotic chloramphenicol can cause acquired AA and can also induce MSC adipogenesis.Auto-active T cells can induce both the apoptosis of HSCs/HPCs and adipogenesis differentiation of MSCs. Androgens, such as oxymetholone, were used extensively in the treatment of acquired AA for decades and could also inhibit the differentiation of human MSCs (as well as preadipocytes) to adipocytes.

    It is crucial to clarify the cause of fat cell accumulation in acquired AA, which may offer protective/therapeutic effects in acquired AA.

    1 Drugs and a series of therapy and adipogenesis

    1.1 Toxins and toxicity drugs: inducing AA via increased adipogenesis Many toxins and toxicity drugs are potential causes of acquired AA, and some of these agents can induce MSCs to differentiate into adipocytes. Chloramphenicol is the most notorious drug known to cause acquired AA. The risk of developing acquired AA in patients treated with chloramphenicol is approximately one in 20,000 or 10- to 50-fold that of the general population[8]. There is no direct evidence of the myelosuppressive effect of this drug within a normal dose range; however, there is evidence of this effect at very high doses. Though lacking robust evidence, this sensitivity is also believed to produce immunologic marrow suppression because the affected patients responded to immunosuppressive therapy[9-11]. Again, there is lack of direct evidence for toxicities against HSCs/HPCs from chloramphenicol.More recently, a series of studies failed to produce a chronic aplastic anemia mouse model using chloramphenicol succinate[12-14].The studies also indicated that chloramphenicol may cause acquired AA in humans through other time-cost avenues (such as the adipogenesis of MSCs) instead of impairing HSCs/HPCs or immune stirring.

    Chloramphenicol can damage mitochondria; this is considered to be another pathological avenue for inducing acquired AA.Although there is close relationship between mitochondrial defects and acquired AA, the mechanism of mitochondrial damage and acquired AA is unclear. Recently, Vankoningsloo et al[15]found that chloramphenicol could induce triglyceride accumulation in 3T3-L1 preadipocytes and could also increase the differentiation of adipocytes from preadipocytes; this may be the underlying mechanism of chloramphenicol-related acquired AA. Chloramphenicol may induce the MSCs to preferentially differentiate to adipocytes in AA patients. Furthermore, the HSCs/HPCs lost hematopoietic support from the MSCs, and finally pancytopenia arose. In refractory acquired AA in which stem cell transplantation failed to recover normal hematopoiesis, MSCs infusion could salvage the graft failure[16-17]. This finding indicated that normal MSCs warrant normal hematopoiesis recovery from AA and that defect MSCs, such as over adipogenesis, impair normal hematopoiesis.

    1.2 Effective therapy for acquired AA may increase hematopoiesis by inhibiting adipogenesis in bone marrow in a timeconsuming manner In addition to stem cell transplantation, immunosuppressive therapy (IST) and androgens are the two most frequently used treatments for acquired AA. IST was thought to inhibit T cell toxicities to stem/progenitor cells; if this were true,hematopoiesis should shortly recover after the depletion of T cell toxicities, just as in the treatment of immune thrombocytopenia(ITP)[18]. However, this is not true in AA clinical practice due to the recovery time of hematopoiesis[19].

    1.3 Immunosuppressive therapeutic reagents inhibit adipogenesis Cyclosporine is a standard immunosuppressive therapeutic reagent (IST) for acquired AA, though other IST types, such as sirolimus, also have therapeutic effects against this disease. The overall survival rate after IST for acquired AA is currently approximately 75% at 5 years. The relapse rate after immunosuppressive therapy was approximately 30%[4]. Patients are at risk for later clonal disease, myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML, 8%), hemolytic paroxysmal nocturnal hemoglobinuria (PNH, 10%) and solid tumors (11%) at 11 years,respectively[20]. These results warrant exploring other effective and safe methods that have the benefits of IST without its toxic side effects.

    IST was also found to decrease both the adipocyte numbers and cell mass in animals and patients taking IST. Adipogenesis decreased both in the bone marrow and throughout the body. When rats were given sirolimus 1.0mg/kg three times per week for 12 weeks, both the body mass index and adipocyte diameters were lower than those of the control group (356g vs 507g, P<0.01,25μm vs 36μm, P=0.009)[21]. After kidney transplantation, the recipients took cyclosporine. Two years later, the body mass indexes of the patients decreased significantly[22]. Cyclosporine and other ISTs could decrease adipogenesis, and this may have underlying significance in its pharmacodynamics. Nuclear factor of activated T cells (NFAT) is a family of transcription factors that are present in 3T3-L1 adipocytes and MSCs, and also participates in adipocyte differentiation[23]. Cyclosporine A could prevent NFAT nuclear localization and thus inhibit fat cell differentiation. These results demonstrated that, with the exception of its immune inhibition effect, cyclosporine A could also inhibit the differentiation of fat cells; this may play an important role in the treatment of acquired AA.

    1.4 Inhibitive effects of androgens on adipogenesis An association between androgens and erythropoiesis has been acknowledged for decades. Oxymetholone was used extensively in the treatment of acquired AA. In some patients, oxymetholone can stimulate erythropoiesis in particular but sometimes can produce a trilineage response. Oxymetholone in combination with IST more significantly increases this response compared with IST alone[24-25]. The mechanism of how androgens stimulate hematopoiesis is poorly understood. It has been thought that the stimulation of erythropoietin release and increases bone marrow activity[26].An anecdotal use of rHuEpo in acquired AA has shown that it is ineffective, which is not surprising in view of the demonstration of markedly elevated serum erythropoietin levels in the majority of patients with acquired AA[27]. Thus, androgens may stimulate hematopoiesis through other mechanisms instead of the EPO pathway.

