• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method

    2014-03-15 07:47:06HongPANMinshengBU
    Water Science and Engineering 2014年2期

    Hong PAN*, Min-sheng BU

    1. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, P. R. China

    Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method

    Hong PAN*1, Min-sheng BU2

    1. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, P. R. China

    Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial-flow pump as an example, a new method for time-frequency analysis based on the ensemble empirical mode decomposition (EEMD) method is proposed for research on the characteristics of pressure fluctuations. First, the pressure fluctuation signals are preprocessed with the empirical mode decomposition (EMD) method, and intrinsic mode functions (IMFs) are extracted. Second, the EEMD method is used to extract more precise decomposition results, and the number of iterations is determined according to the number of IMFs produced by the EMD method. Third, correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal are calculated, and the most sensitive IMFs are chosen to analyze the frequency spectrum. Finally, the operation conditions of the pump are identified with the frequency features. The results show that, compared with the EMD method, the EEMD method can improve the time-frequency resolution and extract main vibration components from pressure fluctuation signals.

    pressure fluctuation; ensemble empirical mode decomposition; intrinsic mode function; correlation coefficient

    1 Introduction

    Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions (Shen et al. 2000; Yuan et al. 2009). Therefore, monitoring and analysis of pressure fluctuations are essential for ensuring the stable and safe operation of hydropower units. In order to perform further analysis, some conventional signal processing methods have been introduced to extract the features of pressure fluctuation signals, including fast Fourier transform (FFT), short-time Fourier transform (STFT), and wavelet transform (WT) (Al-Badour et al. 2011). However, these methods are not self-adaptive signal processingmethods by nature and are not suitable for non-stationary signals.

    In recent years, a new signal processing method, the empirical mode decomposition (EMD) method, has been proposed to analyze non-stationary signals (Huang et al. 1998; Flandrin et al. 2004; Feng and Chu 2005; Donghoh and Hee-Seok 2009). The EMD method can decompose the original signal into a number of intrinsic mode functions (IMFs) which represent the natural oscillatory mode embedded in the signal. Furthermore, the frequency components involved in each IMF not only relate to the sampling frequency, but also change with the original signal. Therefore, the EMD method is a self-adaptive signal processing method and has been widely used in the analysis of vibration signals. However, it has a shortcoming, which is the mode mixing problem. Mode mixing can be defined in two ways: a single IMF contains the oscillatory modes with different scales, or the same frequency resides in different IMFs. In order to solve the mode mixing problem, the ensemble empirical mode decomposition (EEMD) method was developed (Wu and Huang 2009; Lei et al. 2011; De Ridder et al. 2011). In this study, with an axial-flow pump as an example, the EEMD method was used to extract the time-frequency features of pressure fluctuation, and the results were compared with those of the EMD method.

    In section 2 of this paper, the EMD method is briefly reviewed. In section 3, the EEMD method and its comparison with the EMD method are described in order to show the advantages of EEMD in signal purification and shaft orbit reconstruction. In section 4, the EEMD method is used to analyze the pressure fluctuation captured from an axial-flow pump, and the results of EEMD and EMD are compared to show the advantages of EEMD in detecting the pressure fluctuation. Finally, the experimental results are summarized.

    2 EMD method

    The EMD method is based on the simple assumption that any complicated multi-component signal can be decomposed into different simple intrinsic modes of oscillations (Tanaka and Mandic 2007). Each mode should be independent of the others and satisfy the following conditions:

    (1) Across the whole data set, the number of extrema and the number of zero crossings must either be equal or differ at most by one.

    (2) At any point, the mean value of the upper envelope and lower envelope is zero.

    With these conditions, any signal s(t) can be decomposed through the following steps:

    (1) Identification of the local extrema and generation of the the upper and lower envelopes by interpolation of the local minima and maxima, respectively.

    (2) Calculation of the mean of the upper and lower envelopes, m1(t).

    (3) Calculation of the difference between s(t) and m1(t), that is:

    If h1(t) is an IMF, then h1(t) is the first IMF of s(t). Otherwise, h1(t) will betreated as a new s(t) and the process above will be repeated until h1(t) is an IMF. The sifting process can be described as

    where k is the number of iterations. The final h1k(t) is redefined as c1(t), which is the first IMF. In absolute terms, c1(t) is the high-frequency component of the signal.

    (4) Separation of c1(t) froms(t), and definition of the difference as

    here r1(t) should be treated as a new s(t). Repeating the process above, c2(t), c3(t), … ,cn(t) are obtained, where cn(t) is the nth IMF of s(t). Then, we have

    Step (4) can be stopped when rn(t) is a monotonic function.

