郭現(xiàn)輕 閆臻 王宗起 付長壘 陳雷
1. 中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所,北京 1000372. 中國地質(zhì)科學(xué)院地質(zhì)研究所,大陸構(gòu)造與動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京 1000371.
圖1 中央造山帶構(gòu)造位置(a,據(jù)Mattauer et al., 1985)、秦嶺造山帶大地構(gòu)造簡圖(b,據(jù)Yan et al., 2006)和小磨嶺地區(qū)地質(zhì)圖(c)Fig.1 Location of Chinese Central Orogenic Belt (a, after Mattauer et al., 1985), simplified tectonic framework of Qinling orogenic belt (b, after Yan et al., 2006) and geological sketch map of Xiaomoling area (c)
秦嶺造山帶是中央造山帶的重要組成部分,是華北板塊和揚(yáng)子板塊長期相互作用的產(chǎn)物(圖1a)。在該造山帶內(nèi),沿著商州-丹鳳、勉縣-略陽2條深大斷裂斷續(xù)出露有超基性巖、枕狀玄武巖、輝長巖、硅質(zhì)巖等蛇綠巖的組成單元(分別簡稱為“商丹縫合帶”和“勉略縫合帶”)(圖1b)。位于商丹縫合帶北側(cè)的北秦嶺構(gòu)造帶是由古生代“溝-弧-盆”體系和島弧基底新元古代秦嶺群共同構(gòu)成,是古秦嶺洋向華北板塊俯沖的結(jié)果,它們是華北板塊南緣活動(dòng)大陸邊緣的重要組成部分(張國偉,1988;王宗起等,2009;Dongetal., 2012),而位于商丹和勉略縫合帶之間的南秦嶺地區(qū)被稱為“秦嶺微板塊”(Meng and Zhang,1999;張國偉等,2001),長期以來被認(rèn)為是由揚(yáng)子板塊北緣被動(dòng)陸緣(Mattaueretal., 1985;張國偉,1988)在泥盆紀(jì)發(fā)生裂解所用所形成(Meng and Zhang, 1999)。南秦嶺以大面積出露晚古生代深海-淺海-河流三角洲相沉積為特征(杜定漢,1988;杜遠(yuǎn)生,1997;閆臻等,2007;Yanetal., 2006, 2012),同時(shí)在這些古生代沉積建造中發(fā)育有鉛鋅、金、汞銻、鐵礦床,自西向東構(gòu)成了西和-成縣、鳳縣-太白、山陽-柞水、鎮(zhèn)安-旬陽和勉縣-略陽-寧陜五大礦集區(qū),成為我國重要的成礦帶之一,長期以來備受關(guān)注。
在南秦嶺地區(qū),沿著山陽-鳳鎮(zhèn)斷裂周邊斷續(xù)出露有前寒武系變火山-沉積巖組合和超鎂鐵巖,它們與泥盆-石炭系碎屑沉積之間呈斷層接觸,具有構(gòu)造混雜巖之特征(王宗起等,2009)。泥盆系沉積相空間變化特征研究表明,該斷裂帶兩側(cè)的沉積相明顯不同(楊志華,1991;閆臻等,2007)。此外,該斷裂北側(cè)出露大量晚侏羅世-早白堊世花崗巖以及相關(guān)的斑巖-矽卡巖型Cu-Mo-Au-Fe礦化/床。這些事實(shí)說明,山陽-鳳鎮(zhèn)斷裂是一條重要的分界斷裂,可能為一條重要的板塊對接帶(王鴻禎等,1982)。在該斷裂帶內(nèi)斷續(xù)出露有小磨嶺、黑溝、冷水溝、板板山和耀嶺河等前寒武紀(jì)古隆起(部分文獻(xiàn)也稱“雜巖”或“古陸”),其中發(fā)育有Cu、Mo、Au、Fe等礦化,以李家砭Ti-Fe礦床和冷水溝CuMo-Au礦床最為典型。鋯石U-Pb年齡和巖石地球化學(xué)研究表明,這些“古隆起”是878~635Ma大陸裂解或碰撞造山后伸展階段產(chǎn)物(牛寶貴等,2006;楊釗等,2008;王濤等,2009;劉仁燕等,2011;吳發(fā)富等,2012)。然而,對于這些含礦巖體的巖石學(xué)、礦物學(xué)以及成礦年代學(xué)均缺乏系統(tǒng)研究,從而制約了對這些“古隆起”形成與區(qū)域構(gòu)造演化相互關(guān)系的深入探討,進(jìn)而嚴(yán)重影響了區(qū)域找礦。