    Recently, Gupta et al[5]found that androgens could inhibit the differentiation of human mesenchymal stem cells and preadipocytes to adipocytes. In this study, dihydrotestosterone (DHT) (0–30nmol/L) downregulated the expression of adipocyte differentiation genes, including aP2, leptin, and PPARγ mRNAs, in a dose-dependent manner.

    This suggested that androgens may reverse normal hematopoiesis by inhibiting MSC adipogenesis.

    1.5 Response time of AA is significantly longer than that of immune-related cytopenia disorders Immune inhibitors require significantly more time to recover hematopoiesis in acquired AA than immune-related cytopenia such as ITP. Acquired AA responses to ATG and cyclosporine are delayed, and the response usually does not begin before 3–4 months of treatment. For ITP, which is considered a typical immune disorder-related, platelet-destroying disease, 4 weeks or less are usually required to recover normal platelet counts[18]. This recovery time is significantly longer than that of neutrophils; and platelet after stem cell transplantation are approximately 28 days[19], which is also the length of time that it takes for hematopoiesis to recover (without other disturbances).Not surprisingly, the platelet count recovery time after effective ITP treatment is the same as that of stem cell transplantation; this may be the time course of platelet production. In acquired AA, the scenario may be significantly more complex because a longer recovery time is required after IST treatment.

    In summary, the response time of IST in the treatment of acquired AA is significantly longer than that of IST in the treatment of ITP. There must be an additional contributor to cytopenia in acquired AA (in addition to direct toxicities against hematopoiesis by T lymphocytes). Over adipocytosis of the MSCs in bone marrow requires time and may account for this.

    2 Cell-mediated immunity and adipogenesis

    2.1 Abnormal immunity may increase adipogenesis in bone marrow Although the replacement of hematopoietic marrow with fat cells is the primary characteristic feature of acquired AA, the fat cells themselves have received little attention, and the mechanisms of fatty marrow replacement remain unclear. Study results have shown that abnormal T lymphocytes may increase the adipogenesis differentiation of MSCs by excreting cytokines such as IFN-γ and TNF-α. In a non-random controlled clinical trial including seven patients with AA and nine normal age-matched controls, Hara et al[28]measured T-cell-derived intracellular cytokine production levels in the peripheral blood and bone marrow of patients with AA. The results demonstrated that BM lymphocytes in patients with AA produced significantly larger amounts of IFN-γ compared with controls.

    It has been demonstrated that auto reactive T lymphocytes can induce adipogenesis from MSC. A variety of cytokines,including IFN-γ and TNF-α, have been confirmed as the key mediators of hematopoietic suppression and could also cause MSCs to differentiate to adipocytes. The transcription factor GATA-2 may play an important role in the balance between hematopoiesis and adipogenesis in bone marrow. GATA-2 is specifically expressed not only in hematopoietic tissues but also in preadipocytes, and it is known to be an important adipogenic regulator[29].

    Xu et al[30]found that both the protein and mRNA levels of GATA-2 were lower in the marrow MSCs from AA patients than those in normal subjects. They further verified that incubation with interferon-γ induced the downregulation of GATA-2 levels in MSCs in normal subjects; this increased the differentiation of MSCs to adipocytes. These results showed that auto active T lymphocytes may increase adipogenesis in marrow by excreting cytokines such as IFN-γ. Other cytokines from T lymphocytes,such as IL-15, have similar effects in adipogenesis[31].

    2.2 Over adipogenesis decreases B lymphocytes in AA Bone marrow failure has been considered to be related to the strong immunologic function of T lymphocytes in a scenario of concurrently reduced B lymphocyte levels. Li et al[32]found that there are fewer CD19+B lymphocytes in the bone marrow of AA patients than that of healthy controls (P=0.002). It appears that the relative decrease in B lymphocytes could not be due to the proliferation of T lymphocytes in AA because NK cells, which are another of the three main lymphocyte subsets, did not obviously decrease in AA. It appears likely, therefore, that a reduction in (CD34+/CD19+)B lymphocyte progenitors explains the B lymphocyte decrease observed in AA in the course of the disease, whereas the number of adult B lymphocytes is significantly decreased. Unfortunately, it remains unknown why the earliest B cell progenitors, CD34+/CD19+B lymphocyte progenitors, decreased in AA. It appears that adipocytes may negatively regulate the production of B lymphocytes in AA.

    Many adipocyte products, including type 1 IFN, PGs, leptin, and sex steroids, are known modulators of lymphohematopoiesis.Adiponectin is an abundant protein made exclusively by adipocytes. Hematopoietic cells and the microenvironment that supports their differentiation are also adiponectin targets. Yokota et al[33]used long bone marrow cultures to investigate the effects of adiponectin on lymphohematopoietic cells. They found that recombinant adiponectin strongly inhibited B lymphopoiesis in longterm bone marrow cultures. These results indicate that adipocytes in bone marrow can contribute to the regulation of B lymphocyte formation.

    2.3 Over adipogenesis may decrease the T-cell suppression effect of MSCs Bone marrow MSCs have immunosuppressive activity both in vitro and in vivo[33-36]. It is generally accepted that abnormal immunity is the primary factor mediating the pathogenesis of acquired AA. This abnormal immunity may be the result of the decreased suppression effect against T cells by MSCs after their adipogenesis differentiation. In a clinical experiment of 23 severe AA cases and 19 healthy controls, Bacigalupo et al[37]compared the suppressive effect of MSCs (derived from the two patient groups) on T-cell activation. They found that the abnormalities of MSCs from severe AA patients included 1) a significantly lower suppression of T-cell proliferation induced by alloantigens; 2) an impaired capacity to suppress CD38 expression on PHA-primed T cells; 3) an impaired ability to suppress IFN-γ production in PHA cultures. The ability of MSCs to downregulate T-cell priming, proliferation, and cytokine release is deficient in patients with SAA.In another study, Liu et al[38]and Li et al[39]found that MSCs lost their immune regulation effect after differentiating to adipocytes.Thus, we could deduce that the inhibition of MSC differentiation to adipogenesis (restoring the T-cell suppression of MSCs) may be beneficial in recovering normal hematopoiesis in acquired AA.