    (5) Finally, formulation of the original signal as

    c1(t), c2(t), … ,cn(t) contain different frequency bands ranging from high to low, which are defined as IMF1,IMF2,…, IMFn , while rn(t) represents the central tendency of the signal.

    Thus, the EMD method provides a complete and orthogonal decomposition of the inspected signal without missing information or introducing any additional information. However, the major disadvantage of EMD is the mode mixing problem. This is a result of signal intermittency. To illustrate the mode mixing problem existing in EMD, a simulation signal is considered in this section. x(t) is a sine wave of 8 Hz attached by small impulses. EMD decomposed x(t) into three IMFs, and the performance of EMD is shown in Fig. 1. Mode mixing problems occurred in IMF1 and IMF2, and IMF1 simultaneously contained the sine wave and the impulse. IMF3 was the false component.

    Fig. 1 EMD of simulation signal x(t)

    3 EEMD method

    EEMD was developed to solve the mode mixing problem existing in EMD. It is a noise-added data analysis (NADA) method, which is a method based on the insight from studies of the statistical properties of white noise, showing that the decomposed different-scale components of the signal should be automatically projected onto the corresponding scales of white noise in the background when the added white noise is uniformly distributed across the whole time-frequency domain (Li and Ji 2009; Huang et al. 2011). Using EEMD, the white noise in each iteration is different, while the noise can be canceled out by extracting the ensemble mean of IMFs. Then, the final results are the ensemble mean of IMFs.

    The EEMD algorithm can be described as follows:

    (1) The number of the ensemble M and the ratio of the standard deviation of white noise to the standard deviation of the original signal Nstdare initialized, and the number of trials m is set to 1.

    (2) The mth trial for the signal added with the white noise is implemented.

    (a) The white noise is added to the original signal s(t), that is

    where nm(t) is the mth added white noise, and sm(t) is the noise-added signal of the mth trial.

    (b) The signal sm(t) is decomposed into l IMFs cim(i =1, 2,… , l; m =1, 2,… ,M) with the E MD method, where cimis the ith IMFs of the mth trial.

    (c) If m < M, then m = m + 1 and steps (a) and (b) are repeated until m = M, with different white noises each time.

    (3) The ensemble mean of M trials for the ith IMF, Ci, is calculated, that is

    (4) Ci(i =1, 2,…,l) is considered the final ith IMF.

    M was suggested to be 100 by Wu and Huang (2009), and Nstdranges from 0.01 to 0.4.

    To demonstrate the EEMD performance in overcoming the mode mixing problem, the simulation signal in Fig. 1 was decomposed again with the EEMD method, where M = 100 and Nstd= 0.01. The results are shown in Fig. 2. It can be concluded that the sine wave and impulse components of the original signal are clearly separated. IMF1 represents the impulse component and IMF2 represents the sine wave. Therefore, the EEMD method is capable of solving the mode mixing problem and extracting the more precise decomposition results.

    Fig. 2 EEMD of simulation signal x(t)

    4 Application of two methods to pressure fluctuation analysis

    The test facility is illustrated schematically in Fig. 3. The test bed consisted of two motors, two electric valves, four butterfly valves, a head tank, a draft tank, two supply pumps, and a test pump. Various impellers and diffusers could be installed in the test section to test their steady state performance. The instantaneous flow rate was measured with an electromagnetic flowmeter installed in the pipeline. The pressure fluctuations were measured with pressure transducers. The instantaneous torque and rotational speed were measured with a torque meter.

    Fig. 3 Schematic view of test system

    The experimental data of pressure fluctuations were captured from an axial-flow pump. The pressure transducers were installed in the vicinity of the impeller inlet, the impeller outlet, and the outlet conduit. The number of blades was three. The rotational speed of the electric motor was 1 250 r/min. The advanced data acquisition and analysis system EN900 supported by the ENVADA Company in Beijing was used to collect the signal. The sampling frequency was 256 times the rotational frequency, and 1 024 points were collected every time. Taking the pressure fluctuation signal in the vicinity of the impeller outlet as an example, the time domain waveform is shown in Fig. 4.

    Fig. 4 Time domain waveform of pressure fluctuation

    The EMD and EEMD methods were employed to decompose the pressure fluctuation signal into seven IMFs from high frequency to low frequency, as shown in Fig. 5 and Fig. 6. M = 100 and Nstd= 0.01 for the EEMD method.

