瞿泓瀅 陳懋弘 楊富初 高志輝 王要武 趙海杰 余長發(fā)QU HongYing, CHEN MaoHong, YANG FuChu, GAO ZhiHui, WANG YaoWu, ZHAO HaiJie and YU ZhangFa
1. 中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所,國土資源部成礦作用與資源評價(jià)重點(diǎn)實(shí)驗(yàn)室,北京 1000372. 長安大學(xué)地球科學(xué)與資源學(xué)院,西安 7100643. 廣東省大寶山礦業(yè)有限公司,韶關(guān) 5120004. 中國地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 1000831. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China 2. College of Earth Science and Resources, Chang’an University, Xian 710064, China3. Dabaoshan Mining Corporation Limited, Shaoguan 512000, China4. School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China2013-08-01 收稿, 2013-10-20 改回.
欽州-杭州成礦帶(簡稱欽杭帶)是我國重要的金屬礦產(chǎn)資源基地,也是世界上獨(dú)具特色的與花崗巖有關(guān)成礦作用最為強(qiáng)烈的地區(qū)之一,其內(nèi)礦種多,儲量大,尤其以與中生代花崗巖類有關(guān)的鎢、錫、鋰、鈹、鈮、鉭、鉍、鉬、金、銀、鉛、鋅、銻、銅、稀土、鈾等金屬的大規(guī)模成礦作用較為突出,長期受到國內(nèi)外地學(xué)界的廣泛關(guān)注(蔣少涌等,2008;楊明桂等,2009;毛景文等,2004a, 2007;徐德明等,2012;郭春麗等,2013)?;洷贝髮毶姐~多金屬礦床是欽杭成礦帶中一個(gè)重要的銅、鉬、鐵、鉛、鋅、鎢大型多金屬礦床(毛景文等,2011)。前人對大寶山層狀銅礦體的礦床地質(zhì)(葛朝華和韓發(fā),1986)、成礦條件(葛朝華和韓發(fā),1987)、成礦機(jī)理(劉孝善和周順之,1985;劉姤群等,1985;湯吉方等,1992;蔡錦輝和劉家齊,1993;樊太昌等,1994)、成礦模式(羅年華,1985;莊明正,1986;黃書俊等,1987;何金祥等,1996;宋世明等,2007)等有過研究,并對礦區(qū)的花崗閃長斑巖和次英安斑巖進(jìn)行了地球化學(xué)和同位素年代學(xué)研究(劉姤群等,1985;葛朝華等,1987;湯吉方等,1992;蔡錦輝和劉家齊,1993;樊太昌等,1994),但關(guān)于大寶山礦床的成因長期以來存在著不同認(rèn)識, 有“海底火山熱液噴流沉積成因”(葛朝華和韓發(fā),1986,1987) 與“巖漿熱液成因”(劉姤群等,1985;黃書俊等,1987;湯吉方等,1992;蔡錦輝和劉家齊,1993,1994)之爭。因此,本次研究從粵北大寶山礦床中層狀銅礦體的成礦時(shí)代入手,厘定其成礦時(shí)代,并探討其成因。
欽杭成礦帶亦稱十萬大山-杭州成礦帶(簡稱十杭帶),在大地構(gòu)造位置上屬于揚(yáng)子與華夏兩個(gè)古陸塊在晚元古代碰撞拼接帶,沿其發(fā)育一系列銅多金屬及鎢錫多金屬礦產(chǎn),構(gòu)成了一個(gè)多金屬成礦帶。該成礦帶大致自西南端的廣西欽州灣、經(jīng)湘東和贛中延伸到東北端浙江杭州灣。欽杭結(jié)合帶及其旁側(cè)區(qū)域是華南地區(qū)最為重要的Cu-Au-Pb-Zn-Ag多金屬成礦帶,分布著一大批大型特大型銅金鉛鋅鉭鈾礦床,也有大批鎢錫多金屬礦床(蔣少涌等,2008; 楊明桂等,2009; 毛景文等,2011; 郭春麗等,2013)。欽杭結(jié)合帶是一條晚元古代碰撞對接帶,在中晚侏羅世再次活化,于表殼顯示出一種先擠壓后伸展的環(huán)境。因此,沿欽杭帶不僅有元古代海底噴流型銅鋅礦床,而且更多還有與中生代中酸性和酸性花崗巖類有關(guān)的銅多金屬礦床和鎢錫多金屬礦床(毛景文等,2011)。
粵北大寶山銅多金屬礦床在大地構(gòu)造位置上位于南嶺東西向構(gòu)造帶南側(cè),北東向斷裂與近東西向大東山-貴東構(gòu)造巖漿巖帶的復(fù)合部位。礦區(qū)出露地層主要為寒武系淺變質(zhì)砂頁巖及板巖,中、下泥盆統(tǒng)桂頭群組砂礫巖及砂頁巖,中泥盆統(tǒng)東崗嶺組灰?guī)r、上泥盆統(tǒng)天子嶺組灰?guī)r和下侏羅統(tǒng)蘭塘群組砂頁巖。礦區(qū)斷裂構(gòu)造發(fā)育,主要有近東西向船肚-大寶山斷裂、北東-南北向九曲嶺斷裂和徐屋斷裂以及北北西向的大寶山斷裂和丘壩斷裂,沿船肚-大寶山斷裂侵入的巖體被九曲嶺斷裂分成東西兩部分,即船肚花崗閃長斑巖體和大寶山花崗閃長斑巖體、次英安斑巖體(圖1)。
大寶山礦床包括大寶山主體銅多金屬礦床和船肚鉬鎢礦床兩部分(圖1),大寶山主體銅多金屬礦床由產(chǎn)于中泥盆世碳酸鹽巖中的層狀銅鉛鋅多金屬礦體、產(chǎn)于晚泥盆世碎屑巖中的似層狀、透鏡狀菱鐵礦體以及這兩類礦體之上的風(fēng)化淋濾型褐鐵礦體組成。船肚鉬鎢礦床主要由斑巖-矽卡巖型礦體組成。層狀銅礦體,似層狀、透鏡狀菱鐵礦體以及風(fēng)化淋濾型褐鐵礦體,集中在大寶山向斜中,呈北北西向分布,上部為風(fēng)化淋濾型褐鐵礦體,中部為似層狀、透鏡狀菱鐵礦體,下部為層狀銅礦體(空間位置不同可分為東部多金屬礦帶和西部多金屬礦帶),層狀銅礦體位于大寶山鉬鎢多金屬礦床礦帶的南段,斑巖型鉬礦床則圍繞大寶山花崗閃長斑巖體呈環(huán)型分布,而矽卡巖型鎢鉬礦床則分布在船肚花崗閃長斑巖體南側(cè)呈東西向產(chǎn)出。
大寶山礦床中的層狀銅礦體賦存于與九曲嶺-大寶山次英安斑巖接觸的東崗嶺下亞組碳酸鹽巖地層中,呈近南北向多層狀分布,單個(gè)礦體為層狀、似層狀、透鏡狀,沿走向和傾向均有分枝復(fù)合現(xiàn)象。礦石類型主要為磁黃鐵礦型銅礦石和黃鐵礦型銅礦石。礦石礦物為黃銅礦、黃鐵礦、磁黃鐵礦、閃鋅礦,脈石礦物為石英、絹云母、綠簾石、綠泥石、綠柱石、陽起石、黑云母。主要圍巖蝕變?yōu)楣杌?、絹云母化、綠泥石化、碳酸鹽化、黑云母化、鉀長石化、透閃石-陽起石化,其中,絹云母化巖石呈淺灰色、深灰色或暗綠色,風(fēng)化后呈雜色,絹云母化在砂泥質(zhì)頁巖及礦體兩側(cè)圍巖中廣泛分布。
根據(jù)野外穿插關(guān)系、礦石結(jié)構(gòu)構(gòu)造、圍巖蝕變及礦物共生組合等特征,粵北大寶山銅多金屬礦床形成過程可分為內(nèi)生成礦期和表生氧化期,其中,內(nèi)生成礦期分為矽卡巖階段、退化蝕變階段、硫化物階段和碳酸鹽階段(圖2)。