    3 Over adipogenesis in marrow and hematopoiesis

    3.1 Over adipogenesis of MSCs and the excretion of hematopoietic inhibitors During aging, hematopoietic bone marrow is increasingly replaced by adipose tissue[40]; this may at least in part explain the high rate of anemia in the aging population. This phenomenon can also be observed in hematopoiesis diseases and especially in AA. Adipose tissue produces a number of cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IFN-γ and others[41-43]. Present data indicate that IL-6, IFN-γ and TNF-α[44]belong to myelosuppressive cytokines. IL-6, IFN-γ and TNF-α could induce the death of hematopoietic progenitor cells by increased apoptosis at very low cytokine concentrations[45-47]. Adipocytes may exert their inhibitory effects on hematopoiesis by excreting these negative cytokines in AA.

    3.2 The increased adipogenesis of MSCs decreases normal hematopoiesis It is well known that MSCs support hematopoiesis and that they are impaired in acquired AA, especially in scenarios of over adipogenesis. Recently, Wu et al[48]directly verified this via the co-transplantation of MSCs following hematopoietic stem cell transplantation in a severe AA patient; this treatment increased the reconstitution of normal hematopoiesis. Over adipogenesis of MSCs can have negative effects on normal hematopoiesis via the reduced production of hematopoietic supporting factors and the excessive excretion of hematopoietic inhibitors (Figure 1); these could retard the recovery of normal hematopoiesis after hematopoietic stem cell transplantation or radiation damage.

    To explore if adipocytes influence hematopoiesis or if they simply fill the marrow space as a secondary result after radiation,Naveiras et al[40]used a "fatless" mice model and found that hematopoiesis in fatless marrow engraftments after irradiation was accelerated compared with that of fatty marrow. This indicated that over adipogenesis participated at least in part with the origin of acquired AA. It also indicated that an increased adipocyte level is an initiating and not a secondary phenomenon in acquired AA. These data showed that antagonizing marrow over adipogenesis may enhance normal hematopoietic recovery in the over adipogenesis of marrow observed in AA.

    Fig 1. Mesenchymal stem cells (MSCs) are the primary components of the hematopoietic niche in bone marrow. In a homeostatic condition, hematopoiesis is maintained via support from MSCs. When bone marrow is attacked by acquired AA pathogenic factors(such as abnormal immune reactions, chemicals, virus infections, radiation, etc.), however, over adipogenesis happened and adipocytes predominantly suppress hematopoiesis.(...> increase; ...| inhibit)

    Although acquired AA is a heterous cytopenia syndrome, most cases share the same pathological characteristics of over adipogenesis in bone marrow. This abnormal adipogenesis may be both the stirrer and result of abnormal immunity. This cycle of abnormal immunity and over adipogenesis may account for the cytopenia in most acquired AA patients (Figure 1). This finding warrants further exploration for new target drugs against adipogenesis in the treatment of acquired AA.

    [1] Ascensao J, Pahwa R, Kagan W, et al. Aplastic anaemia: evidence for an immunological mechanism[J]. Lancet, 1976, 1(7961): 669-671.

    [2] Bacigalupo A, Valle M, Podestà M, et al. T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia[J]. Exp Hematol, 2005, 33(7): 819-827.

    [3] Young NS, Maciejewski J. The pathophysiology of acquired aplastic anemia[J]. N Engl J Med, 1997, 336(19): 1365-1372.

    [4] Schrezenmeier H, Marin P, Raghavachar A, et al. Relapse of aplastic anaemia after immunosuppressive treatment: a report from the European Bone Marrow Transplantation Group SAA Working Party[J]. Br J Haematol, 1993, 85(2): 371-377.

    [5] Gupta V, Bhasin S, Guo W, et al. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes[J]. Mol Cell Endocrinol, 2008, 296(1-2): 32-40.

    [6] Zhang N, Dai YL, Huang LF, et al. Therapeutic effect of lithium chloride combined with cyclosporine A on mouse model with aplastic anemia[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2012, 20(3): 654-657.

    [7] Lim J, Jeong SJ, Koh W, et al. JAK2/STAT5 signaling pathway mediates Bojungbangdocktang enhanced hematopoiesis[J]. Phytother Res,2011, 25(3): 329-337.

    [8] Lichtman MA, Beutler E, Seligsohn U, et al. Williams hematology[M]. 7th ed. McGraw-Hill Companies. 2006. 419.

    [9] Holt DE, Andrews CM, Payne JP, et al. The myelotoxicity of chloramphenicol: in vitro and in vivo studies: Ⅱ: In vivo myelotoxicity in the B6C3F1 mouse[J]. Hum Exp Toxicol, 1998, 17(1): 8-17.

    [10] Turton JA, Yallop D, Andrews CM, et al. Haemotoxicity of chloramphenicol succinate in the CD-1 mouse and Wistar Hanover rat[J]. Hum Exp Toxicol, 1999, 18(9): 566-576.

    [11] Turton JA, Havard AC, Robinson S, et al. An assessment of chloramphenicol and thiamphenicol in the induction of aplastic anaemia in the BALB/c mouse[J]. Food Chem Toxicol, 2000, 38(10): 925-938.

    [12] Festing MF, Diamanti P, Turton JA. Strain differences in haematological response to chloramphenicol succinate in mice: implications for toxicological research[J]. Food Chem Toxicol, 2001, 39(4): 375-383.