    Fig. 5 Decomposition results of pressure fluctuation signal with EMD method

    Fig. 6 Decomposition results of pressure fluctuation signal with EEMD method

    The most sensitive IMFs can be chosen according to the correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal (Hu and Yang 2007). The correlation coefficients were calculated and are listed in Table 1. According to the results of Table 1, IMF5, IMF6, and IMF7, produced by the EMD method, are the most sensitive IMFs, while IMF4, IMF5, IMF6, and IMF7, produced by the EEMD method, are the most sensitive IMFs.

    Table 1 Correlation coefficients between IMFs produced by EMD and EEMD methods and original signal

    Spectrum analysis was then applied to the most sensitive IMFs and the results are shown in Fig. 7 and Fig. 8. With the EMD method, 62.5 Hz and 10.4 Hz were extracted clearly. As mentioned before, the rotational speed was 1 250 r/min, so the rotational frequency f0was 20.83 Hz. As shown in Fig. 7, the frequencies of IMF5, IMF6, and IMF7 were 3f0, 0.5f0, and 0.5f0, respectively. The frequency 3f0results from the influence of the number of impellers, which was three, while the frequency 0.5f0is the result of the irregular movements of turbulence. Ho wever, the rotationalfrequency f0cannot be extracted separately. In addition, IMF6 and IMF7 represent the same frequency component. In order to extract more precise decomposition results, EEMD was preformed. As shown in Fig. 8, the frequencies of IMF4, IMF5, IMF6, and IMF7 were 3f0, f0, 0.5f0, and 0.25f0, respectively. It can be concluded that not only the rotational frequency (f0) but also the new frequency (0 .25f0) can be identified clearly. The frequency 0.25f0is also the result of the irregular movements of turbulence. The movements become stronger when the flow is reduced to a certain degree. Therefore, the decomposition results of the pressure fluctuation based on the EEMD method are much better than those based on the EMD method.

    Fig. 7 Spectrum analysis of IMFs produced by EMD method

    Fig. 8 Spectrum analysis of IMFs produced by EEMD method

    From the experiment, it can be found that the EEMD method can effectively resolve the mode mixing problem existing in the EMD method and achieve more precise decomposition results than the EMD method. However, there are some problems that need to be resolved before EEMD operation, such as parameter settings and IMF post-processing. The values of the ensemble number and the ratio of the standard deviation of white noise to the standard deviation of the original signal have a large influence on the accuracy of EEMD. Until now, there has not been a specific principle to provide guidance for the choice of the parameters. Before wide application of EEMD can be achieved, there are a lot of problems that need to be studied further.

    5 Conclusions

    In this paper, the EEMD method is introduced and applied to analysis of the frequency characteristics of pressure fluctuations. In order to select the number of IMFs, the EMD method was used first. Then the signal was decomposed by the EEMD method with the number of IMFs determined by the EMD method. This approach avoids interference from other false components and is essential for selection of sensitive IMFs. It overcomes the mode mixing problems that occurs with the EMD method. Furthermore, EEMD provides a better decomposition performance for the lower frequency components. The experimental results indicate that the EEMD method is effective for multi-component signals. However, there are still some problems that need to be studied further to improve the stability and validity of the EEMD method.

    Al-Badour, F., and Sunar, M., and Cheded, L. 2011. Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Mechanical Systems and Signal Processing, 25, 2083-2101. [doi:10.1016/j.ymssp.2011.01.017]

    De Ridder, S., Neyt, X., Pattyn, N., and Migeotte, P. F. 2011. Comparison between EEMD, wavelet and FIR denoising: Influence on event detection in impedance cardiography. Proceedings of 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 806-809. Boston: Institute of Electrical and Electronics Engineers. [doi:10.1109/IEMBS.2011.6090184]

    Donghoh, K., and Hee-Seok, O. 2009. EMD: A package for empirical mode decomposition and Hilbert spectrum. The R Journal, 1(1), 40-46.