圖1 粵北大寶山礦區(qū)地質(zhì)簡圖1-上侏羅統(tǒng)蘭塘群組砂巖;2-上泥盆統(tǒng)錫礦山組粉砂質(zhì)頁巖;3-上泥盆統(tǒng)佘田橋組灰?guī)r;4-中泥盆統(tǒng)棋梓橋組泥質(zhì)粉砂巖;5-中泥盆統(tǒng)桂頭群組砂礫巖;6-寒武系八村組變質(zhì)砂頁巖;7-花崗閃長斑巖;8-次英安斑巖;9-鐵帽;10-矽卡巖型鉬鎢礦體;11-斑巖型鉬鎢礦體;12-黃鐵礦化;13-斷層;14-地質(zhì)界線Fig.1 The geological map of the the Dabaoshan Cu polymetallic ore deposition and the sample position1-sandstone in Lantangqun Fm., Upper Jurassic; 2-silty shale in Xikuangshan Fm., Upper Devonian; 3-limestone in Shetianqiao Fm., Upper Devonian; 4-siltstone in Qiziqiao Fm., Middle Devonian; 5-sandstone in Guitouqun Fm., Middle Devonian; 6-sandstone in Baci Fm., Cambrian; 7-granodioritic porphyry; 8-dacite porphyry; 9-gossan; 10-skarn-type Mo-W ore body; 11-porphyry-type Mo-W ore body; 12-pyrite mineralization; 13-fault; 14-geological borderline
圖2 粵北大寶山銅多金屬礦床礦物生成順序表Fig.2 Mineral generation sequence in the Dabaoshan Cu polymetallic ore deposition, northern Guangdong Province
①矽卡巖階段:在超臨界條件下,含鈣質(zhì)灰?guī)r與成礦流體發(fā)生雙交代反應(yīng),生成基本不含水的鈣鐵硅酸巖礦物,形成了石榴石、透輝石以及陽起石、透閃石等矽卡巖礦物,伴生少量磁鐵礦浸染。
②退化蝕變階段:黑云母化在次英安斑巖中表現(xiàn)強(qiáng)烈,呈細(xì)鱗片集合體的團(tuán)塊狀或微脈狀交代長石和角閃石等礦物。
③礦石-硫化物階段:包括鉬礦化階段和銅鉛鋅礦化階段。
鉬礦化階段:輝鉬礦-黃鐵礦-石英組合,為鉬礦的主要成礦階段。
銅鉛鋅礦化階段:為礦床的主要成礦時(shí)期,同與之共生的絹云母化、綠泥石化、硅化一起疊加在先形成的蝕變礦物之上,交代結(jié)構(gòu)發(fā)育。該階段金屬礦物結(jié)晶順序?yàn)榇劈S鐵礦-黃鐵礦-黃銅礦-(輝鉍礦)-閃鋅礦-方鉛礦。
④石英-硫化物階段:伴生少量的黃鐵礦化和鉛鋅礦化。
⑤碳酸鹽階段:多見于礦床的上部和最外側(cè),伴生少量黃鐵礦和鉛鋅礦化。
根據(jù)室內(nèi)顯微鏡下觀察,黃鐵礦和輝鉬礦為同期(圖3h, j),黃鐵礦和黃銅礦同期(圖3f),黃鐵礦為熱液期黃鐵礦,細(xì)粒,與輝鉬礦、黃銅礦、絹云母共生(圖3)。
圖3 大寶山主要礦石礦物和脈石礦物以及產(chǎn)出方式顯微照片(a)-絹云母白云石化巖(主要礦物為白云石、石英、絹云母、綠簾石、綠泥石、黃鐵礦);(b)-絹云母化紅柱石斑點(diǎn)狀炭質(zhì)板巖;(c)-碎裂巖化黃鐵絹英巖(主要礦物為絹云母、白云母、石英、黃鐵礦);(d)-閃鋅黃鐵礦石;(e)-輝鉬礦石;(f)-黃銅黃鐵礦石;(g)-輝鉬礦石;(h)-輝鉬黃鐵礦石;(i)-黃鐵礦石;(j)-輝鉬黃鐵礦石Fig.3 Ore minerals and gangue minerals, and micro pictures for output mode(a)-sericite dolomitizatin rock (minerals: dolomite, quartz, sericite, epidote, chlorite, pyrite); (b)-sericitization andalusite spotty carbonaceous slate; (c)-cataclasite pyrite Juanying rock(minerals: sericite, mica, quartz, pyrite); (d)-sphalerite-pyrite; (e)-molybdenite; (f)-copper-pyryte; (g)-molybdenite; (h)-molybdenite-pyrite; (i)-pyrite; (j)-molybdenite-pyrite
本次工作在大寶山礦區(qū)銅采場877m水平花崗閃長斑巖體內(nèi)采集了9件含輝鉬礦樣品,以石英網(wǎng)脈形式產(chǎn)出,沿裂隙面發(fā)育輝鉬礦、黃鐵礦。銅采場礦體兩側(cè)以及礦體上盤中泥盆統(tǒng)棋梓橋組泥質(zhì)粉砂巖、下盤中泥盆統(tǒng)桂頭群組砂礫巖均有絹云母化,在礦體上下盤絹云母化圍巖中采集2件云英巖樣品,伴有黃銅礦化、綠泥石化。
本次研究中的輝鉬礦Re-Os等時(shí)線年齡測試分析在國家地質(zhì)實(shí)驗(yàn)室測試中心Re-Os同位素實(shí)驗(yàn)室完成。分析方法參見文獻(xiàn)(Shirey and Walker,1995;杜安道等,2001),簡述如下。準(zhǔn)確稱取輝鉬礦樣品,通過長細(xì)頸漏斗加入到Carius管(一種高硼厚壁耐高壓大玻璃安瓿瓶)底部。緩慢加干冰或液氮到有半杯乙醇保溫杯中,調(diào)節(jié)溫度到-80~-50℃,將裝有樣品的Carius管放到該保溫杯中,把準(zhǔn)確稱取的185Re和190Os混合稀釋劑通過長頸漏斗加入到Carius管底部,再加入2mL 10mol/L HCL和4mL 16mol/L HNO3。溶液凍結(jié),用丙烷氧氣火焰并加熱封好Carius管的細(xì)頸部位。待回溫后,放入兩端有帶孔螺旋帽的不銹鋼套管內(nèi)。將套管輕輕放入鼓風(fēng)烘干箱內(nèi),逐漸升溫到200℃,保溫24h。在底部冷凍的情況下,打開Carius管,并用40mL水將管中溶液轉(zhuǎn)入蒸餾瓶中。用40mL水將Carius管中液體轉(zhuǎn)入蒸餾瓶中,105~110℃蒸餾50min,用10mL水吸收蒸出的OsO4。此時(shí)的水吸收液經(jīng)適當(dāng)稀釋可直接用于ICP-MS(等離子體質(zhì)普法)測定Os同位素比值。將蒸餾殘液倒入150mL Teflon(聚四氟乙烯)燒杯中待分離Re。將第一次蒸餾殘液置于120℃電熱板上,加熱至干。加少量水反復(fù)加熱趕酸(降低酸度)。加入10mL 5mol/L NaOH,稍微加熱,促進(jìn)轉(zhuǎn)為堿性介質(zhì)。轉(zhuǎn)入50mL聚丙烯離心管中,離心,取上清液轉(zhuǎn)入120mL Teflon分液漏斗中。加入10mL丙酮,振蕩1min萃取Re。靜止分相,棄去水相。加2mL 5mol/L NaOH溶液到分液漏斗中,振蕩2min,洗去丙酮相中的雜質(zhì)。離心分相,棄去水相。排丙酮到150mL的已加有2mL水的Teflon燒杯中。在電熱板上50℃加熱蒸發(fā)丙酮。繼續(xù)加熱溶液至干。加數(shù)滴濃HNO3和φ=30%(體積分?jǐn)?shù))的H2O2,加熱蒸干以除去殘存的Os。用數(shù)亳升稀HNO3溶解殘?jiān)♂尩紿NO3濃度為2%。備ICP-MS測定Re同位素比值。如含Re溶液中鹽量超過1mg/mL,需采用陽離子交換除去Na。Re-Os同位素比值采用TJA X-series ICP-MS測定(美國Thermo公司)。Re選擇質(zhì)量數(shù)為185、187,用190監(jiān)測Os。Os選擇質(zhì)量數(shù)為186、187、188、189、190、192,用185監(jiān)測Re。空白水平Re為0.01575×10-9,Os普為0.00015×10-9,187Os為0.0002×10-9。ICP-MS測試Re-Os含量的不確定度包括樣品和稀釋劑的稱量誤差、稀釋劑的標(biāo)定誤差、質(zhì)譜測的分餾校正誤差、待分析樣品同位素比值測量誤差,置信水平95%。模式年齡的不確定度還包括衰變常數(shù)的不確定度(1.02%),置信水平95%。模式年齡t計(jì)算公式如下:
t=1/λ[ln(1+187Os/187Re)]
圖4 粵北大寶山銅礦中輝鉬礦Re-Os同位素等時(shí)線及模式年齡加權(quán)平均值Fig.4 Molybdenite Re-Os isochron and weighted mean of the Dabaoshan Cu deposit in northern Guangdong Province, South China
本次研究中絹云母Ar-Ar年齡是在中國地質(zhì)科學(xué)院地質(zhì)研究所Ar-Ar年代學(xué)同位素實(shí)驗(yàn)室完成。將樣品粉碎過篩后,對碎樣樣品進(jìn)行水漂、磁選和重液分離等步驟,分選出60~80目大小的絹云母樣品,在雙目鏡下手工挑選200mg,其純度為99.9%,送實(shí)驗(yàn)室進(jìn)行測試。選純的絹云母用超聲波清洗。超聲清洗過程中要注意清洗液的選擇并嚴(yán)格控制時(shí)間。一般先用經(jīng)過兩次亞沸蒸餾凈化的純凈水清洗3次,每次3min,在此過程中礦物表面和解理縫中在天然狀態(tài)下和碎樣過程中吸附的粉末和雜質(zhì)被清除。然后在丙酮中清洗兩次,每次3min,在此過程中,礦物表面吸附的油污等有機(jī)物質(zhì)被清除。清洗后的樣品被封進(jìn)石英瓶中送核反應(yīng)接受中子照射,照射工作在中國原子能科學(xué)研究院的“游泳池堆”中進(jìn)行。使用H8孔道,中子流密度約為6.0×1012n·cm-2S-1。照射總時(shí)間為3000min,積分中子通量為1.13×1018n·cm-2。樣品的階段升溫加熱使用電子轟擊爐,每一個(gè)階段加熱30min,凈化30min。質(zhì)譜分析在MM-1200B質(zhì)譜計(jì)上進(jìn)行,每個(gè)峰值均采集8組數(shù)據(jù)。所有的數(shù)據(jù)在回歸到時(shí)間零點(diǎn)值后再進(jìn)行質(zhì)量歧視校正、大氣氬校正、空白校正和干擾元素同位素校正。系統(tǒng)空白水平為m/e=40、39、37、36分別小于6×10-15mol、4×10-16mol、8×10-17mol和2×10-17mol。中子照射過程中所產(chǎn)生的干擾同位素校正系數(shù)通過分析照射過的K2SO4和CaF2來獲得,其值為(36Ar/37Ar)Ca=0.0002389、(40Ar/39Ar)K=0.004782、(39Ar/37Ar)Ca=0.000806。37Ar經(jīng)過放射性衰變校正,40K衰變常數(shù)λ=5.543×10-10年-1(Steiger and Jager,1977)。用ISOPLOT程序計(jì)算坪年齡和等時(shí)線年齡(Ludwig,2001),坪年齡誤差以2σ給出。中子照射、樣品處理和儀器測試均用國內(nèi)標(biāo)樣黑云母(ZBH-25標(biāo)準(zhǔn)年齡為132.7Ma,K含量為7.6%)做監(jiān)控。詳細(xì)實(shí)驗(yàn)流程見有關(guān)文章(陳文等,2006)。
大寶山的9件輝鉬礦樣品使用ICP-MS方法測定,得到模式年齡為165.7±2.3Ma~163.4±2.4Ma(2σ),平均164.8±2.4Ma,加權(quán)平均值為164.8±0.8Ma,樣品模式年齡十分接近(表1)。采用ISOPLOT軟件(Ludwig,2003),187Re衰變常數(shù)1.666×10-11a-1,繪制等時(shí)線圖和計(jì)算年齡及誤差,不確定度0.49%。所獲得的9件樣品數(shù)據(jù)進(jìn)行187Re-187Os等時(shí)線擬合得到等時(shí)線年齡為166.0±3.0Ma,初始Os為(-0.7±2.8)×10-9(MSWD=0.52),所得到的等時(shí)線年齡與相應(yīng)的模式年齡幾乎一致(表1、圖4)。
大寶山2件絹云母樣品經(jīng)過11~13個(gè)階段不等的逐級加熱后得到了40Ar/39Ar年齡數(shù)據(jù)表,從而得到了樣品中絹云母礦物的40Ar/39Ar坪年齡圖譜及40Ar/39Ar等時(shí)線年齡,樣品測定結(jié)果見表2,年齡圖譜見圖5。樣品DB011中的絹云母在850~980℃的溫度范圍內(nèi),所獲得的坪年齡為166.6±1.6Ma;樣品DB020中的絹云母在820~920℃的溫度范圍內(nèi),所獲得的坪年齡為171.7±2.0Ma。在反等時(shí)線圖上(圖5),樣品DB011和DB020對應(yīng)的年齡分別為167.0±2.0Ma和161.7±1.7Ma,對應(yīng)的初始Ar分別為352±220和386±81,與大氣Ar比值295.5±0.5有一定誤差,可能暗示有過剩Ar的存在(陳文等,2011),但樣品的坪年齡與以等時(shí)線年齡基本吻合,與輝鉬礦Re-Os等時(shí)線年齡也基本吻合,說明兩種方法測試的成礦年齡真實(shí)可信。
表1粵北大寶山銅礦中輝鉬礦Re-Os同位素?cái)?shù)據(jù)
Table 1 Result of Re-Os dating of molybdenite from the Dabaoshan Cu deposit in northern Guangdong Province, South China
樣品號樣重(g)Re(×10-6)普Os(×10-9)187Re(×10-6)187Os(×10-9)模式年齡(Ma)測定值2σ測定值2σ測定值2σ測定值2σ測定值2σDB036(1/5)0.0102397.620.870.02100.094461.360.55167.31.5163.42.4DB036(2/5)0.0103066.440.540.02100.094041.760.34114.51.0164.42.4DB036(3/5)0.0100189.010.740.06990.072555.940.46153.81.4164.82.4DB036(4/5)0.0201284.370.670.02930.035853.030.42145.91.3164.92.4DB036(5/5)0.01020101.90.80.16260.141664.030.53177.01.4165.72.3DB038(2/6)0.00838139.71.30.28670.145087.790.84240.92.4164.52.6DB038(4/6)0.0125170.880.700.49790.096444.550.44122.71.1165.12.6DB038(6/6)0.0033392.190.940.53960.181457.940.59159.31.3164.82.5DB0470.01005135.41.10.84770.094985.110.68235.22.0165.72.3