    [13] Turton JA, Andrews CM, Havard AC, et al. Haemotoxicity of thiamphenicol in the BALB/c mouse and Wistar Hanover rat[J]. Food Chem Toxicol, 2002, 40(12): 1849-1861.

    [14] Turton JA, Andrews CM, Havard AC, et al. Studies on the haemotoxicity of chloramphenicol succinate in the Dunkin Hartley guinea pig[J].Int J Exp Pathol, 2002, 83(5): 225-238.

    [15] Vankoningsloo S, De Pauw A, Houbion A, et al. CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes[J]. J Cell Sci, 2006, 119(Pt 7): 1266-1282.

    [16] Jaganathan BG, Tisato V, Vulliamy T, et al. Effects of MSC co-injection on the reconstitution of aplastic anemia patient following hematopoietic stem cell transplantation[J]. Leukemia, 2010, 24(10): 1791-1795.

    [17] Fang B, Li N, Song Y, et al. Cotransplantation of haploidentical mesenchymal stem cells to enhance engraftment of hematopoietic stem cells and to reduce the risk of graft failure in two children with severe aplastic anemia[J]. Pediatr Transplant, 2009, 13(4): 499-502.

    [18] Emilia G, Luppi M, Morselli M, et al. A possible role for low-dose cyclosporine in refractory immune thrombocytopenic purpura[J].Haematologica, 2008, 93(7): 1113-1115.

    [19] Richard EC, Waleska SP, Jakob RP, et al. Bone marrow transplantation for severe aplastic anemia: a randomized controlled study of conditioning regimens[J]. Blood, 2007, 109(10): 4582-4585.

    [20] Frickhofen N, Heimpel H, Kaltwasser JP, et al. Antithymocyte globulin with or without cyclosporin A: 11-year follow-up of a randomised trial comparing treatments of aplastic anaemia[J]. Blood, 2003, 101(4): 1236-1242.

    [21] Rovira J, Marcelo AE, Burke JT, et al. Effect of mTOR inhibitor on body weight: from an experimental rat model to human transplant patients[J]. Transpl Int, 2008, 21(10): 992-998.

    [22] Huang H, Chang EJ, Ryu J, et al. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway[J]. Biochem Biophys Res Commun, 2006, 351(1): 99-105.

    [23] Ho IC, Kim JHJ, Rooney JW, et al. A potential role for the nuclear factor of activated T cells family of transcriptional regulatory proteins in adipogenesis[J]. Proc Natl Acad Sci USA, 1998, 95(26): 15537-15541.

    [24] Bacigalupo A, Chaple M, Hows J, et al. Treatment of aplastic anaemia (AA) with antilymphocyte globulin (ALG) and methylprednisolone(Mpred) with or without androgens: a randomized trial from the EBMT SAA Working Party[J]. Br J Haematol, 1993, 83(1): 145-151.

    [25] Leleu X, Terriou L, Duhamel A, et al. Long-term outcome in acquired aplastic anemia treated with an intensified dose schedule of horse antilymphocyte globulin in combination with androgens[J]. Annals Hematol, 2006, 85(10): 711-716.

    [26] Shahani S, Braga-Basaria M, Maggio M, et al. Androgens and erythropoiesis: past and present[J]. Endocrinol Invest, 2009, 32(8): 704-716.

    [27] Marsh JCW, Ganser A, Stadler M. Hematopoietic growth factors in the treatment of acquired bone marrow failure states[J]. Semin Hematol,2007, 44(3): 138-147.

    [28] Hara T, Ando K, Tsurumi H, et al. Excessive production of tumor necrosis factor-alpha by bone marrow T lymphocytes is essential in causing bone marrow failure in patients with aplastic anemia[J]. Eur J Haematol, 2004, 73(1): 10-16.

    [29] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.

    [30] Xu Y, Takahashi Y, Wang Y, et al. Downregulation of GATA-2 and overexpression of adipogenic gene-PPARgamma in mesenchymal stem cells from patients with aplastic anemia[J]. Exp Hematol, 2009, 37(12): 1393-1399.

    [31] Almendro V, Fuster G, Ametller E, et al. Interleukin-15 increases calcineurin expression in 3T3-L1 cells: possible involvement on in vivo adipocyte differentiation[J]. Int J Mol Med, 2009, 24(4): 453-458.

    [32] Li X, Xu F, He Q, et al. Comparison of immunological abnormalities of lymphocytes in bone marrow in myelodysplastic syndrome (MDS) and aplastic anemia (AA)[J]. Intern Med, 2010, 49(14):1349-1355.

    [33] Yokota T, Meka CS, Kouro T, et al. Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase-prostaglandin pathway in stromal cells[J]. J Immunol, 2003, 171(10): 5091-5099.

    [34] Prockop DJ. Marrow stromal cells as stem cells for non hematopoietic tissues[J]. Science, 1997, 276(5309): 71-74.

    [35] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.

    [36] Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood, 2002, 99(10): 3838-3843.

    [37] Bacigalupo A, Bruno B, Saracco P, et al. Antilymphocyte globulin, cyclosporine, prednisolone and granulocyte colony stimulating factor for severe aplastic anemia: an update of the GITMO/EBMT study on 100 patients[J]. Blood, 2000, 95(6): 1931-1934.

    [38] Liu H, Kemeny DM, Heng BC, et al. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells[J]. J Immunol, 2006, 176(5): 2864-2871.

    [39] Li J, Yang S, Lu S, et al. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia[J]. PLoS One, 2012, 7(11): e47764.

    [40] Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment[J]. Nature,2009, 460(7252): 259-263.

    [41] Muschler GF, Nitto H, Boehm CA, et al. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors[J]. J Orthop Res, 2001, 19(1): 117-125.

