孟曉華 董科 徐湜潺 馮曉明 田曉 史國輝
河北聯(lián)合大學(xué)附屬醫(yī)院腎內(nèi)科,河北唐山063000
雙環(huán)醇對腎間質(zhì)纖維化大鼠的干預(yù)作用
孟曉華 董科 徐湜潺 馮曉明 田曉 史國輝
河北聯(lián)合大學(xué)附屬醫(yī)院腎內(nèi)科,河北唐山063000
目的觀察單側(cè)輸尿管梗阻(UUO)模型大鼠在雙環(huán)醇的干預(yù)下,肝細胞生長因子(HGF)、轉(zhuǎn)化生長因子-β1(TGF-β1)表達的動態(tài)變化,探討雙環(huán)醇延緩腎間質(zhì)纖維化的可能機制。方法將60只雄性SD大鼠隨機分為3組:假手術(shù)組、模型組、雙環(huán)醇組,每組各20只,建立單側(cè)輸尿管梗阻模型。雙環(huán)醇組于術(shù)前2 d給予雙環(huán)醇[200 mg/(kg·d)]灌胃,假手術(shù)組、模型組給予等量自來水灌胃。每組分別在術(shù)后3、6、9、14 d時隨機處死5只大鼠并取左側(cè)腎組織,行HE染色觀察腎組織病理變化,免疫組織化學(xué)染色觀察HGF、TGF-β1蛋白的表達,RT-PCR法檢測腎組織HGF mRNA的表達水平。結(jié)果模型組中HGF蛋白及mRNA表達均呈現(xiàn)早期升高后期降低的趨勢,在第6天表達量最高,隨后逐漸下降,表達量在術(shù)后3、9、14 d與術(shù)后6 d比較差異有高度統(tǒng)計學(xué)意義(P<0.01)。而TGF-β1蛋白的表達量呈現(xiàn)隨梗阻時間延長逐漸升高趨勢,術(shù)后3、6、9 d與術(shù)后14 d比較,差異有高度統(tǒng)計學(xué)意義(P<0.01)。在相同時間點,雙環(huán)醇組與模型組相比,HGF蛋白及mRNA表達量顯著升高,差異有高度統(tǒng)計學(xué)意義(P<0.01),而TGF-β1蛋白表達量顯著降低,差異有統(tǒng)計學(xué)意義(P<0.01)。結(jié)論雙環(huán)醇通過上調(diào)HGF及下調(diào)TGF-β1的表達而發(fā)揮緩解腎間質(zhì)纖維化的作用。
肝細胞生長因子;雙環(huán)醇;腎間質(zhì)纖維化;轉(zhuǎn)化生長因子-β1
無論腎小球疾病還是腎間質(zhì)病變,其終極歸宿均為間質(zhì)纖維化,終將進展為慢性腎功能衰竭,患者需終生依賴腎臟替代治療。尋找可能延緩、改善腎間質(zhì)纖維化的藥物是當(dāng)今研究的熱點。雙環(huán)醇是目前應(yīng)用在肝炎領(lǐng)域的國家Ⅰ類新藥,已有研究表明,雙環(huán)醇可以抑制肝纖維化的發(fā)生、發(fā)展[1-2]。因為腎間質(zhì)纖維化同肝纖維化的發(fā)生機制基本相同,所以本研究應(yīng)用雙環(huán)醇干預(yù)單側(cè)輸尿管梗阻(UUO)大鼠,動態(tài)觀察其對肝細胞生長因子(HGF)、轉(zhuǎn)化生長因子-β1(TGF-β1)表達的影響,研究雙環(huán)醇是否對腎間質(zhì)纖維化同樣具有抑制作用及其可能的機制。
1.1 材料
清潔級雄性SD大鼠60只(由河北聯(lián)合大學(xué)實驗動物中心提供),體重180~220 g。雙環(huán)醇由北京協(xié)和藥廠生產(chǎn)(生產(chǎn)批號111122);Trizol試劑Invitrogen公司生產(chǎn),購自華美生物工程公司;AMV Reverse Transcriptase、4×dNTP、Rasine、Radom primer均為Promega公司生產(chǎn),購自華美生物工程公司;Taq DNA聚合酶購自北京賽百盛生物工程公司;引物由上海生物工程有限公司合成,HGF引物1:5′-GAGCCAGACGCTAGCAAGTT-3′,引物2:5′-AATCTGAGCCTTCAGGTCCAT-3′;β-actin引物1:5′-GCCATGTACGTAAGCCATCCA-3′,引物2:5′-GAACCGCTCATTGCCGATAG-3′;兔抗大鼠HGF多克隆抗體、兔抗大鼠TGF-β1多克隆抗體、SP系列試劑盒購自Boster公司;瓊脂糖、Marker 100 bp購自鼎國生物工程公司。
1.2 方法