    Feng, Z. P., and Chu, F. L. 2005. Transient hydraulic pressure fluctuation signal analysis of hydroturbine based on Hilbert-huang transform. Proceedings of the CSEE, 25(10), 111-115. (in Chinese). [doi:0258-8013(2005)10-0111-05]

    Flandrin, P., Rilling, G., and Gon?alvès, P. 2004. Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 11(2), 112-114. [doi:10.1109/LSP.2003.821662]

    Hu, J. S., and Yang, S. X. 2007. Study on the autocorrelation-based vibration signal EMD decomposition method in rotation machinery. Journal of Mechanical Strength, 29(3), 376-379. (in Chinese) [doi: 10.3321/j.issn:1001-9669.2007.03.005]

    Huang, J., Hu, X. G., and Geng, X. 2011. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine. Electric Power SystemsResearch, 81(2), 400-407. [doi:10.1016/j.epsr.2010.10.029]

    Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zeng, Q., Yen, N. C., Tung, C. C., and Liu, H. H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(3), 903-995. [doi:10.1098/rspa.1998.0193]

    Lei, Y. G., He, Z. J., and Zi, Y. Y. 2011. EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Systems with Applications, 38(6), 7334-7341. [doi:10.1016/j.eswa.2010.12.095]

    Li, L., and Ji, H. B. 2009. Signal feature extraction based on an improved EMD method. Measurement, 42(5), 796-803. [doi:10.1016/j.measurement.2009.01.001]

    Shen, D., Chu, F. T., and Chen, S. 2000. Diagnosis and identification of vibration accident for hydrogenerator unit. Journal of Hydrodynamics, 15(1), 129-133. (in Chinese)

    Tanaka, T., and Mandic, D. P. 2007. Complex empirical mode decomposition. IEEE Signal Processing Letters, 14(2), 101-104. [doi:10.1109/LSP.2006.882107]

    Wu, Z. H., and Huang, N. E. 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1-41. [doi:10.1142/S1793536909000047]

    Yuan, S. Q., Ni, Y. Y., Pan, Z. Y., and Yuan, J. P. 2009. Unsteady turbulent simulation and pressure fluctuation analysis for centrifugal pumps. Chinese Journal of Mechanical Engineering, 22(1), 64-70. [doi:10.3901/ CJME.2009.01.064]

    (Edited by Yan LEI)

    This work was supported by the National Natural Science Foundation of China (Grant No. 51076041), the Fundamental Research Funds for the Central Universities (Grant No. 2010B25114), and the Natural Science Foundation of Hohai University (Grant No. 2009422111).

    *Corresponding author (e-mail: hongpan@hhu.edu.cn)