    [42] Chan JL, Moschos SJ, Bullen J, et al. Recombinant methionyl human leptin administration activates signal transducer and activator of transcription 3 signaling in peripheral blood mononuclear cells in vivo and regulates soluble tumor necrosis factor-alpha receptor levels in humans with relative leptin deficiency[J]. J Clin Endocrinol Metab, 2005, 90(3):1625-1631.

    [43] Freedman MH, Cohen A, Grunberger T, et al. Central role of tumour necrosis factor, GM-CSF, and interleukin 1in the pathogenesis of juvenile chronic myelogenous leukaemia[J]. Br J Haematol, 1992, 80(1):40-48.

    [44] Hall PD, Benko H, Hogan KR, et al. The influence of serum tumor necrosis factor-a and interleukin-6 concentrations on nonhematologic toxicity and hematologic recovery in patients with acute myelogenous leukemia[J]. Exp Hematol, 1995, 23(12):1256-1260.

    [45] Vinante F, Rigo A, Tecchio C, et al. Serum levels of p55 and p75 soluble TNF receptors in adult acute leukaemia at diagnosis: correlation with clinical and biological features and outcome[J]. Br J Haematol, 1998, 102(4): 1025-1034.

    [46] Belaid-Choucair Z, Lepelletier Y, Poncin G, et al. Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition[J]. Stem Cells, 2008, 26(6): 1556-1564.

    [47] Rathbun RK, Faulkner GR, Ostroski MH, et al. Inactivation of the Fanconi anemia group C gene augments interferon-γ- induced apoptotic responses in hematopoietic cells[J]. Blood, 1997, 90(3): 974-985.

    [48] Wu Y, Cao Y, Li X, et al. Cotransplantation of haploidentical hematopoietic and umbilical cord mesenchymal stem cells for severe aplastic anemia: Successful engraftment and mild GVHD[J]. Stem Cell Res, 2013, 12(1): 132-138.