1.2.1 動物分組、UUO模型的建立及標(biāo)本收集將60只大鼠隨機分為3組(每組各20只):假手術(shù)組、模型組、雙環(huán)醇組。將大鼠用2%戊巴比妥鈉(30 mg/kg)腹腔注射麻醉,仰臥位固定,取下腹部正中切口,經(jīng)腹腔在左后腹壁分離沿腎門下行的左輸尿管,在其上1/3處結(jié)扎并切斷,使左腎完全梗阻。假手術(shù)組僅游離左側(cè)輸尿管,但不結(jié)扎和剪斷。雙環(huán)醇組于術(shù)前2 d給予雙環(huán)醇200 mg/(kg·d)[3]灌胃,假手術(shù)組、模型組給予等量自來水灌胃。各組分別在術(shù)后3、6、9、14 d隨機處死5只大鼠,迅速切取左腎,一部分立即置于液氮中冷凍保存,用于提取組織RNA,剩余部分用10%福爾馬林固定用于HE染色及免疫組織化學(xué)染色。
1.2.2 常規(guī)病理學(xué)檢查(HE染色)HE染色后在真彩醫(yī)學(xué)圖像系統(tǒng)下計算腎間質(zhì)病變相對面積。每張切片在高倍鏡(200×)下分別選取10個不重疊視野,計算視窗內(nèi)腎間質(zhì)病變面積占1個視野的面積百分比,取平均值。再由2名觀察者進行獨立雙盲觀察切片中腎小管間質(zhì)的病變程度。根據(jù)Banff分級[4]對病變程度進行評定。
1.2.3 免疫組織化學(xué)染色采用SP法免疫組化染色檢測腎組織HGF、TGF-β1的表達,操作步驟按照說明書進行。光鏡下陽性反應(yīng)部位呈棕黃色。通過光學(xué)顯微鏡攝入圖像,放大400倍,隨機選取20個互不重疊視野,由2名觀察者進行獨立雙盲觀察。以陽性細胞的百分率及陽性細胞染色強度的乘積進行評分。染色強度以多數(shù)細胞呈現(xiàn)的染色特性(染色深淺需與背景著色相對比)計分:無著色為0分,淡黃色為1分,棕黃色為2分,棕褐色為3分。陽性細胞百分率:0~5%為0分,6%~25%為1分,26%~50%為2分,51%~75%為3分,>75%為4分[5]。
1.2.4 反轉(zhuǎn)錄PCR(RT-PCR)Trizol法提取各組腎組織總RNA,行純度、含量、完整性的鑒定后逆轉(zhuǎn)錄擴增cDNA。以cDNA為模板,根據(jù)Genebank提供的上下游引物,PCR擴增mRNA。擴增條件:94℃5 min;94℃45 s、48℃30 s、72℃30 s,32個循環(huán);72℃5 min,4℃保存。PCR產(chǎn)物行瓊脂糖凝膠電泳,并在紫外光下采集圖像進行分析。HGF的相對表達量為特定性擴增產(chǎn)物HGF電泳帶與β-actin電泳帶峰面積積分值之比。
1.3 統(tǒng)計學(xué)方法
應(yīng)用SPSS 17.0統(tǒng)計學(xué)軟件進行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗,以P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 腎小管間質(zhì)的病理改變
HE染色光鏡切片示:假手術(shù)組各時期腎小球腎小管間質(zhì)結(jié)構(gòu)未見異常。模型組術(shù)后3 d可見腎小管稍有擴張,腎間質(zhì)明顯水腫,少量炎性細胞浸潤。隨著梗阻時間延長,腎小管管腔明顯擴張,腎小管上皮細胞逐漸壞死、脫落,間質(zhì)中大量炎性細胞浸潤。術(shù)后14 d腎小管結(jié)構(gòu)嚴(yán)重毀損,管腔塌陷,大量腎小管上皮細胞死亡。模型組各時間點之間病變面積差異有高度統(tǒng)計學(xué)意義(P<0.01)。相同時間點下,雙環(huán)醇組病變面積顯著低于模型組(P<0.01)。見表1、圖1。
表1 各組大鼠腎間質(zhì)病變范圍(%,x±s)
圖1 術(shù)后14 d三組大鼠腎組織HE染色(200×)
2.2 免疫組化染色結(jié)果
2.2.1 HGF染色假手術(shù)組中HGF僅在腎小管上皮細胞及小管周圍細胞有微量表達,各時間點間差異無統(tǒng)計學(xué)意義(P>0.05)。模型組HGF的表達位置與假手術(shù)組基本一致,表達量呈現(xiàn)早期升高、后期降低的趨勢,術(shù)后3、9、14 d與術(shù)后6 d相比,差異有高度統(tǒng)計學(xué)意義(P<0.01)。在相同時間點,雙環(huán)醇組與模型組相比,表達量有顯著升高(P<0.01)。見表2、圖2(封三)。