圖5 粵北大寶山銅礦絹英巖中絹云母的40Ar/39Ar年齡譜與反等時(shí)線圖Fig.5 40Ar/39Ar step heating age spectrum and inverse isochron diagram of sericite in the Dabaoshan Cu deposit
表2粵北大寶山銅礦絹英巖中絹云母的40Ar/39Ar階段加熱分析同位素?cái)?shù)據(jù)
Table 2 Results of40Ar/39Ar incremental heating experiment for sericite in Dabaoshan Cu deposit, northern Guangdong Province
T(℃)40Ar39Ar()m36Ar39Ar()m37Ar39Ar()m38Ar39Ar()m40Ar(%)F39Ar(×10-14mol)39Ar(Cum.)(%)Age(Ma)±1σ(Ma)DB011絹云母,W=32.34mg,J=0.002597,Totalage=165.2Ma,Plateauage=166.6±1.6Ma(850~980℃),inverseisochronalage=167.0±2.0Ma(850~940℃),normalisochronalage=167.0±8.2Ma(850~940℃)70039.45070.02200.00000.023683.5332.95330.130.96148.12.880037.52760.00480.00000.014196.2436.11681.4311.67161.71.685038.01720.00160.00000.012798.7337.53471.6924.32167.81.690037.79240.00140.22220.013298.9537.40132.4742.76167.21.694037.54390.00030.00000.012599.7137.43632.4761.20167.41.698036.92200.00120.28030.013399.0936.59521.9976.09163.81.6103036.73810.00140.07090.013298.9136.34091.6288.19162.71.6108036.73250.00060.00000.012999.5336.55901.0095.69163.61.7114036.96540.00300.00000.014097.5536.06150.4599.08161.51.9124038.68040.00080.00000.011199.3838.44180.1199.91171.72.0140077.80730.01670.00000.000093.6772.88120.01100.0031322DB020絹云母,W=38.28mg,J=0.002523,Totalage=168.8Ma,Plateauage=171.7±2.0Ma(820~920℃),inverseisochronalage=161.7±1.7Ma(820~920℃),normalisochronalage=162.0±3.3Ma(820~920℃)70044.34870.04120.00000.024572.5432.16950.241.21148.86.277039.59950.01130.00000.015191.5836.26471.528.88166.81.782039.04920.00510.00000.013596.1437.54312.0519.25172.51.887037.96530.00190.04010.012998.5237.40423.3436.10171.81.792037.46150.00080.00370.012499.3437.21614.8160.38171.01.695036.66400.00080.00000.012499.3336.41732.3372.16167.51.698036.24530.00050.00000.012199.5936.09522.0582.54166.11.6101036.01400.00100.08650.012899.1535.71171.5090.11164.41.6104036.12810.00140.00000.012598.8235.70301.0295.24164.41.6108036.65970.00270.00000.013197.7735.84290.6298.37165.01.6113039.28630.00790.11130.014994.0636.95480.2199.45169.92.1120045.47700.01430.00000.012790.6841.24040.0899.88188.64.0140083.69910.19474.89100.075031.6626.60340.02100.0012422
注:表中下標(biāo)m代表樣品中測定的同位素比值,F(xiàn)指放射成因40Ar與K生成的39Ar比值
斑巖-矽卡巖型礦化和層狀礦化組成的復(fù)合型銅多金屬礦床中層狀銅礦體的成因一直是我國礦床學(xué)研究的焦點(diǎn)問題。長期以來有海底噴流成因和斑巖-矽卡巖型成因兩種主要分歧。本次研究測得大寶山花崗閃長斑巖中輝鉬礦Re-Os模式年齡為165.7±2.3Ma~163.4±2.4Ma(2σ),加權(quán)平均值為164.8±0.8Ma,對應(yīng)的等時(shí)線年齡為166.0±3.0Ma。層狀銅礦體中絹云母Ar-Ar年齡絹云母Ar-Ar坪年齡169±1.8Ma,反等時(shí)線年齡為164±1.8Ma。輝鉬礦Re-Os等時(shí)線年齡與絹云母Ar-Ar年齡在誤差范圍內(nèi)基本一致,可以厘定大寶山層狀銅礦體的年齡。年齡結(jié)果表明斑巖-矽卡巖與層狀銅礦體為同一成礦系統(tǒng),成因上與侏羅紀(jì)花崗質(zhì)巖漿侵位密切關(guān)系。事實(shí)上,最近幾年在這一方面研究也取得了一些進(jìn)展,例如,毛景文等(2009)對安徽銅陵礦集區(qū)的解剖研究,提出一個(gè)礦床模型,認(rèn)為斑巖-矽卡巖-似層狀銅礦為同一成礦系統(tǒng),均與白堊紀(jì)花崗巖侵位密切相關(guān)。Sillitoe (2010)針對全球同類銅礦床的系統(tǒng)研究,得出了類似的結(jié)論。
圖6 華南中生代金屬礦床年齡(b)和成礦巖體年齡(a)分布直方圖(據(jù)Mao et al.,2013)Fig.6 Histogram of isotopic chronology of Mesozoic metallic ore deposits (b) and related granites (a) in South China (after Mao et al., 2013)
華南地處歐亞大陸東南緣,瀕鄰西太平洋,由華夏和揚(yáng)子古陸組成。華南地區(qū)NEE向斑巖型或矽卡巖型銅礦和鉛鋅礦帶平行分布,代表性礦床為江西德興、永平、東鄉(xiāng)和湖南七寶山,粵北大寶山銅多金屬礦,長江中下游多金屬成礦帶和湘南寶山-黃沙坪鉛鋅礦帶(毛景文等,2004b)。華南存在的許多層狀銅多金屬硫化物礦床通常也被一些學(xué)者論證為海底噴氣作用形成的塊狀硫化物礦床(如顧連興等,2003),成為成因爭論的焦點(diǎn)。華南地區(qū)金屬礦床成礦作用主要出現(xiàn)在兩個(gè)時(shí)期,170~126Ma和110~80Ma(毛景文等,2004a,圖6)。本次研究獲得粵北大寶山斑巖-矽卡巖型礦床中輝鉬礦Re-Os等時(shí)線年齡為166.0±3.0Ma,與毛景文等(2004a)測得大寶山銅礦輝鉬礦Re-Os同位素模式年齡164.7±3Ma基本吻合;層狀銅礦體中2件絹云母樣品的Ar-Ar反等時(shí)線年齡分別為167.0±2.0Ma和161.7±1.7Ma,在誤差范圍內(nèi)與輝鉬礦Re-Os等時(shí)線年齡基本一致,可以厘定大寶山層狀銅礦體的年齡,表明成因上與侏羅紀(jì)花崗質(zhì)巖漿侵位密切關(guān)系。