    猜你喜歡
    病因?qū)W楊波障礙性
    母牛繁殖障礙性疾病的發(fā)生原因、臨床表現(xiàn)及防治
    某型飛機主起機輪艙改進設(shè)計
    Parameterized Post-Post-Newtonian Light Propagation in the Field of One Spherically-Symmetric Body?
    豬繁殖障礙性病毒病鑒別診斷及綜合防控
    楊波藏品欣賞
    寶藏(2017年10期)2018-01-03 01:53:45
    妊娠期高血壓疾病的病因?qū)W及護理研究進展
    交感—腎上腺素能神經(jīng)系統(tǒng)與主動脈夾層的關(guān)系研究
    膝關(guān)節(jié)自發(fā)性骨壞死的病因?qū)W研究進展
    一個非綜合征型聾家系的分子病因?qū)W研究
    氯米芬結(jié)合熱敏點灸治療排卵障礙性不孕癥32例
    99久国产av精品| 18禁在线播放成人免费| 啦啦啦啦在线视频资源| av视频在线观看入口| 欧美精品国产亚洲| 两个人的视频大全免费| 亚洲欧美日韩高清专用| 最近中文字幕高清免费大全6| 欧美一区二区国产精品久久精品| 国产一区二区亚洲精品在线观看| 少妇的逼好多水| 欧美一区二区国产精品久久精品| 日韩欧美免费精品| 91在线精品国自产拍蜜月| 亚洲五月天丁香| 日本欧美国产在线视频| 国产成人影院久久av| 亚洲婷婷狠狠爱综合网| 一本一本综合久久| 成年免费大片在线观看| 直男gayav资源| 美女被艹到高潮喷水动态| 你懂的网址亚洲精品在线观看 | 国产精品久久久久久久久免| 欧美激情久久久久久爽电影| 搡女人真爽免费视频火全软件 | 看片在线看免费视频| 亚洲国产高清在线一区二区三| 热99在线观看视频| 一边摸一边抽搐一进一小说| 乱码一卡2卡4卡精品| 网址你懂的国产日韩在线| av国产免费在线观看| 日韩欧美免费精品| 精品久久久久久久人妻蜜臀av| 国产熟女欧美一区二区| 日本精品一区二区三区蜜桃| 久99久视频精品免费| 日韩大尺度精品在线看网址| 久久热精品热| 欧美日韩乱码在线| 精品久久久久久成人av| 婷婷精品国产亚洲av| 久久精品久久久久久噜噜老黄 | 亚洲国产欧美人成| 麻豆精品久久久久久蜜桃| 亚洲人成网站在线观看播放| 亚洲精品亚洲一区二区| 我要搜黄色片| 一级av片app| 欧美激情国产日韩精品一区| 少妇人妻一区二区三区视频| 亚洲五月天丁香| 高清毛片免费看| 网址你懂的国产日韩在线| 成人国产麻豆网| 久久韩国三级中文字幕| 精品99又大又爽又粗少妇毛片| 少妇熟女aⅴ在线视频| 亚洲美女黄片视频| 欧美性感艳星| 中文字幕免费在线视频6| 亚洲最大成人中文| 午夜a级毛片| 丝袜美腿在线中文| 久久久a久久爽久久v久久| 不卡视频在线观看欧美| 99久久精品一区二区三区| 卡戴珊不雅视频在线播放| 国产精品久久久久久av不卡| 毛片女人毛片| 亚洲欧美精品综合久久99| 午夜精品国产一区二区电影 | 91av网一区二区| 国产成人91sexporn| 亚洲欧美成人综合另类久久久 | 狂野欧美白嫩少妇大欣赏| 精品日产1卡2卡| 老师上课跳d突然被开到最大视频| 国产在线男女| 欧美日韩一区二区视频在线观看视频在线 | 亚洲在线观看片| 精品一区二区三区视频在线观看免费| АⅤ资源中文在线天堂| 美女高潮的动态| 内射极品少妇av片p| 97人妻精品一区二区三区麻豆| 搡老妇女老女人老熟妇| 最近最新中文字幕大全电影3| 在线天堂最新版资源| 97超视频在线观看视频| 美女 人体艺术 gogo| 国内精品久久久久精免费| 91久久精品电影网| 色哟哟·www| 最近2019中文字幕mv第一页| 国产伦在线观看视频一区| 成人三级黄色视频| 性插视频无遮挡在线免费观看| 精品久久久久久成人av| 黄色配什么色好看| 日本熟妇午夜| 免费在线观看成人毛片| 一级av片app| 干丝袜人妻中文字幕| 欧美在线一区亚洲| 久久韩国三级中文字幕| 亚洲欧美日韩高清专用| 欧美成人精品欧美一级黄| 男女那种视频在线观看| 欧美高清成人免费视频www| 伊人久久精品亚洲午夜| 又粗又爽又猛毛片免费看| 嫩草影视91久久| 1000部很黄的大片| 91av网一区二区| 亚洲一级一片aⅴ在线观看| 日韩制服骚丝袜av| 一区二区三区免费毛片| 日本三级黄在线观看| 老女人水多毛片| 变态另类成人亚洲欧美熟女| 久久国产乱子免费精品| 日韩三级伦理在线观看| 色5月婷婷丁香| 日韩欧美 国产精品| 国产三级在线视频| 在线观看一区二区三区| 91久久精品国产一区二区三区| 免费人成视频x8x8入口观看| 免费观看的影片在线观看| 麻豆乱淫一区二区| 99热全是精品| 国产大屁股一区二区在线视频| 欧美最黄视频在线播放免费| 亚洲中文字幕日韩| 五月玫瑰六月丁香| 亚洲欧美日韩卡通动漫| 午夜福利成人在线免费观看| 亚洲最大成人中文| 91av网一区二区| 成人永久免费在线观看视频| 少妇高潮的动态图| 国产女主播在线喷水免费视频网站 | 成人综合一区亚洲| 九九热线精品视视频播放| 丰满人妻一区二区三区视频av| 深夜a级毛片| 久久这里只有精品中国| a级毛片免费高清观看在线播放| 亚洲七黄色美女视频| 噜噜噜噜噜久久久久久91| 亚洲成人久久性| 亚洲av.av天堂| 免费观看的影片在线观看| 99久久成人亚洲精品观看| 少妇的逼水好多| 亚洲乱码一区二区免费版| 五月玫瑰六月丁香| 日本欧美国产在线视频| 一级av片app| 国产精品人妻久久久久久| 此物有八面人人有两片| 深夜精品福利| 乱系列少妇在线播放| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 亚洲真实伦在线观看| 激情 狠狠 欧美| 韩国av在线不卡| 国产精品电影一区二区三区| 女同久久另类99精品国产91| 美女大奶头视频| 一级毛片久久久久久久久女| 麻豆国产av国片精品| 中文字幕免费在线视频6| 亚洲av熟女| 性插视频无遮挡在线免费观看| 人妻久久中文字幕网| 搡老熟女国产l中国老女人| 精品久久久久久久久av| 91精品国产九色| 免费搜索国产男女视频| 女人被狂操c到高潮| 国产国拍精品亚洲av在线观看| 美女cb高潮喷水在线观看| av黄色大香蕉| 老熟妇乱子伦视频在线观看| 亚洲乱码一区二区免费版| 最近视频中文字幕2019在线8| 六月丁香七月| 别揉我奶头 嗯啊视频| 婷婷亚洲欧美| avwww免费| 91久久精品国产一区二区成人| 亚洲最大成人手机在线| 精品久久久久久久末码| 蜜桃久久精品国产亚洲av| 国产成人freesex在线 | 男人的好看免费观看在线视频| 色尼玛亚洲综合影院| 国产精品1区2区在线观看.