表2 各組大鼠腎組織HGF蛋白表達比較水平(分,x±s)
2.2.2 TGF-β1染色TGF-β1在假手術(shù)組中無或僅在腎間質(zhì)中有微量表達。模型組術(shù)后3 d在腎小管間質(zhì)輕度表達,表達量隨時間延長而逐漸增強;模型組術(shù)后3、6、9 d與術(shù)后14 d相比,差異有高度統(tǒng)計學(xué)意義(P<0.01)。在相同時間點,雙環(huán)醇組與模型組相比,表達量有顯著下降(P<0.01)。見表3、圖3(封三)。
表3 各組大鼠腎組織TGF-β1蛋白表達水平比較(分,x±s)
2.3 反轉(zhuǎn)錄PCR結(jié)果
HGF mRNA在各組中的表達情況:假手術(shù)組中有少量表達,各時間點之間差異無統(tǒng)計學(xué)意義(P>0.05)。模型組表達量呈現(xiàn)早期升高后期降低的趨勢,在第6天表達量最高,隨后逐漸下降,表達量在術(shù)后3、9、14 d與術(shù)后6 d相比,差異有高度統(tǒng)計學(xué)意義(P<0.01)。在相同的時間點,雙環(huán)醇組與模型組相比,表達量有顯著升高(P<0.01)。見表4、圖4。
表4 各組大鼠腎組織HGF mRNA表達水平比較(x±s)
圖4 各組大鼠腎組織不同時間點HGF mRNA表達
大量的臨床實踐和實驗表明,腎間質(zhì)纖維化輕重程度是決定腎臟預(yù)后的重要因素[6-8]。因此,防止、減緩、最終逆轉(zhuǎn)腎間質(zhì)纖維化的發(fā)生和發(fā)展,是一個全球性的難題。許多因子及活性物質(zhì),均參與了腎臟損傷與修復(fù)過程的調(diào)控。其中TGF-β是腎纖維化最關(guān)鍵的細胞因子,TGF-β1表達上調(diào)幾乎是所有慢性腎臟疾病的共同特征[9-10]。TGF-β1在腎間質(zhì)纖維化中的作用主要表現(xiàn)為:①促進細胞外基質(zhì)成分堆積[11];②誘導(dǎo)腎間質(zhì)成纖維細胞增殖,并活化為肌成纖維細胞[12];③促進腎小管上皮細胞凋亡[13];④誘導(dǎo)腎小管上皮細胞向間充質(zhì)細胞轉(zhuǎn)分化[14]。致纖維化因子表達增強的同時,抗纖維化因子的丟失可能是腎組織損傷后纖維化的重要因素。HGF具有強效抗纖維化作用。HGF和TGF-β1之間存在相互制約、相互拮抗的作用,二者之間的比例決定了組織受損時是得到修復(fù)還是纖維化[5]。HGF能抑制腎間質(zhì)纖維化發(fā)生和發(fā)展過程中的多個病理過程,主要表現(xiàn)為:①通過活化P13K/Akt途徑以及增加Bcl-xL表達的雙重機制,防止腎小管上皮細胞凋亡[15];②抑制靜息狀態(tài)下腎間質(zhì)成纖維細胞的活化[16],防止腎小球系膜細胞激活[17],阻斷腎小管上皮細胞向間充質(zhì)細胞轉(zhuǎn)分化[18];③拮抗腎臟炎性反應(yīng)的發(fā)生和進展[19];④促進細胞外基質(zhì)的降解[20]。雙環(huán)醇是一種抗肝炎新藥,已有研究發(fā)現(xiàn),雙環(huán)醇對不同類型的肝纖維化動物模型及臨床患者的肝纖維化具有明顯的抑制作用。新鄉(xiāng)醫(yī)學(xué)院第一附屬醫(yī)院研究發(fā)現(xiàn),雙環(huán)醇可下調(diào)UUO大鼠腎間質(zhì)中核轉(zhuǎn)錄因子-κB(NF-κB)[3、21]、細胞間黏附因子-1(ICAM-1)[21]、結(jié)締組織生長因子(CTGF)[22]、基質(zhì)金屬蛋白酶組織抑制物(TIMP-1)[23]、纖溶酶原激活物抑制劑-1(PAI-1)[23]的表達,從而延緩間質(zhì)纖維化的進程,對腎臟發(fā)揮保護作用。
目前應(yīng)用最廣的研究腎小管間質(zhì)纖維化的動物模型是由單側(cè)輸尿管結(jié)扎建立的UUO動物模型[24]。本試驗觀察到,在相同時間點,雙環(huán)醇組與模型組相比病變面積顯著降低(P<0.01)。模型組中HGF蛋白及mRNA的表達均呈現(xiàn)早期升高后期降低的趨勢,在術(shù)后第6天表達量最高,隨后逐漸下降(P<0.01)。而TGF-β1蛋白的表達量呈現(xiàn)隨梗阻時間延長逐漸升高趨勢(P<0.01)。在相同時間點,雙環(huán)醇組與模型組相比,HGF蛋白及mRNA的表達量顯著升高(P<0.01),而TGF-β1蛋白表達量有顯著降低(P<0.01)。