    Received Dec. 16, 2012; accepted Mar. 1, 2013

    精品酒店卫生间| 香蕉精品网在线| 午夜福利视频1000在线观看| 中国国产av一级| 日本猛色少妇xxxxx猛交久久| 久久久久久久久大av| 在线观看一区二区三区| 午夜日本视频在线| 精品熟女少妇av免费看| 午夜福利网站1000一区二区三区| 肉色欧美久久久久久久蜜桃 | 亚洲精品日韩在线中文字幕| 一级毛片黄色毛片免费观看视频| 神马国产精品三级电影在线观看| 久久精品国产自在天天线| 精华霜和精华液先用哪个| 久久人人爽人人爽人人片va| 国产精品女同一区二区软件| 久久韩国三级中文字幕| 一边亲一边摸免费视频| 国产亚洲午夜精品一区二区久久 | 熟女人妻精品中文字幕| 美女cb高潮喷水在线观看| 超碰av人人做人人爽久久| 能在线免费看毛片的网站| 久久精品夜色国产| 最近手机中文字幕大全| 欧美性猛交╳xxx乱大交人| 久久97久久精品| 免费大片18禁| 一本一本综合久久| 国语对白做爰xxxⅹ性视频网站| 日韩成人av中文字幕在线观看| 一级毛片我不卡| 日韩免费高清中文字幕av| 国模一区二区三区四区视频| 毛片女人毛片| 少妇 在线观看| 少妇 在线观看| 青春草国产在线视频| 亚洲av在线观看美女高潮| 欧美潮喷喷水| 另类亚洲欧美激情| 成人一区二区视频在线观看| 久久久a久久爽久久v久久| av线在线观看网站| 人妻一区二区av| 五月开心婷婷网| 国产男女超爽视频在线观看| 我的老师免费观看完整版| 国产成人精品久久久久久| 亚洲激情五月婷婷啪啪| 国产精品秋霞免费鲁丝片| 国产视频首页在线观看| 久久久久久久久大av| 久久久精品欧美日韩精品| 国产精品精品国产色婷婷| 国产免费一区二区三区四区乱码| 久久午夜福利片| 日韩欧美精品免费久久| 一级毛片我不卡| 日韩亚洲欧美综合| 女人被狂操c到高潮| 免费黄频网站在线观看国产| kizo精华| 成人欧美大片| 真实男女啪啪啪动态图| 18+在线观看网站| 永久网站在线| 秋霞在线观看毛片| 国产成人a∨麻豆精品| 久久97久久精品| 69av精品久久久久久| 国产人妻一区二区三区在| 精品一区二区三区视频在线| 国产精品嫩草影院av在线观看| 免费在线观看成人毛片| 一级爰片在线观看| 午夜免费男女啪啪视频观看| 精品少妇黑人巨大在线播放| 18+在线观看网站| 国产 一区 欧美 日韩| 国产色爽女视频免费观看| 国产亚洲av片在线观看秒播厂| 欧美97在线视频| 成人一区二区视频在线观看| 亚洲欧美成人精品一区二区| 国产精品不卡视频一区二区| 人人妻人人看人人澡| 黄色一级大片看看| 肉色欧美久久久久久久蜜桃 | 亚洲av电影在线观看一区二区三区 | 亚洲综合色惰| 青春草亚洲视频在线观看| 亚洲国产最新在线播放| 建设人人有责人人尽责人人享有的 | 亚洲av免费在线观看| 美女xxoo啪啪120秒动态图| 春色校园在线视频观看| 超碰97精品在线观看| av线在线观看网站| 欧美日本视频| 亚洲欧美精品自产自拍| 亚洲av成人精品一二三区| 九色成人免费人妻av| 日韩欧美精品免费久久| 国产午夜精品一二区理论片| 精品人妻视频免费看| 免费观看性生交大片5| 在线亚洲精品国产二区图片欧美 | 色婷婷久久久亚洲欧美| 91精品一卡2卡3卡4卡| 一区二区三区精品91| 欧美日韩视频高清一区二区三区二| 美女视频免费永久观看网站| 久久久久国产网址| 国产精品久久久久久精品电影| 美女cb高潮喷水在线观看| 成年女人在线观看亚洲视频 | 精品99又大又爽又粗少妇毛片| 女人久久www免费人成看片| 美女国产视频在线观看| 午夜激情福利司机影院| 亚洲,欧美,日韩| 国产一区二区在线观看日韩| 丰满少妇做爰视频| 亚洲人成网站在线观看播放| 亚洲精品成人久久久久久| 一个人观看的视频www高清免费观看| av在线app专区| 在线看a的网站| 激情五月婷婷亚洲| 成年av动漫网址| 99精国产麻豆久久婷婷| 久久久精品欧美日韩精品| 亚洲国产成人一精品久久久| 亚洲第一区二区三区不卡| 2018国产大陆天天弄谢| 久热久热在线精品观看| 三级男女做爰猛烈吃奶摸视频| 国产欧美另类精品又又久久亚洲欧美| 国产精品一二三区在线看| 久久久久国产网址| 国产国拍精品亚洲av在线观看| 99热全是精品| 三级男女做爰猛烈吃奶摸视频| 又粗又硬又长又爽又黄的视频| 亚洲人与动物交配视频| 亚洲经典国产精华液单| 色哟哟·www| 久久精品久久久久久久性| 成人亚洲精品一区在线观看 | 久久久精品94久久精品| av线在线观看网站| 精品人妻偷拍中文字幕| 亚洲国产精品成人综合色| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区大全| 日本av手机在线免费观看| 久久精品国产a三级三级三级| 我的老师免费观看完整版| 欧美性猛交╳xxx乱大交人| 欧美高清性xxxxhd video| 国产成人精品久久久久久| 听说在线观看完整版免费高清| 99热这里只有精品一区| 国产黄色免费在线视频| 一区二区三区乱码不卡18| 国产欧美日韩精品一区二区| 日韩不卡一区二区三区视频在线| 亚洲欧美日韩另类电影网站 | av.