山陽-柞水礦集區(qū)位于商丹縫合帶和山陽-鳳鎮(zhèn)斷裂之間,是秦嶺造山帶內(nèi)重要礦集區(qū)之一。在該礦集區(qū)內(nèi)出露的地層主要為泥盆系劉嶺群和少量石炭系,同時(shí)還發(fā)育有大量晚侏羅世-早白堊世花崗巖侵入體。沉積相和砂巖碎屑組成綜合研究表明,該礦集區(qū)內(nèi)的劉嶺群形成于弧前環(huán)境(Yanetal., 2006, 2012; 閆臻等, 2007)。在該礦集區(qū)南緣,斷續(xù)出露有新元古代變火山-沉積組合,以構(gòu)造隆起形式分布于山陽-鳳鎮(zhèn)斷裂內(nèi)。
山陽-柞水礦集區(qū)內(nèi)斷裂構(gòu)造發(fā)育,以EW向和NNW向?yàn)橹?,在二者交匯部發(fā)育晚侏羅世-早白堊世花崗巖侵入體,同時(shí)在這些侵入體內(nèi)部及其外圍發(fā)生礦化,形成眾多的斑巖-矽卡巖型礦化點(diǎn)/床。礦集區(qū)的北側(cè)出露有東江口、柞水、曹坪巖體等晚三疊世花崗巖體,而礦集區(qū)南側(cè)則主要表現(xiàn)為一系列的新元古代基性巖漿作用和少量晚印支期-燕山期酸性巖漿活動(dòng),且伴隨有不同礦種的礦化。對于這些新元古代的變火山-沉積組合,前人主要集中于地球化學(xué)和同位素年代學(xué)研究(崔建堂等,1998;崔建堂,2003;牛寶貴等,2006;楊釗等,2008),初步表明南秦嶺在新元古代810~680Ma期間發(fā)生了廣泛的構(gòu)造巖漿裂解事件。
李家砭Ti-Fe礦床位于山陽-鳳鎮(zhèn)構(gòu)造混雜帶內(nèi),含礦圍巖為李家砭雜巖體(圖1c),屬于小磨嶺雜巖的一部分。該雜巖體與泥盆系之間為斷層接觸,出露面積約3.5km2;主要由輝石巖、輝長巖、輝綠巖和花崗巖共同組成。其中輝石巖、輝長巖、輝綠巖之間呈漸變過渡關(guān)系,缺乏明顯的巖相界線;花崗巖與輝長巖呈相互穿插關(guān)系,應(yīng)為同時(shí)期形成。礦化主要發(fā)生在輝長巖中,同時(shí)輝石巖和輝綠巖中也明顯存在不同程度的礦化。輝長巖具有堆晶結(jié)構(gòu)(圖2a),輝石和長石呈半自形近等粒狀,具鑲嵌構(gòu)造。礦體呈透鏡狀、似層狀產(chǎn)出,金屬礦物主要為鈦磁鐵礦和鈦鐵礦,呈浸染狀分布于輝長巖中(圖2a)。鐵礦石儲(chǔ)量約1700萬噸,全鐵平均品位為25%~27%,氧化鈦儲(chǔ)量約140萬噸,平均品位為9%~10%,鐵礦與鈦礦儲(chǔ)量均達(dá)中型規(guī)模。含礦巖體蝕變類型主要有纖閃石化(圖2c)、硅化、蛇紋石化和綠泥石化。
輝石巖呈深灰黑色,近等粒結(jié)構(gòu)(圖2d),主要由輝石構(gòu)成,并含少量的斜長石和磷灰石。輝石以單斜輝石為主,含量約75%,局部發(fā)生纖閃石化;斜長石約10%,呈自形-半自形板狀;副礦物為磷灰石和少量鋯石,含量約5%;Fe-Ti氧化物含量約10%。
輝長巖為深綠-深灰黑色(圖2a),具粗粒輝長結(jié)構(gòu)(圖2e),主要由斜長石(35%)、單斜輝石(25%~30%)和斜方輝石(10%~20%)構(gòu)成,副礦物主要為磷灰石(5%)和鋯石(5%),另外Fe-Ti氧化物含量約15%。斜長石多呈板柱狀半自形晶,粒徑集中于1~3mm;發(fā)育聚片雙晶,局部發(fā)生絹云母化蝕變。單斜輝石多呈半自形-他形晶,粒徑集中于1.5~3mm;具有明顯的多色性(淺褐色-淺灰綠色),發(fā)育一組密集的裂理。斜方輝石呈半自形-他形粒狀,突起高,具有淺粉色-淺藍(lán)灰色多色性,解理不發(fā)育,內(nèi)部較破碎,粒徑變化于1~2mm,部分邊部發(fā)生蛇紋石化蝕變。磷灰石呈自形柱狀,或充填于斜長石、輝石磁鐵礦之間,或以包裹體形式存在于硅酸鹽礦物內(nèi)部,粒徑為100~400μm。Fe-Ti氧化物以不規(guī)則狀充填于斜長石和輝石之間,電子探針分析結(jié)果(見下文)表明其主要為鈦磁鐵礦和鈦鐵礦,此外還含有少量黃銅礦。