綜上所述,雙環(huán)醇可以緩解UUO大鼠的腎間質(zhì)纖維化,其可能機制是通過上調(diào)HGF及下調(diào)TGF-β1的表達而發(fā)揮腎臟保護作用。
[1]李燁,李燕,劉耕陶.雙環(huán)醇對實驗性肝纖維化的防護作用及分子機制[J].中華醫(yī)學(xué)雜志,2004,84(24):2096-2101.
[2]易建華,李偉,熊英,等.雙環(huán)醇治療慢性乙型病毒性肝炎肝纖維化的臨床研究[J].臨床內(nèi)科雜志,2006,23(1):57-59.
[3]劉艷紅,韓子明.雙環(huán)醇對單側(cè)輸尿管梗阻大鼠腎間質(zhì)纖維化的影響及作用機制[J].中華腎臟病雜志,2010,26(12):932-933.
[4]Solez K,Axelsen RA,Benedi RH,et al.International standardization of criteria for the histologic diagnosis of renal allograft rejection:the Banff working classification of kidney transplant pathology[J].Kidney Int,1993,44(7):411-422.
[5]Mizuno S,Matsumoto K,Nakamura T.Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructivenephropathy[J].KidneyInt,2001,59(4):1304-1314.
[6]Neilson EG.Mechanisms of disease:fibroblasts-a new look at an old problem[J].Nat Clin Pract Nephrol,2006,2:101-108.
[7]Liu Y.Renal fibrosis:new insights into the pathogenesis and therapeutics[J].Kideny Int,2006,69(2):213-217.
[8]Eddy AA.Progression in chronic kidney disease[J].Adv Chronic Kideny Dis,2005,12:353-365.
[9]Bottinger EP.TGF-beta in renal injury and disease[J]. Semin Nephrol,2007,27:309-320.
[10]Wang W,Koka V,Lan HY.Transforming growth factorbeta and Smad signalling in kidney diseases[J].Nephrology,2005,10:48-56.
[11]Yuan Q,Wang R,Peng Y,et al.Fluorofenidone attenuates tubulointerstitial fibrosis by inhibiting TGF-β1-induced fibroblast activation[J].Am J Nephrol,2011,34(2):181-194.
[12]Yang J,Dai C,Liu Y.Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction[J].Am J Pathol,2003,163:621-632.
[13]Dai C,Yang J,Liu Y.Transforming growth factor-beta potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling[J].J Biol Chem,2003,78(9):278-287.
[14]Yang J,Liu Y.Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis[J].Am J Pathol,2001,159:1465-1475.