在華南地區(qū),中生代金屬礦床分布的基本格局是東部金屬礦床組合都明顯地顯示出與巖漿活動(dòng)的親緣關(guān)系,而西部大多數(shù)礦床則為卡林型金礦、密西西比型鉛鋅礦和似密西西比型銻汞礦。在東部金屬礦床有一種大致的分帶現(xiàn)象,北部以銅礦為主,中部的南嶺地區(qū)以鎢錫和稀土、稀有金屬礦為主,南部的東南沿海地區(qū)以錫礦和金銀礦為主(毛景文等,2004a, 2008; Maoetal., 2013)。東部與西部的礦床組合都是形成于中生代,在中生代華南地區(qū)同時(shí)受到太平洋板塊和古特提斯洋板塊的作用(任紀(jì)舜等,1998)。華南地區(qū),以南嶺中部(贛南湘南粵北)為中心,在空間上存在著一個(gè)巨型金屬礦床分帶(童潛明等,1995;毛景文等,1998),從中心向外為鎢錫鉬鉍鈹帶、銅錫鉛鋅帶和金銻汞帶。鎢錫鉬鉍鈹帶中的礦床與殼源型花崗巖關(guān)系密切,其成礦時(shí)代主要集中于160~150 Ma(毛景文等, 2004a, 2007, 2008; Maoetal., 2006, 2013;Yuanetal., 2007, 2008, 2011; 袁順達(dá)等,2012a, b);銅錫鉛鋅帶中部分礦床(銅礦和鉛鋅礦)與殼幔同熔形成的花崗巖有關(guān),另一部分礦床(錫礦和錫鉛鋅銻汞礦)與地殼重熔型花崗巖有關(guān);金銻汞帶中很少見到花崗質(zhì)巖漿活動(dòng)。
對大寶山花崗閃長斑巖年齡,鋯石U-Pb年齡為176±3Ma~175.3±3Ma,加權(quán)平均結(jié)果為175.8±1.5Ma(毛景文等,2004a),王磊等(2010)采用LA-ICP-MS鋯石U-Pb法對大寶山花崗閃長斑巖定年,結(jié)果為175.8±1.5Ma,為燕山早期。本次研究獲得粵北大寶山斑巖-矽卡巖型礦床中輝鉬礦Re-Os等時(shí)線年齡為166.0±3.0Ma,大寶山銅礦2件樣品的Ar-Ar反等時(shí)線年齡分別為167.0±2.0Ma和161.7±1.7Ma,晚于前人采用鋯石U-Pb法測得的巖體年齡,可見與成礦有關(guān)的巖體為花崗閃長斑巖。
中生代中國東部發(fā)生了多期次強(qiáng)烈的構(gòu)造-巖漿活動(dòng)和大規(guī)模成礦作用(華仁民等,1999;毛景文等,1999,2000),伴隨一系列重大的地質(zhì)事件,即華北和華南地塊的碰撞對接、地球動(dòng)力學(xué)方向大調(diào)整以及巖石圈大減薄,區(qū)內(nèi)的火山活動(dòng)、巖漿侵位、生物演變和成礦作用亦受其制約(毛景文等,2004a,2007, 2008, 2011; Maoetal., 2006, 2013)。華南地區(qū)在白堊紀(jì)以來存在巖石圈減薄事件(Gilderetal.,1991,1996;Chungetal.,1997;李獻(xiàn)華等,1997;Xuetal.,2000;Xuetal.,2002;鄒和平,2001;孫濤和周新民,2002;賈大成等,2003)。華南地區(qū)巖石圈伸展主要可以歸并為180~155Ma、145~125Ma和110~75Ma 三個(gè)階段,這三個(gè)階段的大量基性巖脈形成與成礦作用發(fā)生的170~150Ma、140~125Ma和110~80Ma 三個(gè)時(shí)間段基本吻合,兩者是同一地球動(dòng)力學(xué)演化過程的產(chǎn)物(毛景文等,1999, 2004a;毛景文和王志良,2000)。華南地區(qū)中生代成礦作用的最大特點(diǎn)是幾乎絕大多數(shù)礦床的形成與花崗質(zhì)巖漿活動(dòng)關(guān)系密切,花崗巖或提供物質(zhì)和能量或僅僅提供能量。從成礦物質(zhì)考慮,礦床可以分為殼?;煸春蜌ぴ磧纱箢愋?,銅錫鉛鋅帶中礦床中部分礦床(銅礦和鉛鋅礦)與殼幔同熔形成的花崗巖有關(guān),在170~150Ma期間,沿江山-紹興斷裂、湘南和粵北出現(xiàn)了幾個(gè)相互平行走向近東西的伸展帶,殼幔強(qiáng)烈作用形成一系列I型花崗巖和富堿花崗斑巖類,其中部分經(jīng)過強(qiáng)烈分異演化的花崗質(zhì)巖體伴隨有斑巖銅礦化和銅鉛鋅多金屬礦化。135Ma之后,中國大陸,乃至東亞大陸邊緣處于持續(xù)伸展階段,Goldfarbetal.(2007)、毛景文等(2007,2008,2011)、Maoetal.(2013)認(rèn)為應(yīng)歸屬于太平洋板塊運(yùn)動(dòng)方向發(fā)生轉(zhuǎn)向,由原來的斜俯沖轉(zhuǎn)向幾乎平行大陸邊緣運(yùn)動(dòng)。在華南地區(qū),成礦作用集中發(fā)生在火山盆地、斷陷盆地和變質(zhì)核雜巖中。拆離構(gòu)造是主要的控礦構(gòu)造,而與成礦有關(guān)的巖石顯示為多來源,上地幔-下地殼來源(如紫金山斑巖-淺成低溫?zé)嵋盒豌~金銀礦)和上地殼來源(如銀巖、個(gè)舊和大廠錫礦)。這一期成礦作用在欽杭帶僅僅出現(xiàn)在西南段的云開-大瑤山地區(qū),而且礦化強(qiáng)度大,礦床類型多,絕大多數(shù)礦床分布在盆地及其周緣?;浳?桂東南地區(qū)白堊紀(jì)礦化是中國東部大陸邊緣成礦的一部分,也可能正是由于沿古欽杭結(jié)合帶,殼幔相互作用強(qiáng)烈,成巖成礦不僅強(qiáng)度大,而且出現(xiàn)多樣性,各種類型礦產(chǎn),鎢錫鉬銅鉛鋅金銀錳在100~80Ma時(shí)間段巨量聚集。
(1)粵北大寶山銅多金屬礦床中輝鉬礦187Re-187Os模式年齡為165.7±2.3Ma~163.4±2.4Ma(2σ),加權(quán)平均年齡為164.8±0.8Ma,對應(yīng)等時(shí)線年齡為166.0±3.0Ma;絹英巖中絹云母礦物的40Ar/39Ar坪年齡為169.2±1.8Ma,反等時(shí)線年齡為164.0±1.9Ma,表明粵北大寶山層狀銅礦體形成于早侏羅世。
(2)粵北大寶山礦區(qū)與層狀銅礦體同期的輝鉬礦樣品Re-Os模式年齡為165.7±2.3Ma~163.4±2.4Ma(2σ),平均164.81±2.43Ma,加權(quán)平均值為164.83±0.80Ma,等時(shí)線擬合得到等時(shí)線年齡為166.0±3.0Ma;絹英巖樣品中絹云母礦物的40Ar/39Ar坪年齡為169.2±1.8Ma,反等時(shí)線年齡為164.0±1.9Ma。年齡數(shù)據(jù)表明粵北大寶山斑巖-矽卡巖與層狀銅礦體為同一成礦系統(tǒng),成礦巖體為花崗閃長斑巖,成因上與侏羅紀(jì)花崗質(zhì)巖漿侵位密切關(guān)系。結(jié)合前人的研究成果,可以認(rèn)為位于欽杭帶邊緣的粵北大寶山銅多金屬礦床與古太平洋板塊俯沖具有成因聯(lián)系。
致謝廣東省地質(zhì)局七〇五地質(zhì)大隊(duì)黎洲輝總工程師和廣東省大寶山礦業(yè)有限公司有關(guān)人員為本研究的野外地質(zhì)工作提供了大力協(xié)助,特此致謝!