| 日本 av在线| 天天躁日日操中文字幕| 欧美高清性xxxxhd video| 国语自产精品视频在线第100页| 热99在线观看视频| 亚洲高清免费不卡视频| 日本在线视频免费播放| 插逼视频在线观看| 久久久久久久久久黄片| 精品一区二区三区视频在线| 亚洲人成网站在线观看播放| 国产精品福利在线免费观看| 日韩成人av中文字幕在线观看 | 成人三级黄色视频| 色播亚洲综合网| 亚洲久久久久久中文字幕| 三级男女做爰猛烈吃奶摸视频| 97碰自拍视频| 不卡一级毛片| 亚洲熟妇中文字幕五十中出| 国产一区二区亚洲精品在线观看| 免费观看的影片在线观看| 国产大屁股一区二区在线视频| 九九在线视频观看精品| 日韩欧美精品v在线| 日韩精品中文字幕看吧| 天天躁夜夜躁狠狠久久av| 日韩精品有码人妻一区| 国产高清视频在线观看网站| 综合色丁香网| 日本撒尿小便嘘嘘汇集6| 国产精品不卡视频一区二区| 波多野结衣高清无吗| 国产精品日韩av在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲精华国产精华液的使用体验 | 欧美区成人在线视频| 国产精品免费一区二区三区在线| 久久久久国内视频| 国产aⅴ精品一区二区三区波| 国产黄片美女视频| 草草在线视频免费看| 毛片一级片免费看久久久久| 国产乱人偷精品视频| 亚洲人成网站在线播放欧美日韩| 国产男人的电影天堂91| 亚洲四区av| 欧美一级a爱片免费观看看| 嫩草影院新地址| 啦啦啦观看免费观看视频高清| 亚洲成人中文字幕在线播放| 久久99热6这里只有精品| 国产一级毛片七仙女欲春2| 国产高清有码在线观看视频| 国产成人一区二区在线| 综合色av麻豆| 免费人成在线观看视频色| 久久婷婷人人爽人人干人人爱| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| 观看美女的网站| 免费观看精品视频网站| 久久中文看片网| 亚洲av不卡在线观看| 欧美日韩综合久久久久久| 欧美性猛交黑人性爽| 中文在线观看免费www的网站| 国产精品无大码| 能在线免费观看的黄片| 亚洲一区二区三区色噜噜| 一个人观看的视频www高清免费观看| 人人妻人人看人人澡| 久久99热这里只有精品18| 日本黄色片子视频| 99国产极品粉嫩在线观看| 久久国内精品自在自线图片| 亚洲av五月六月丁香网| 两个人视频免费观看高清| 亚洲三级黄色毛片| 国产高清视频在线观看网站| 丝袜喷水一区| 91麻豆精品激情在线观看国产| 91精品国产九色| 此物有八面人人有两片| 最近2019中文字幕mv第一页| 成人毛片a级毛片在线播放| 久久天躁狠狠躁夜夜2o2o| 国产免费男女视频| 久久久精品94久久精品| 免费人成在线观看视频色| 99久久精品热视频| 极品教师在线视频| 22中文网久久字幕| 六月丁香七月| 亚洲人成网站在线观看播放| 3wmmmm亚洲av在线观看| 高清毛片免费观看视频网站| 日本撒尿小便嘘嘘汇集6| 久久精品国产亚洲av天美| 亚洲成av人片在线播放无| 欧美日韩一区二区视频在线观看视频在线 | 欧美色欧美亚洲另类二区| 欧美一级a爱片免费观看看| 欧美+亚洲+日韩+国产| 我要搜黄色片| 久久久久久久久久久丰满| 麻豆久久精品国产亚洲av| 欧美性感艳星| 欧洲精品卡2卡3卡4卡5卡区| 色哟哟哟哟哟哟| 听说在线观看完整版免费高清| 啦啦啦啦在线视频资源| 国产精品人妻久久久久久| 12—13女人毛片做爰片一| 亚洲性夜色夜夜综合| 别揉我奶头~嗯~啊~动态视频| 可以在线观看毛片的网站| 少妇人妻一区二区三区视频| 国产成人影院久久av| 国产av麻豆久久久久久久| 少妇人妻一区二区三区视频| 91久久精品国产一区二区成人| 丝袜喷水一区| 最好的美女福利视频网| 精品久久久久久久末码| 亚洲中文日韩欧美视频| 欧美日韩在线观看h| 免费观看人在逋| 男女啪啪激烈高潮av片| 国产精品精品国产色婷婷| 久久精品国产99精品国产亚洲性色| 三级经典国产精品| 天堂√8在线中文| 干丝袜人妻中文字幕| 国产精品亚洲一级av第二区| 久久人人爽人人爽人人片va| 国产v大片淫在线免费观看| 不卡一级毛片| 两个人视频免费观看高清| 亚洲欧美日韩高清在线视频| 亚洲乱码一区二区免费版| 午夜免费激情av| 亚洲国产日韩欧美精品在线观看| 香蕉av资源在线| 久久精品夜色国产| 免费无遮挡裸体视频| 久久精品影院6| 成熟少妇高潮喷水视频| 精品熟女少妇av免费看| 国产一区亚洲一区在线观看| 欧美色欧美亚洲另类二区| 久久久久久久久中文| avwww免费| 中文字幕精品亚洲无线码一区| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧洲综合997久久,| 99热这里只有精品一区| 又粗又爽又猛毛片免费看| 日韩欧美精品免费久久| 日韩成人伦理影院| 色吧在线观看| 麻豆成人午夜福利视频| 最近最新中文字幕大全电影3| 精品久久久久久成人av| 在线天堂最新版资源| 淫秽高清视频在线观看| 久久人妻av系列| 亚洲欧美日韩无卡精品| 国产真实伦视频高清在线观看| 97热精品久久久久久| 人妻制服诱惑在线中文字幕| 麻豆国产97在线/欧美| 久久久a久久爽久久v久久| 日韩制服骚丝袜av| 国产v大片淫在线免费观看| 中文字幕av在线有码专区| 久久久久久久久大av| 国产单亲对白刺激| 国产av在哪里看| 乱系列少妇在线播放| 变态另类成人亚洲欧美熟女| 少妇的逼好多水| 在线播放国产精品三级| 日本免费一区二区三区高清不卡| 我要看日韩黄色一级片| 亚洲国产精品国产精品| 日韩av不卡免费在线播放| 日韩三级伦理在线观看| 高清毛片免费看| av中文乱码字幕在线| 亚洲欧美清纯卡通| 亚洲国产精品合色在线| 亚洲av成人av| 特大巨黑吊av在线直播| 亚洲中文字幕日韩| 亚洲熟妇中文字幕五十中出| 如何舔出高潮| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 国产在视频线在精品| 精品人妻视频免费看| 亚洲欧美日韩高清专用| 欧美不卡视频在线免费观看| 精品午夜福利在线看| 国产亚洲欧美98| 一级黄色大片毛片| 有码 亚洲区| 亚洲国产精品久久男人天堂| 免费看a级黄色片| 