在线天堂| 成人特级av手机在线观看| 美女视频免费永久观看网站| 国产有黄有色有爽视频| 久久人人爽av亚洲精品天堂 | 看十八女毛片水多多多| 日韩强制内射视频| 久久久a久久爽久久v久久| 亚洲av中文av极速乱| 啦啦啦中文免费视频观看日本| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 亚洲,一卡二卡三卡| 国产综合懂色| 午夜日本视频在线| 日本一二三区视频观看| 久久久久久久久久成人| 久久久国产一区二区| 免费看av在线观看网站| 1000部很黄的大片| 一区二区三区四区激情视频| 免费人成在线观看视频色| 久久久久性生活片| .国产精品久久| 国产一区二区亚洲精品在线观看| 亚洲精品一区蜜桃| 亚洲精品日韩av片在线观看| 久久久久精品性色| .国产精品久久| 黑人高潮一二区| 国产中年淑女户外野战色| h日本视频在线播放| 久久人人爽人人爽人人片va| 久久久久久久久久久丰满| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩卡通动漫| 91精品一卡2卡3卡4卡| www.色视频.com| 韩国av在线不卡| 一个人看的www免费观看视频| 啦啦啦在线观看免费高清www| 啦啦啦啦在线视频资源| 交换朋友夫妻互换小说| 一区二区三区乱码不卡18| 中文资源天堂在线| 2018国产大陆天天弄谢| av在线app专区| 久久99精品国语久久久| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久人妻蜜臀av| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 国内少妇人妻偷人精品xxx网站| 69av精品久久久久久| 日韩欧美一区视频在线观看 | 久久久午夜欧美精品| av国产久精品久网站免费入址| 日韩欧美一区视频在线观看 | 久久99蜜桃精品久久| 最近手机中文字幕大全| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 在线观看人妻少妇| 日韩欧美 国产精品| 黑人高潮一二区| 亚洲欧美日韩卡通动漫| av卡一久久| 亚洲精品中文字幕在线视频 | 成人国产av品久久久| 一级毛片黄色毛片免费观看视频| 亚洲精品成人久久久久久| 青春草亚洲视频在线观看| 99热这里只有精品一区| 黄色日韩在线| 精品久久久久久久久亚洲| 国产视频首页在线观看| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 黄片无遮挡物在线观看| 国产人妻一区二区三区在| h日本视频在线播放| 中国国产av一级| 免费少妇av软件| 久久久久精品久久久久真实原创| 亚洲欧美日韩另类电影网站 | 永久免费av网站大全| 一二三四中文在线观看免费高清| 搞女人的毛片| 欧美国产精品一级二级三级 | 国产v大片淫在线免费观看| 两个人的视频大全免费| 男插女下体视频免费在线播放| 亚洲国产精品999| 丰满人妻一区二区三区视频av| 国产精品伦人一区二区| 只有这里有精品99| 国产中年淑女户外野战色| 日本-黄色视频高清免费观看| 女人十人毛片免费观看3o分钟| 久久久欧美国产精品| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 免费看a级黄色片| 日韩亚洲欧美综合| 免费观看av网站的网址| 欧美成人一区二区免费高清观看| 成人免费观看视频高清| 女人十人毛片免费观看3o分钟| 国产精品人妻久久久久久| xxx大片免费视频| av线在线观看网站| 少妇人妻 视频| 国产69精品久久久久777片| 久久久久久九九精品二区国产| 亚洲高清免费不卡视频| 黄色配什么色好看| 国产视频首页在线观看| 成人一区二区视频在线观看| 国产亚洲91精品色在线| 午夜精品一区二区三区免费看| 成人国产麻豆网| 成年免费大片在线观看| 汤姆久久久久久久影院中文字幕| 少妇 在线观看| 大话2 男鬼变身卡| 