輝綠巖(圖2b)呈典型輝長-輝綠結(jié)構(gòu)(圖2f),主要礦物有斜長石(50%)、單斜輝石(25%±)和斜方輝石(10%±),次要礦物為Fe-Ti氧化物(10%),副礦物為少量鋯石(5%)。斜長石呈半自形-自形柱狀,其長軸為200~500μm,發(fā)育卡式雙晶和卡鈉復(fù)合雙晶;單斜輝石和斜方輝石均呈他形粒狀充填于斜長石之間。單斜輝石發(fā)育一組密集裂理,并具有更高的干涉色,兩者粒徑多集中于100~200μm,最大可達(dá)500μm。相對于輝長巖,輝綠巖中Fe-Ti氧化物含量較少,主要為鈦磁鐵礦和鈦鐵礦。
為了有效的研究含礦圍巖的礦物組成、巖漿演化及其與成礦作用關(guān)系,我們對該礦床中輝石巖、輝長巖和輝綠巖中的單斜輝石、斜方輝石、斜長石和Fe-Ti氧化物進(jìn)行了礦物成分定量分析和背散射電子圖像研究。該分析在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所電子探針室完成,所用儀器型號為JXA-8230,加速電壓20kV,電流100nA,束斑直徑5μm,各元素分析時(shí)間(峰位)為10s。分析結(jié)果見表1、表2、表3、表4。
圖2 李家砭含礦標(biāo)本及顯微照片(a)-發(fā)育浸染狀鈦鐵礦化的的堆晶輝長巖;(b)-細(xì)粒輝綠巖;(c)-纖閃石化圍巖;(d)-具纖閃石和鈉黝簾石化的輝石巖;(e)-具輝長結(jié)構(gòu)的輝長巖;(f)-發(fā)育輝長-輝綠結(jié)構(gòu)的輝綠巖.Cpx-單斜輝石;Opx-斜方輝石;Pl-斜長石Fig.2 Field specimens and microscope photos of Lijiabian ore-bearing rock
輝石在輝石巖中表現(xiàn)為單斜輝石,而在輝長巖和輝綠巖中為單斜輝石和斜方輝石。電子探針成分分析表明單斜輝石均為普通輝石(圖3a)。輝石巖、輝長巖和輝綠巖中普通輝石平均成分分別為Wo43.8En40.4Fs15.8、Wo40.5En39.9Fs19.6和Wo41.8En37.2Fs21.0(表1),相應(yīng)Mg#平均值為71.8、67.0和63.9。斜方輝石僅在輝長巖和輝綠巖中可見,為頑火輝石,成分分別為Wo3.3En59.8Fs36.8和Wo2.2En52.4Fs45.4(表2),相應(yīng)Mg#平均值為61.9和53.5。由此可見,單斜輝石和斜方輝石Mg#值由輝石巖→輝長巖→輝綠巖依次逐漸降低,呈現(xiàn)出巖漿演化程度逐漸升高的特征。
全國青少年校園足球工作始于2009年。自2014年11月26日國務(wù)院召開全國青少年校園足球工作電視電話會(huì)議后,教育部正式牽頭負(fù)責(zé)全國青少年校園足球工作。3年多來,教育部一件事情接著一件事情干,使得校園足球工作成績斐然,也為學(xué)校體育工作指出了新方向、開辟了新思路、創(chuàng)建了新模式。
大量研究表明單斜輝石成分在一定程度上可以反映巖漿屬性(Le Bas, 1962; Leterrieretal., 1982; Nisbet and Pearce, 1977),總體上,本文中單斜輝石呈現(xiàn)出低Ti、Al和Na的特征,與堿性玄武巖中單斜輝石低Si、高Ti和Na有明顯區(qū)別(Nisbet and Pearce, 1977)。在SiO2-Al2O3圖解中(圖3b),所有單斜輝石均屬于亞堿性系列;在Ti-AlⅣ圖解上(圖3c),單斜輝石落于鈣堿性系列中,表明其母巖漿屬于鈣堿性系列。構(gòu)造環(huán)境判別圖上,單斜輝石均落于由火山弧玄武巖和大洋玄武巖共同組成的區(qū)域內(nèi)(圖3d),表明形成這些輝石的巖漿具有島弧和大洋板內(nèi)巖漿的雙重屬性。
輝長巖中斜長石為拉長石(An50.6-52.6Ab45.9-48.0Or1.2-1.5),輝綠巖中斜長石以拉長石為主(An49.4-51.5Ab47.0-49.2Or1.4-1.8)(表3);而輝石巖中少量的斜長石則為鈉長石(An0.7-0.9Ab98.7Or0.4-0.5),這顯然與斜長石鈉黝簾石化有關(guān),并不能代表原生斜長石組成,這種現(xiàn)象伴隨纖閃石化的單斜輝石在輝長巖中十分普遍(Shaw and Penczak, 1996)。
表1單斜輝石電子探針數(shù)據(jù)結(jié)果(wt%)