Cai JH and Liu JQ. 1993. Research and its application on the inclusions characteristics in the Dabaoshan polymetallic deposit, northern Guangdong. J. Mineral. Petrol., 13(1): 33-40 (in Chinese with English abstract)
Cai JH and Liu JQ. 1994. The age of the magmatic rocks of Dabaoshan polymetallic ore field in North Guangdong. Guangdong Geology, 8(2): 45-52 (in Chinese with English abstract)
Chen W, Zhang Y, Zhang YQ, Jin GS and Wang QL. 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan Plateau: Evidence from Ar-Ar thermochronology. Acta Petrologica Sinica, 22(4): 867-872 (in Chinese with English abstract)
Chen W, Wan YS, Li HQ, Zhang ZQ, Dai TM, Shi ZE and Sun JB. 2011. Isotope geochronology: Technique and application. Acta Geologica Sinica, 85(11): 1917-1947 (in Chinese with English abstract)
Chung SL, Hai C, Jahn BM, O’Reilly SY and Zhu BQ. 1997. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleocene volcanism in South China prior to the South China Sea opening. Lithos, 40(2-4): 203-220
Du AD, Zhao DM, Wang SX, Sun DZ and Liu DY. 2001. Precise Re-Os dating for molybdenite by id-ntims with carius tube sample preparation. Rock and Mineral Analysis, 20(4): 247-252 (in Chinese with English abstract)
Fan TC, Zhong SR, Liu S and Li GC. 1994. Metallogenic series and model in Dabaoshen-Xueshanzhang area, north Guangdong Province. Contributions to Geology and Mineral Resources Research, 9(3): 48-58 (in Chinese with English abstract)
Ge CH and Han F. 1986. Submarine volcanic hydrothermal sedimentary origin of the Dabaoshan iron and polymetalic sulfide deposit. Mineral Deposits, 5(1): 1-12 (in Chinese with English abstract)
Ge CH and Han F. 1987. Geology and Geochemistry of the Exhalation-sedimentary Genesis Ore Deposit at Dabaoshan, Guangdong Province. Beijing: Science and Technology Publishing House, 11-12 (in Chinese)
Gilder SA, Keller GR, Luo M and Goodell PC. 1991. Eastern Asia and the western Pacific timing and spatial distribution of rifting in China. Tectonophysics, 198(2-4): 225-243
Gilder SA, Gill J, Cor RS, Zhao X, Liu ZW, Wang GX, Yuan KR, Liu WL, Kuang GD and Wu HR. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. Journal of Geophysics Research, 101(B7): 13137-16154
Goldfarbl RJ, Hart C, Davis G and Geoves D. 2007. East Asian gold: Deciphering the anomaly of Phanerozoic gold in Precambrian cratons. Economic Geology, 102(3): 341-345
Gu LX, Hu W, Ni P, He JX, Xu YT, Lu JJ, Lin CM and Li WQ. 2003. New discussion on the South China-type massive sulphide deposits formed on continental crust. Geological Journal of China Universities, 9(4): 592-608 (in Chinese with English abstract)
Guo CL, Xu YM, Lou FS and Zheng JH. 2013. A comparative study of the Middle Jurassic granodiorite related to Cu and the Late Jurassic granites related to Sn in the Qin-Hang metallogenic belt and a tentative discussion on their tectonic dynamic setting. Acta Petrologica et Mineralogica, 32(4): 463-484 (in Chinese with English abstract)
He JX, Xu KQ and Gu LX. 1996. Recognization of different compositional textures of metamorphism-origin pyrrhotites from Mashan and Dabaoshan deposits. Earth Science, 21(3): 305-310 (in Chinese with English abstract)
Huang SJ, Zeng YC, Jia GX and Chen YR. 1987. On the genesis of Dabaoshan polymetallic deposit in Guangdong Province, China. Geochimica, (1): 27-35 (in Chinese with English abstract)
Jia DC, Hu RZ and Lu Y. 2003. The element geochemistry and nature of magma source of the volcanic rocks in the Rucheng Basin, southeastern Hunan. Geoscience, 17(2): 131-136 (in Chinese with English abstract)
Jiang SY, Zhao KD, Jiang YH and Dai BZ. 2008. Characteristics and genesis of Mesozoic A-type granite and associated mineral deposits in the southern Hunan and northern Guangxi provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract)
Li XH, Hu RZ and Yao B. 1997. Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China. Geochimica, 26(2): 14-31 (in Chinese with English abstract)
Liu HQ, Yang SY, Zhang XL and Chen CJ. 1985. A preliminary study on the genesis fo the Dabaoshan polymetallic deposit in northern Guangdong. Acta Geologica Sinica, (1): 47-61 (in Chinese with English abstract)
Liu XS and Zhou SZ. 1985. On the occurrence of middle Ordovician volcanics and analysis of ore-forming mechanism of siderite polymetallic ore deposit from Dabaoshan, Qujiang County, Guangdong Province. Journal of Nanjing University (Natural Science Edition), 21(2): 348-360 (in Chinese with English abstract)
Ludwig KR. 2001. User's manual for Isoplot/Ex, version 2.49: A geochronologica toolkit for Microsoft Excel Berkela. Geochronological Cente Special Publication, No. la: 1-58
Ludwig KR. 2003. User's manual for Isoplot/Ex, version 3.0: A geochronologica toolkit for Microsoft Excel Berkela. Geochronological Cente Special Publication, No. la: 1-71