日韩亚洲欧美综合| 搞女人的毛片| 国产精品一区二区三区四区久久| 人妻久久中文字幕网| 22中文网久久字幕| 一边摸一边抽搐一进一小说| 赤兔流量卡办理| 国产伦精品一区二区三区视频9| 久久精品国产亚洲网站| 九九在线视频观看精品| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av天美| 免费在线观看影片大全网站| 少妇裸体淫交视频免费看高清| 国产精品永久免费网站| 国产女主播在线喷水免费视频网站 | 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| 久久人妻av系列| 成年版毛片免费区| 最近中文字幕高清免费大全6| 青春草视频在线免费观看| 欧美激情久久久久久爽电影| 午夜亚洲福利在线播放| 91狼人影院| 精品久久久久久久久av| 丝袜喷水一区| 深夜a级毛片| 热99re8久久精品国产| 你懂的网址亚洲精品在线观看 | 国产午夜福利久久久久久| 我要搜黄色片| 真人做人爱边吃奶动态| 国产一区二区在线观看日韩| 啦啦啦韩国在线观看视频| 午夜视频国产福利| 高清日韩中文字幕在线| 麻豆乱淫一区二区| 九九在线视频观看精品| 免费看美女性在线毛片视频| 99热这里只有是精品50| 男女啪啪激烈高潮av片| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 男女边吃奶边做爰视频| 内地一区二区视频在线| 国产真实伦视频高清在线观看| 少妇人妻精品综合一区二区 | 日韩av在线大香蕉| 女的被弄到高潮叫床怎么办| 色哟哟哟哟哟哟| 亚洲无线在线观看| 日本一本二区三区精品| 婷婷六月久久综合丁香| 精品久久久久久久久av| 亚洲国产精品久久男人天堂| 波多野结衣高清无吗| 亚洲va在线va天堂va国产| 久久久久国产网址| av中文乱码字幕在线| 免费观看的影片在线观看| 少妇高潮的动态图| 国产一区二区三区在线臀色熟女| 欧美高清性xxxxhd video| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 啦啦啦韩国在线观看视频| 日日撸夜夜添| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 日日干狠狠操夜夜爽| 久久亚洲国产成人精品v| 九色成人免费人妻av| 中出人妻视频一区二区| 免费无遮挡裸体视频| 嫩草影院新地址| 波多野结衣巨乳人妻| 亚洲精品日韩在线中文字幕 | 日韩成人av中文字幕在线观看 | 日日撸夜夜添| 成人鲁丝片一二三区免费| 啦啦啦韩国在线观看视频| 亚洲av成人av| 男人狂女人下面高潮的视频| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 日韩精品中文字幕看吧| 亚洲av熟女| 搞女人的毛片| 俄罗斯特黄特色一大片| 精品久久久久久久人妻蜜臀av| 国产高清视频在线观看网站| 久久久久久久久久久丰满| 亚洲国产精品sss在线观看| 一级黄片播放器| 亚洲av中文av极速乱| 最近2019中文字幕mv第一页| 1000部很黄的大片| 久久九九热精品免费| 全区人妻精品视频| 一级毛片我不卡| 亚洲中文字幕日韩| 日本精品一区二区三区蜜桃| 中文字幕久久专区| 男女边吃奶边做爰视频| 精品一区二区三区av网在线观看| 深夜精品福利| 免费人成在线观看视频色| 国产精品三级大全| 赤兔流量卡办理| 激情 狠狠 欧美| 看黄色毛片网站| 欧美性猛交黑人性爽| 国产精品电影一区二区三区| 国产精品日韩av在线免费观看| 欧美最黄视频在线播放免费| 亚洲熟妇中文字幕五十中出| 又黄又爽又刺激的免费视频.| 国产精品一区二区性色av| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 日韩亚洲欧美综合| 国产精品一区二区性色av| 国产精品一区www在线观看| 全区人妻精品视频| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| 国产国拍精品亚洲av在线观看| 日本撒尿小便嘘嘘汇集6| 天天躁夜夜躁狠狠久久av| 能在线免费观看的黄片| 1000部很黄的大片| 日韩av在线大香蕉| 亚洲精品一卡2卡三卡4卡5卡| 免费人成视频x8x8入口观看| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 欧美成人精品欧美一级黄| 国产精品无大码| 精品日产1卡2卡| 99国产极品粉嫩在线观看| 日韩 亚洲 欧美在线| 少妇高潮的动态图| 岛国在线免费视频观看| 一个人看视频在线观看www免费| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 国产精品爽爽va在线观看网站| 国产午夜精品论理片| 在线观看美女被高潮喷水网站| 91在线观看av| 超碰av人人做人人爽久久| 欧美激情国产日韩精品一区| 日本免费a在线| 91在线观看av| 舔av片在线| 欧美人与善性xxx| 欧美zozozo另类| 婷婷亚洲欧美| 亚洲无线在线观看| 美女cb高潮喷水在线观看| 三级国产精品欧美在线观看| 亚洲成a人片在线一区二区| avwww免费| 老女人水多毛片| 97在线视频观看| 成人高潮视频无遮挡免费网站| 欧美在线一区亚洲| 三级经典国产精品| 性色avwww在线观看| 身体一侧抽搐| 中文字幕精品亚洲无线码一区| www日本黄色视频网| 亚洲天堂国产精品一区在线| 少妇的逼好多水| 国产亚洲精品av在线| 久久综合国产亚洲精品| 看十八女毛片水多多多| 春色校园在线视频观看| 亚洲一区二区三区色噜噜| 亚洲欧美日韩高清专用| 亚洲精品日韩在线中文字幕 | 综合色丁香网| 伦精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 三级经典国产精品| 美女内射精品一级片tv| 三级国产精品欧美在线观看| 性欧美人与动物交配| 午夜a级毛片| 精品久久久久久久久久久久久| АⅤ资源中文在线天堂| a级一级毛片免费在线观看| 国产一区二区三区在线臀色熟女| 欧美绝顶高潮抽搐喷水| 亚洲av第一区精品v没综合| 少妇熟女aⅴ在线视频| 日韩av在线大香蕉| 亚洲国产高清在线一区二区三| 国产黄色视频一区二区在线观看 | 女的被弄到高潮叫床怎么办| 久久亚洲精品不卡| 精品午夜福利视频在线观看一区| 国产午夜精品久久久久久一区二区三区 |