劉東旭, 司文藝, 袁玉嬌
( 1.延邊大學(xué)理學(xué)院 數(shù)學(xué)系; 2.延邊教育出版社 網(wǎng)絡(luò)出版中心: 吉林 延吉 133000 )
單部件可修復(fù)系統(tǒng)由一個部件構(gòu)成,當(dāng)部件工作時(shí)系統(tǒng)工作,當(dāng)部件故障時(shí)系統(tǒng)故障.當(dāng)修復(fù)率為函數(shù)時(shí),利用文獻(xiàn)[5]中的補(bǔ)充變量法,單部件可修復(fù)系統(tǒng)的模型可用如下方程組描述:
(1)
(2)
定理1系統(tǒng)(2)存在唯一的非負(fù)解P(t), 且P(t)=T(t)P(0).
下面證明系統(tǒng)的解具有指數(shù)穩(wěn)定性.
定理20是算子A+B的簡單本征值.
證明考慮方程(γI-A-B)P=0, 即
(3)
(4)
(5)
定理3{γ∈C|Reγ>0或γ=ia,a∈R,a≠0}?ρ(A+B).
證明對?γ∈C, Reγ>0或γ=ia,a∈R,a≠0有:
(6)
1)γ∈C, Reγ+c>0時(shí),γ∈σ(A+B) ?D(γ)=0.
2)設(shè)γ0=0, 對任意的γk∈{γ∈C|Reγ>-c,D(γ)=0},γk≠γ0.其中γk按照實(shí)部遞減排序Reγk+1≤Reγk,k=1,2,3,…,N, 則γ0=0是A+B的嚴(yán)格占優(yōu)本征值.
2)易知D(γ)在Reγ>-c上是解析函數(shù),至多有有限個零點(diǎn),且在有限區(qū)域內(nèi)沒有聚點(diǎn).由上面的討論知:算子A+B的譜在左半平面,虛軸上的點(diǎn)除零點(diǎn)外都在預(yù)解集中.因0是A+B的具有正本征向量的簡單本征值,再由嚴(yán)格占優(yōu)本征值的定義知0是嚴(yán)格占優(yōu)本征值.
設(shè)γ0=0, 對任意的γk∈{γ∈C|Reγ>-c,D(γ)=0},γk≠γ0.其中γk按照實(shí)部遞減排序Reγk+1≤Reγk,k=1,2,…,N, 則γ0=0是A+B的嚴(yán)格占優(yōu)本征值.
‖T(t)P(0)-〈P(0),Q〉P*‖≤Me(Reγ1+δ)t,t>0.
上述結(jié)果表明,在一定條件下系統(tǒng)的動態(tài)解是以指數(shù)形式收斂于系統(tǒng)的穩(wěn)態(tài)解.
定理6當(dāng)0 對p0(t)求導(dǎo)得 參考文獻(xiàn): [1] Wang Wendai, Keceioglu Dimitri B. Confidence limits on the inherent availability of equipment[C]//2000 Proceedings Annual Reliability and Mainability Symposium, 2000:162-168. [2] Ananda M M A, Gamage J. On steady state availability of system with lognormal repair time[J]. Applied Mathematics and Computation, 2004,150:409-416. [3] Ananda M M A. Confidence intervals for steady state availability of a system with exponential operating time and lognormal repair time[J]. Applied Mathematics and Computation, 2003,137:499-509. [4] Chandrasekar P, Natarajan R. Confidence limit for steady state availability of systems with lognormal operating time and inverse Gaussian repair time[J]. Microelectron Reliab, 1997,37(6):969-971. [5] 曹晉華,程侃.可靠性數(shù)學(xué)引論[M].北京:高等教育出版社,2006. [6] Pazy A. Semigroups of linear operators and application to partial differential equations[M]. New York: Springer, 1983:13-22. [7] Liu Dongxu, Jin Aidong, Zhang Yufeng. Exponential stability of a four-state system[J]. Journal of Information and Decision Science, 2009,4(1):75-82. [8] 許跟起.強(qiáng)連續(xù)半群本質(zhì)譜半徑的擾動定理[J].數(shù)學(xué)學(xué)報(bào),1990,33(6):757-763. [9] 許跟起.強(qiáng)連續(xù)(C0)半群擾動本質(zhì)譜半徑的估計(jì)[J].數(shù)學(xué)學(xué)報(bào),1993,36(3):335-340.