[15]Liu Y.Hepatocyte growth factor promotes renal epithelial cell survival by dual mechanisms[J].Am J Physiol,1999,277:F624-F633.
[16]Yang J,Dai C,Liu Y.Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction[J].Am J Pathol,2003,163:621-632.
[17]Dai C,Liu Y.Hepatocyte growth factor antagonizes the profibrotic action of TGF-beta1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF[J].J Am Soc Nephrol,2004,15:1402-1412.
[18]Yang J,Dai C,Liu Y.A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition[J].J Am Soc Nephrol,2005,16:68-78.
[19]Gong R,Rifai A,Dworkin LD.Hepatocyte growth factor sup presses acute renal inflammation by inhibition of endothelial E-selectin[J].Kidney Int,2006,69(7):1166-1174.
[20]Gong R,Rifai A,Tolbert EM,et al.Hepatocyte growth factor modulates matrix metalloproteinases and plasminogen activator/plasmin proteolytic pathways in progressive renal interstitial fibrosis[J].J Am Soc Nephrol,2003,14:3047-3060.
[21]劉艷紅,韓子明.雙環(huán)醇對單側(cè)輸尿管梗阻大鼠腎間質(zhì)纖維化的影響及其機制[J].臨床兒科雜志,2011,29(9):876-879.
[22]韓子明,張嘉雯,劉艷紅.雙環(huán)醇對單側(cè)輸尿管梗阻大鼠腎間質(zhì)結(jié)締組織生長因子、基質(zhì)金屬蛋白酶組織抑制物-1的影響[J].臨床兒科雜志,2011,29(12):1167-1170.
[23]劉艷紅,韓子明.雙環(huán)醇對UUO模型大鼠腎間質(zhì)核轉(zhuǎn)錄因子κB和纖溶酶原激活物抑制劑-1表達的影響[J].中國實驗方劑學(xué)雜志,2011,17(3):205-209.
[24]Chevalier RL,F(xiàn)orbes MS,Thornhill BA.Uretrral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy[J].Kidney Int,2009,75(11):1145-1152.
Intervention effect of bicyclol for rats with renal interstitial fibrosis
MENG XiaohuaDONG KeXU ShichanFENG XiaomingTIAN XiaoSHI Guohui
Department of Nephrology,Affiliated Hospital of Hebei United University,Hebei Province,Tangshan063000,China
Objective To observe the dynamic change of hepatocyte HGF and TGF-β1of UUO rats intervened by bicyclol,in order to discuss the possible mechanism of renal interstitial fibrosis delayed by bicyclol.Methods 60 male SD rats were randomly divided into sham-operated group(SOR),UUO model group and bicyclol-treated group(BIC),each group had 20 rats.Through ligating the left ureter,the unilateral ureteral obstructive rat model was established.2 days before surgery,the rats in bicyclol-treated group were administed with bicyclol[200 mg/(kg·d)].Rats in the sham-operated group and the model group were administed with tap water.Rats were sacrificed after the surgery for 3,6,9 and 14 days.The left kidney was taken.RT-PCR was used to detect the expression of HGF mRNA in renal tissue.The expression of HGF and TGF-β1protein were measured by immunohistochemistry.HE stain was used to examine the area of pathological changes.Results In model group,the mRNA and protein expression levels of HGF increased markedly on day 3 and reached its peak value on day 6 after the surgery,then slowly fallen down,and the expression levels on day 6 were significantly different between on day 3,9,14 after the surgery,the differences were statistically significant (P<0.01).However,the protein expression levels of TGF-β1increased with extension of obstruction,and the expression levels on day 14 were significantly different from on day 3,6,9 after the surgery,the differences were statistically significant(P<0.01).At each research point,the mRNA and protein expression levels of HGF were significantly higher in the bicyclol-treated group than those in the model group,the differences were statistically significant(P<0.01). The protein expression level of TGF-β1was significantly lower in the bicyclol-treated group than that in the model group,the difference was statistically significant(P<0.01).Conclusion Bicyclol can alleviate the degree of renal interstitial fibrosis through increasing the expression of HGF and decreasing the expression of TGF-β1.
Hepatocyte growth factor;Bicyclol;Renal interstitial fibrosis;TGF-β1
R692.2
A
1673-7210(2014)10(b)-0015-05
2014-07-03本文編輯:程銘)
河北省唐山市科技計劃項目(編號12140209A43)。