Luo NH. 1985. The geological and geochemical features and the origin of Dabaoshan polymetallic deposit in Guangdong Province. Journal of Guilin Institute of Technology, 5(2): 183-195 (in Chinese with English abstract)
Mao JW, Li HY, Wang DH and Peng C. 1998. Ore-forming of Mesozoic polymetallic deposits in South China and its relationship with mantle plume. Bulletin of Mineralogy, Petrology and Geochemistry, 17(2): 130-132 (in Chinese with English abstract)
Mao JW, Hua RM and Li XB. 1999. A Preliminary study of large-scale metallogenesis and large cluster of mineral deposits. Mineral Deposits, 18(4): 291-299 (in Chinese with English abstract)
Mao JW and Wang XL. 2000. A preliminary study on tmelmits and geodynamic setting of large-scale metallogeny in East China. Mineral Deposits, 19(4): 289-296 (in Chinese with English abstract)
Mao JW, Xie GQ, Li XF, Zhang CQ and Mei YX. 2004a. Mesozoic large scale mineralization and multiplelithoshpheric extersion in South China. Earth Science Frontiers, 11(1): 45-55 (in Chinese with English abstract)
Mao JW, Li XF, Lehmann B, Chen W, Lan XM and Wei SL. 2004b.40Ar-39Ar dating of tin ores and related granite in Furong tin orefield, Hunan Province, and its geodynamic significance. Mineral Deposits, 23(2): 164-175 (in Chinese with English abstract)
Mao JW, Xie GQ, Li XF, Zhang C and Wang YT. 2006. Mesozoic large-scale mineralization and multiple lithospheric extensions in South China. Acta Geologica Sinica, 80(3): 420-431
Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract)
Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract)
Mao JW, Shao YJ, Xie GQ, Zhang JD and Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposit in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2): 109-119 (in Chinese with English abstract)
Mao JW, Chen MH, Yuan SD and Guo CL. 2011. Geological character of the Qinhanbg (or shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636-658 (in Chinese with English abstract)
Mao JW, Cheng YB, Chen MH and Franco P. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294
Ren JS, Niu BG and He ZJ. 1998. Tectonic framework and dytnamic evolution Eastern China. In: Ren JS and Yang WR (eds.). Lithosphere Structure and Tectonic Magma Evolution in Eastern China. Beijing: Atomic Energy Press, 1-12 (in Chinese)
Shirey SB and Walker RJ. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry, 67(13): 2136-2141
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41
Song SM, Hu K, Jiang SY and Li K. 2007. The He-Ar-Pb-S isotope tracing on ore-forming fluid in Dabao Hill polymetallic deposit, North Guangdong. Contributions to Geology and Mineral Resources Research, 22(2): 87-99 (in Chinese with English abstract)
Steiger RH and Jager E. 1977. Subcommission on geochronology: Converntion on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36:359-362
Sun T and Zhou XM. 2002. Late Mesozoic extension in Southeast China: Petrologic symbols. Journal of Nanjing University (Natural Science Edition), 38(6): 737-746 (in Chinese with English abstract)
Tang JF, Liu JQ and Fu TA. 1992. Forecasting of forming conditions and structure controlling ore and rock rule at the Dabaoshan polymetallogenic ore deposit and its other regions. In: Institute of Yichang, Chinese Academy of Geological Sciences (eds.). Nanling Geology and Mineral Resource Corpus (3). Beijing: Geological Publishing House, 1-67 (in Chinese)
Tong QM, Wu RE and Peng JL. 1995. W-Sn-Pb-Zn-Au-Ag Ore Deposit Metallogenic Regularities in Chengzhou Area. Beijing: Geological Publishing House, 1-98 (in Chinese)
Wang L, Hu MA, Yang Z, Chen KX and Xia JL. 2010. Geochronology and its geological implications of LA-ICP-MS zircon U-Pb data of granodiorite porphyries in Dabaoshan polymetallic ore deposit, North Guangdong Province. Earth Science, 35(2): 175-185 (in Chinese with English abstract)
Xu DM, Lin ZY, Long WG, Zhang K, Wang L, Zhou D and Huang H. 2012. Research history and current situation of Qinzhou-Hangzhou metallogenic belt, South China. Geology and Mineral Resources of South China, 28(4): 277-289 (in Chinese with English abstract)
Xu XS, O’Reilly SY, Griffin WL and Zhou X. 2000. Genesis of young lithospheric mantle in southeastern China: An LA-ICPMS trace element study. Journal of Petrology, 41(1): 111-148
Xu YG, Sun M, Yan W, Liu Y, Huang XL and Chen XM. 2002. Xenolith evidence for polybaric melting and stratification of the upper mantle beneath south China. Journal of Asian Earth Sciences, 20(8): 937-954
Yang MG, Huang SB, Lou FS, Tang WX and Mao SB. 2009. Lithospheric structure and large-scale metallogenic process in Southeast China continental area. Geology in China, 36(3): 528-543 (in Chinese with English abstract)