Table 1 Analyses of clinopyroxene from Lijiabian complex (wt%)
巖性編號SiO2TiO2Al2O3Cr2O3FeOMnOMgOCaONa2OK2ONiOTotalWoEnFsMg#輝石巖Px4?153.020.010.600.039.880.3614.4621.220.210.000.0099.8043.341.015.772.3Px4?251.870.651.730.009.750.3213.6721.120.340.000.0299.4944.239.815.971.4輝長巖Px7?151.870.381.520.0211.450.3814.0820.060.280.000.01100.0741.340.318.468.7Px7?251.510.591.680.0011.690.3614.4719.550.300.000.04100.1840.141.318.768.8Px7?350.950.741.540.0212.700.3714.3118.150.270.000.0699.1137.841.520.766.8Px8?150.630.731.730.0011.320.4213.0919.640.230.000.0297.8042.139.018.967.3Px8?251.000.601.870.0312.560.4013.5519.700.280.000.0099.9840.739.020.365.8Px8?351.870.531.520.0012.810.4013.1719.730.220.010.00100.2641.138.120.864.7輝綠巖Px29?151.020.351.240.0213.260.4812.9019.990.210.000.0099.4741.437.221.463.4Px29?251.200.371.300.0013.020.4613.0320.230.250.010.0999.9641.737.420.964.1Px29?351.580.361.240.0012.780.4612.7920.400.200.000.0099.8142.436.920.764.1
表2斜方輝石電子探針數(shù)據(jù)結(jié)果(wt%)
Table 2 Analyses of orthopyroxene from Lijiabian complex (wt%)
巖性編號SiO2TiO2Al2O3Cr2O3FeOMnOMgOCaONa2OK2ONiOTotalWoEnFsMg#輝長巖Px7?452.380.510.990.0422.660.5622.181.580.030.010.00100.923.161.635.363.6Px7?553.010.420.820.0222.830.6222.281.580.010.000.01101.603.161.535.463.5Px7?652.890.530.620.0022.720.6322.081.710.000.010.00101.183.461.235.363.4Px7?751.540.570.940.0123.040.5421.271.450.030.000.0299.403.060.436.762.2Px7?851.800.450.690.0023.210.6321.071.660.000.020.0599.573.459.736.961.8Px8?452.150.370.760.0224.640.7320.231.810.030.000.00100.733.757.239.159.4Px8?551.890.400.810.0424.770.6220.251.830.050.000.03100.693.757.139.259.3輝綠巖Px29?451.670.040.500.0227.960.9218.550.610.000.000.02100.291.353.545.254.2Px29?551.730.320.680.0128.500.8418.271.260.040.010.00101.642.652.045.553.3Px29?651.690.420.710.0028.440.8618.081.310.010.010.00101.522.751.745.653.1