一本久久精品| 熟女电影av网| 一区二区三区乱码不卡18| 国产成人精品福利久久| av国产精品久久久久影院| 在线播放无遮挡| 精品久久久久久久久av| 中文字幕久久专区| 在线观看三级黄色| 久久久久久久亚洲中文字幕| av免费在线看不卡| 亚洲av在线观看美女高潮| 婷婷色综合大香蕉| 亚洲精品中文字幕在线视频 | 看黄色毛片网站| 亚洲自偷自拍三级| 天堂网av新在线| 美女国产视频在线观看| av在线app专区| 男女下面进入的视频免费午夜| 99热全是精品| 国产亚洲5aaaaa淫片| 国产成人aa在线观看| 麻豆久久精品国产亚洲av| 国语对白做爰xxxⅹ性视频网站| 五月开心婷婷网| 黄色怎么调成土黄色| 熟女av电影| 国国产精品蜜臀av免费| 午夜免费观看性视频| 国产男人的电影天堂91| 亚洲av成人精品一区久久| 美女国产视频在线观看| 国产亚洲av片在线观看秒播厂| 亚洲欧美成人综合另类久久久| 蜜桃亚洲精品一区二区三区| 亚洲精品成人久久久久久| 国产69精品久久久久777片| 神马国产精品三级电影在线观看| 免费在线观看成人毛片| 一区二区三区精品91| 亚洲精品第二区| 麻豆久久精品国产亚洲av| 大香蕉97超碰在线| 午夜福利在线观看免费完整高清在| 好男人视频免费观看在线| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 伊人久久精品亚洲午夜| 日本爱情动作片www.在线观看| av国产久精品久网站免费入址| 亚洲国产日韩一区二区| 综合色丁香网| 免费看不卡的av| 99热网站在线观看| 国产精品麻豆人妻色哟哟久久| 日韩制服骚丝袜av| 高清在线视频一区二区三区| 日韩大片免费观看网站| 丝袜喷水一区| 亚洲av男天堂| 亚洲精品一区蜜桃| 日韩大片免费观看网站| 日韩视频在线欧美| 久久久久久国产a免费观看| 成年女人在线观看亚洲视频 | 日韩国内少妇激情av| 99九九线精品视频在线观看视频| 亚洲在久久综合| 天美传媒精品一区二区| 人妻制服诱惑在线中文字幕| 在线观看免费高清a一片| 久久久久国产网址| 国产免费视频播放在线视频| 亚洲成人av在线免费| 能在线免费看毛片的网站| 欧美日韩综合久久久久久| 午夜亚洲福利在线播放| 亚洲国产精品国产精品| 天堂中文最新版在线下载 | 只有这里有精品99| 交换朋友夫妻互换小说| 观看美女的网站| 午夜精品国产一区二区电影 | 国产男女内射视频| 成年av动漫网址| 久久精品人妻少妇| 免费观看无遮挡的男女| av专区在线播放| 国产一区亚洲一区在线观看| 别揉我奶头 嗯啊视频| 亚洲一区二区三区欧美精品 | 亚洲欧美一区二区三区黑人 | 免费看光身美女| 偷拍熟女少妇极品色| 99热这里只有是精品50| 精品国产乱码久久久久久小说| 亚洲欧美中文字幕日韩二区| 亚洲欧美日韩东京热| 亚洲av福利一区| 99热全是精品| 最近中文字幕2019免费版| 18禁在线播放成人免费| 夜夜爽夜夜爽视频| 最近最新中文字幕免费大全7| 久久精品国产亚洲av天美| 精品国产乱码久久久久久小说| 国产69精品久久久久777片| 汤姆久久久久久久影院中文字幕| 水蜜桃什么品种好| 亚洲国产高清在线一区二区三| 亚洲一级一片aⅴ在线观看| 国产中年淑女户外野战色| 永久网站在线| 男女国产视频网站| 欧美人与善性xxx| 啦啦啦中文免费视频观看日本| 五月开心婷婷网| av国产久精品久网站免费入址| 高清午夜精品一区二区三区| 国产老妇伦熟女老妇高清| 边亲边吃奶的免费视频| 天堂俺去俺来也www色官网| 黄片无遮挡物在线观看| 高清毛片免费看| www.色视频.com| 亚洲人成网站高清观看| 一级a做视频免费观看| 亚洲人成网站在线观看播放| 精品少妇久久久久久888优播| 女人久久www免费人成看片| 丰满少妇做爰视频| 日韩欧美 国产精品| 亚洲精品成人av观看孕妇| 国产一区二区三区av在线| 99热这里只有是精品在线观看| 成人黄色视频免费在线看| 亚洲美女搞黄在线观看| 91aial.com中文字幕在线观看| 久久精品久久久久久久性| av国产免费在线观看| 亚洲图色成人| 久久人人爽人人爽人人片va| 欧美日本视频| 男男h啪啪无遮挡| 精品国产一区二区三区久久久樱花 | 一边亲一边摸免费视频| 国产毛片在线视频| 性插视频无遮挡在线免费观看| 夜夜看夜夜爽夜夜摸| 国产人妻一区二区三区在| 久久99精品国语久久久| 成年av动漫网址| 丰满人妻一区二区三区视频av| 亚洲丝袜综合中文字幕| 免费大片18禁| 国产男女超爽视频在线观看| av女优亚洲男人天堂| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 