Yuan SD, Peng JT, Shen NP, Hu RZ and Dai TM. 2007.40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunnan and its geological implications. Acta Geologica Sinica, 81(2): 278-286
Yuan SD, Peng JT, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualingtin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242
Yuan SD, Zhang DL, Shuang Y, Du AD and Qu WJ. 2012a. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27-38 (in Chinese with English abstract)
Yuan SD, Liu XF, Wang XD, Wu SH, Yuan YB, Li XK and Wang TZ. 2012b. Geological characteristics and40Ar-39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province. Acta Petrologica Sinica, 28(12): 3787-3797 (in Chinese with English abstract)
Zhuang MZ. 1986. Conditions and genesis of the Dabaoshan polymetallogenic deposits. Geology and Exploration, (5): 27-31 (in Chinese with English abstract)
Zou HP. 2001. Crust response of terrigenous expansion-lithospheric delamination northern South China Sea. Marine Geology and Quaternary Geology, 21: 39-44 (in Chinese with English abstract)
附中文參考文獻(xiàn)
蔡錦輝, 劉家齊. 1993. 粵北大寶山多金屬礦床礦物包裹體特征研究及應(yīng)用. 礦物巖石, 13(1): 33-40
蔡錦輝, 劉家齊. 1994. 粵北大寶山多金屬礦區(qū)巖漿巖的成巖時(shí)代. 廣東地質(zhì), 8(2): 45-52
陳文, 張彥, 張?jiān)罉? 金貴善, 王清利. 2006. 青藏高原東南緣晚新生代幕式抬升作用的Ar-Ar熱年代學(xué)證據(jù). 巖石學(xué)報(bào), 22(4): 867-872
陳文, 萬渝生, 李華芹, 張宗清, 戴橦謨, 施澤恩, 孫敬博. 2011. 同位素地質(zhì)年齡測定技術(shù)及應(yīng)用. 地質(zhì)學(xué)報(bào), 85(11): 1917-1947
杜安道, 趙敦敏, 王淑賢, 孫德忠, 劉敦一. 2001. Carius管溶樣和負(fù)離子熱表面電離質(zhì)譜準(zhǔn)確測定輝鉬礦錸-鋨同位素地質(zhì)年齡. 巖礦測試, 20(4): 247-252
樊太昌, 鐘樹榮, 劉勝, 李光超. 1994. 粵北大寶山-雪山嶂地區(qū)成礦系列及成礦模式. 地質(zhì)找礦論叢, 9(3): 48-58
葛朝華, 韓發(fā). 1986. 大寶山鐵-多金屬礦床的海相火山熱液沉積成因特征. 礦床地質(zhì), 5(1): 1-12
葛朝華, 韓發(fā). 1987. 廣東大寶山礦床噴氣-沉積成因地質(zhì)地球化學(xué). 北京: 北京科學(xué)技術(shù)出版社, 11-12
顧連興, 胡文, 倪培, 何金祥, 徐躍通, 陸建軍, 林春明, 李偉強(qiáng). 2003. 再論大陸地殼斷裂坳陷帶中的華南型塊狀硫化物礦床. 高校地質(zhì)學(xué)報(bào), 9(4): 592-608
郭春麗, 許以明, 樓法生, 鄭佳浩. 2013. 欽杭帶侏羅紀(jì)與銅和錫礦有關(guān)的兩類花崗巖對比及動(dòng)力學(xué)背景探討. 巖石礦物學(xué)雜志, 32(4): 463-484
何金祥, 徐克勤, 顧連興. 1996. 對馬山-大寶山變質(zhì)成因磁黃鐵礦不同組成結(jié)構(gòu)的認(rèn)識. 地球科學(xué), 21(3): 305-310
黃書俊, 曾永超, 賈國相, 陳遠(yuǎn)榮. 1987. 論廣東大寶山多金屬礦床的成因. 地球化學(xué), (1): 27-35
賈大成, 胡瑞忠, 盧焱. 2003. 湘東南汝城盆地火山巖的元素地球化學(xué)及源區(qū)性質(zhì)討論. 現(xiàn)代地質(zhì), 17(2): 131-136
蔣少涌, 趙葵東, 姜耀輝, 戴寶章. 2008. 十杭帶湘南-桂北段中生代A型花崗巖帶成巖成礦特征及成因討論. 高校地質(zhì)學(xué)報(bào), 14(4): 496-509
李獻(xiàn)華, 胡瑞忠, 饒冰. 1997. 粵北白堊紀(jì)基性巖脈的年代學(xué)和地球化學(xué). 地球化學(xué), 26(2): 14-31
劉姤群, 楊世義, 張秀蘭, 陳長江. 1985. 粵北大寶山多金屬礦床成因的初步探討. 地質(zhì)學(xué)報(bào), (1): 47-61
劉孝善, 周順之. 1985. 廣東大寶山中泥盆世火山巖與層狀菱鐵礦-多金屬礦床成礦機(jī)制分析. 南京大學(xué)學(xué)報(bào)(自然科學(xué)版), 21(2): 348-360
羅年華. 1985. 廣東大寶山多金屬礦床地質(zhì)地球化學(xué)特征及成因探討. 桂林冶金地質(zhì)學(xué)院院報(bào), 5(2): 183-195
毛景文, 李紅艷, 王登紅, 彭聰. 1998. 華南地區(qū)中生代多金屬礦床形成與地幔柱關(guān)系. 礦物巖石地球化學(xué)通報(bào), 17(2): 130-132
毛景文, 華仁民, 李曉波. 1999. 淺議大規(guī)模成礦作用與大型礦集區(qū)預(yù)測. 礦床地質(zhì), 18(4): 291-299
毛景文, 王志良. 2000. 中國東部大規(guī)模成礦作用時(shí)限及其地球動(dòng)力學(xué)背景的初步探討. 礦床地質(zhì), 19(4): 289-296
毛景文, 謝桂青, 李曉峰, 張長青, 梅燕雄. 2004a. 華南地區(qū)中生代大規(guī)模成礦作用與巖石圈多階段伸展. 地學(xué)前緣, 11(1): 45-55
毛景文, 李曉峰, Lehmann B, 陳文, 藍(lán)曉明, 魏紹六. 2004b. 湖南芙蓉錫礦床錫礦石和有關(guān)花崗巖的40Ar-39Ar測年及其成巖成礦的地球動(dòng)力學(xué)意義. 礦床地質(zhì), 23(2): 164-175
毛景文, 謝桂青, 郭春麗, 陳毓川. 2007. 南嶺地區(qū)大規(guī)模鎢錫多金屬成礦作用: 成礦時(shí)限及地球動(dòng)力學(xué)背景. 巖石學(xué)報(bào), 23(10): 2329-2338
毛景文, 謝桂青, 郭春麗, 袁順達(dá), 程彥博, 陳毓川. 2008. 華南地區(qū)中生代主要金屬礦床時(shí)空分布規(guī)律和成礦環(huán)境. 高校地質(zhì)學(xué)報(bào), 14(4): 510-526
毛景文, 邵擁軍, 謝桂青, 張建東, 陳毓川. 2009. 長江中下游成礦帶銅陵礦集區(qū)銅多金屬礦床模型. 礦床地質(zhì), 28(2): 109-119
毛景文, 陳懋弘, 袁順達(dá), 郭春麗. 2011. 華南地區(qū)欽杭成礦帶地質(zhì)特征和礦床時(shí)空分布規(guī)律. 地質(zhì)學(xué)報(bào), 85(5): 636-658
任紀(jì)舜, 牛寶貴, 和政軍. 1998. 中國東部的構(gòu)造格局和動(dòng)力演化. 見: 任紀(jì)舜, 楊巍然編. 中國東部巖石圈結(jié)構(gòu)與構(gòu)造巖漿演化. 北京: 原子能出版社, 1-12
宋世明, 胡凱, 蔣少涌, 李貺. 2007. 粵北大寶山多金屬礦床成礦流體的He-Ar-Pb-S同位素示蹤. 地質(zhì)找礦論叢, 22(2): 87-99
孫濤, 周新民. 2002. 中國東南部中生代伸展應(yīng)力體制的巖石學(xué)標(biāo)志. 南京大學(xué)學(xué)報(bào)(自然科學(xué)版), 38(6): 737-746
湯吉方, 劉家齊, 傅太安. 1992. 粵北大寶山及其外圍地區(qū)多金屬礦床成礦條件、構(gòu)造控巖控礦規(guī)律及隱伏礦床預(yù)測. 見: 中國地質(zhì)科學(xué)院宜昌地質(zhì)礦產(chǎn)研究所編. 南嶺地質(zhì)礦產(chǎn)文集(3). 北京: 地質(zhì)出版社, 1-67
童潛明, 伍仁和, 彭寄來, 1995. 郴桂地區(qū)鎢錫鉛鋅金銀礦床成礦規(guī)律. 北京: 地質(zhì)出版社, 1-98
王磊, 胡明安, 楊振, 陳開旭, 夏金龍. 2010. 粵北大寶山礦區(qū)花崗閃長斑巖LA-ICP-MS鋯石U-Pb年齡及其地質(zhì)意義. 地球科學(xué), 35(2): 175-185
徐德明, 藺志永, 龍文國, 張鯤, 王磊, 周岱, 黃皓. 2012. 欽杭成礦帶的研究歷史和現(xiàn)狀. 華南地質(zhì)與礦產(chǎn), 28(4): 277-289
楊明桂, 黃水保, 樓法生, 唐維新, 毛素斌. 2009. 中國東南陸區(qū)巖石圈結(jié)構(gòu)與大規(guī)模成礦作用. 中國地質(zhì), 36(3): 528-543
袁順達(dá), 張東亮, 雙燕, 杜安道, 屈文俊. 2012a. 湘南新田嶺大型鎢鉬礦床輝鉬礦Re-Os同位素測年及其地質(zhì)意義. 巖石學(xué)報(bào), 28(1): 27-38
袁順達(dá), 劉曉菲, 王旭東, 吳勝華, 原埡斌, 李學(xué)凱, 王鐵柱. 2012b. 湘南紅旗嶺錫多金屬礦床地質(zhì)特征及Ar-Ar同位素年代學(xué)研究. 巖石學(xué)報(bào), 28(12): 3787-3797
莊明正. 1986. 大寶山多金屬礦床成礦條件及礦床成因探討. 地質(zhì)與勘探, (5): 27-31
鄒和平. 2001. 南海北部陸緣張裂-巖石圈拆沉的地殼響應(yīng). 海洋地質(zhì)與第四紀(jì)地質(zhì), 21: 39-44