表3斜長石電子探針數(shù)據(jù)結(jié)果(wt%)
Table 3 Analyses of plagioclase from Lijiabian complex (wt%)
巖性編號SiO2TiO2Al2O3Cr2O3FeOMgOCaONa2OK2ONiOTotalAnAbOr輝石巖PL4?168.590.0319.210.000.260.010.2011.900.070.00100.270.998.70.4PL4?268.620.0119.940.000.050.010.1611.860.090.00100.730.798.70.5輝長巖PL7?154.750.1228.640.000.300.0210.755.560.230.00100.3751.047.71.3PL7?253.750.0927.780.000.300.0210.765.270.200.0098.1752.446.41.2PL8?154.280.1328.470.020.310.0110.295.390.240.0099.1350.648.01.4PL8?254.370.0028.590.010.270.0310.685.150.260.0099.3752.645.91.5輝綠巖PL29?155.110.0028.220.000.410.0110.195.550.310.0099.8049.548.71.8PL29?255.550.1428.330.000.330.0210.265.650.250.05100.5849.449.21.4PL29?354.770.1328.410.000.360.0210.475.290.260.0799.7751.547.01.5PL29?455.420.0428.410.000.300.0110.325.410.310.03100.2450.447.81.8
圖3 輝石成分分類命名圖(a,據(jù)Morimoto, 1988)、單斜輝石的SiO2-Al2O3圖解(b,據(jù)Le Bas, 1962)、Ti-AlⅣ圖解(c據(jù)Leterrier et al., 1982)和構(gòu)造環(huán)境判別圖(d,據(jù)Nisbet and Pearce,1977)WPA-板內(nèi)堿性玄武巖;WPT-板內(nèi)拉斑玄武巖;VAB-火山弧玄武巖;OFB-大洋玄武巖Fig.3 Classification of pyroxene (a, after Morimoto, 1988), SiO2-Al2O3 (b, after Le Bas, 1962), Ti-AlⅣ (c, after Leterrier et al., 1982) and tectonic setting discrimination diagrams (d, after Nisbet and Pearce, 1977)
Fe-Ti氧化物呈鈦磁鐵礦和鈦鐵礦兩種形式產(chǎn)出(表4)。鈦磁鐵礦中TiO2含量為6.68%~16.10%,F(xiàn)eO含量為72.02%~85.20%,V2O3含量為0.19%~0.51%。鈦鐵礦中TiO2含量為48.85%~52.75%,F(xiàn)eO含量為43.18%~47.79%,V2O3含量為0%~0.58%。鈦鐵礦多呈他形與鈦磁鐵礦呈鑲嵌共生(圖4d),少部分呈出溶條帶產(chǎn)出于鈦磁鐵礦中(圖4a)。鈦磁鐵礦呈半自形-他形粒狀結(jié)構(gòu),是輝長巖中Fe-Ti氧化物的主要成分。兩者密切共生,呈包裹體形式存在于輝石中(圖4b),或充填于礦物顆粒間(圖4c),這說明鈦鐵礦化與成巖近同期形成。
圖4 李家砭含礦巖體中鈦磁鐵礦和鈦鐵礦產(chǎn)出特征(a、b)-輝石巖、輝長巖中鈦磁鐵礦內(nèi)具有出溶結(jié)構(gòu),鈦鐵礦呈出溶條帶或與鈦磁鐵礦呈鑲嵌狀兩種狀態(tài)產(chǎn)出于斜方輝石中;(c)-輝長巖中鈦磁鐵礦和鈦鐵礦呈共生關(guān)系產(chǎn)于輝石和斜長石空隙;(d)-輝綠巖中鈦鐵礦、鈦磁鐵礦、斜方輝石、單斜輝石和斜長石共生.Cpx-單斜輝石;Opx-斜方輝石;Pl-斜長石;Ti-Mag-鈦磁鐵礦;Ilm-鈦鐵礦Fig.4 Characteristics of titanomagnetite and ilmenite in Lijiabian ore-bearing rock