搡女人真爽免费视频火全软件| 真实男女啪啪啪动态图| 国产精品爽爽va在线观看网站| 国产成人freesex在线| av国产久精品久网站免费入址| 三级国产精品欧美在线观看| 三级国产精品片| 久久精品国产自在天天线| 免费黄频网站在线观看国产| 综合色av麻豆| 久久久久国产网址| 2021少妇久久久久久久久久久| 男女边摸边吃奶| 男人狂女人下面高潮的视频| 久久久成人免费电影| 男人添女人高潮全过程视频| 欧美日韩视频高清一区二区三区二| 亚洲av二区三区四区| 老司机影院成人| 亚洲精品,欧美精品| 蜜桃久久精品国产亚洲av| 国产成年人精品一区二区| 国产精品人妻久久久久久| 国精品久久久久久国模美| 日本免费在线观看一区| 三级国产精品片| 草草在线视频免费看| 国产成人精品一,二区| 国产亚洲最大av| 国产毛片a区久久久久| 大香蕉97超碰在线| 日本与韩国留学比较| 日本三级黄在线观看| 国产av不卡久久| 尾随美女入室| 亚洲国产最新在线播放| 亚洲av中文av极速乱| 国产91av在线免费观看| 国产男人的电影天堂91| 特级一级黄色大片| 99久久精品国产国产毛片| 日日啪夜夜撸| 国产在线一区二区三区精| 精品久久国产蜜桃| 精品酒店卫生间| 好男人在线观看高清免费视频| 亚洲欧美精品专区久久| 精品亚洲乱码少妇综合久久| 男女边吃奶边做爰视频| 99久久九九国产精品国产免费| 国产精品嫩草影院av在线观看| 国产黄频视频在线观看| av在线app专区| 国产亚洲最大av| 一个人看的www免费观看视频| 简卡轻食公司| 3wmmmm亚洲av在线观看| 夜夜爽夜夜爽视频| 啦啦啦中文免费视频观看日本| 午夜福利在线观看免费完整高清在| 久久99热6这里只有精品| 精品久久久久久电影网| 国产又色又爽无遮挡免| 一区二区三区免费毛片| 男女边摸边吃奶| 18禁动态无遮挡网站| 欧美精品国产亚洲| 久久鲁丝午夜福利片| 午夜福利视频1000在线观看| 中文欧美无线码| 老女人水多毛片| av在线天堂中文字幕| 九九在线视频观看精品| 国产亚洲一区二区精品| 爱豆传媒免费全集在线观看| 在线精品无人区一区二区三 | 老女人水多毛片| 久久影院123| 99视频精品全部免费 在线| 日韩一区二区三区影片| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产av在线观看| 亚洲高清免费不卡视频| 日日啪夜夜撸| 亚洲天堂国产精品一区在线| 深爱激情五月婷婷| 九九在线视频观看精品| 热re99久久精品国产66热6| 97超视频在线观看视频| 亚洲人成网站在线观看播放| av国产久精品久网站免费入址| 久久久午夜欧美精品| 涩涩av久久男人的天堂| 18禁在线播放成人免费| 天堂中文最新版在线下载 | 亚洲精品乱码久久久久久按摩| 九九爱精品视频在线观看| 欧美少妇被猛烈插入视频| h日本视频在线播放| 国产中年淑女户外野战色| 亚洲综合色惰| 高清视频免费观看一区二区| 男人和女人高潮做爰伦理| 少妇人妻一区二区三区视频| 一级爰片在线观看| 亚洲,一卡二卡三卡| 国内少妇人妻偷人精品xxx网站| 高清毛片免费看| 久久ye,这里只有精品| 欧美区成人在线视频| 美女高潮的动态| 777米奇影视久久| 岛国毛片在线播放| 狂野欧美激情性bbbbbb| 亚洲av男天堂| 十八禁网站网址无遮挡 | 一区二区三区免费毛片| 亚洲精品,欧美精品| 国产成人a区在线观看| 日本av手机在线免费观看| 边亲边吃奶的免费视频| 别揉我奶头 嗯啊视频| 欧美性猛交╳xxx乱大交人| 日本-黄色视频高清免费观看| 欧美 日韩 精品 国产| 亚洲国产欧美人成| 精品国产一区二区三区久久久樱花 | 插阴视频在线观看视频| 免费看a级黄色片| 天堂网av新在线| 色播亚洲综合网| 国产精品国产三级专区第一集| 久久久久久久亚洲中文字幕| 欧美zozozo另类| 亚洲精品久久久久久婷婷小说| 乱码一卡2卡4卡精品| 午夜免费鲁丝| 22中文网久久字幕| 中文在线观看免费www的网站| 校园人妻丝袜中文字幕| 国内少妇人妻偷人精品xxx网站| 尤物成人国产欧美一区二区三区| 综合色丁香网| 午夜福利高清视频| 涩涩av久久男人的天堂| 日本爱情动作片www.在线观看| 精品人妻偷拍中文字幕| 亚洲天堂国产精品一区在线| 亚洲精品久久午夜乱码| 久久精品人妻少妇| 久久久a久久爽久久v久久| 久久6这里有精品| 亚洲av国产av综合av卡| 国产成人精品一,二区| 国产成人a∨麻豆精品| 国产精品成人在线| 美女被艹到高潮喷水动态| 一本久久精品| 26uuu在线亚洲综合色|