表4 Fe-Ti氧化物電子探針數(shù)據(jù)結(jié)果(wt%)
Table 4 Analyses of Fe-Ti oxides from Lijiabian complex (wt%)
巖性編號FeOTiO2V2O3Na2OMgOAl2O3SiO2K2OCaOP2O5NiOMnOCr2O3Total輝石巖Fe4?184.0610.410.310.010.050.110.020.000.000.000.000.670.0795.71Fe4?245.7949.400.430.010.070.010.020.010.010.000.003.060.0398.82Fe4?378.2414.250.400.080.012.780.000.010.000.000.000.870.0996.71Fe4?443.1850.580.500.180.072.580.010.000.000.020.023.270.09100.51輝長巖Fe7?180.048.350.250.030.010.110.080.023.510.000.000.260.1192.77Fe7?246.5252.280.590.040.040.030.040.010.000.000.011.560.00101.13Fe7?347.7950.550.420.020.030.020.010.000.000.000.011.360.03100.25Fe7?484.689.220.510.010.000.310.050.010.000.000.020.280.1195.20Fe7?547.0651.800.000.090.070.020.000.000.000.020.001.410.02100.48Fe7?680.4310.290.300.100.022.530.030.000.000.010.000.370.0694.13Fe7?745.0548.850.360.040.142.120.000.000.000.000.001.390.0598.00Fe8?174.6316.100.220.060.091.760.060.000.020.010.000.600.0393.58Fe8?275.4815.840.360.270.033.320.050.030.000.000.000.530.0795.99Fe8?372.0313.610.310.020.039.150.040.010.000.000.000.480.0995.78Fe8?446.9550.630.540.010.050.040.000.000.000.000.021.650.0099.90輝綠巖Fe29?184.157.280.340.010.071.540.250.000.010.000.000.360.1094.11Fe29?246.5252.540.320.000.050.000.020.000.010.000.002.100.06101.62Fe29?385.206.680.190.010.001.270.000.000.020.010.000.280.0893.72Fe29?445.9952.750.420.040.050.000.000.000.020.000.001.860.01101.14
在顯微結(jié)構(gòu)觀察基礎(chǔ)上,我們選擇了9件蝕變相對較弱的輝長巖、輝綠巖和輝石巖進(jìn)行巖石地球化學(xué)成分分析。主量、微量元素含量測試工作在中國地質(zhì)科學(xué)院國家測試中心完成。主量元素利用Phillips 4400 X-熒光光譜儀進(jìn)行測試;FeO含量是用HF和H2SO4對樣品進(jìn)行稀釋后,利用重鉻酸鉀滴定法測定;燒失量(LOI)通過對樣品加熱至1000℃后1h稱量其重量變化獲得。微量元素和稀土元素利用VG Elemental PQⅡPlus電感耦合等離子體質(zhì)譜儀(ICP-MS)來測定。主量元素檢測限為<0.01%(其中TiO2和MnO<0.001%);微量、稀土元素檢測限為1×10-6~0.05×10-6。詳細(xì)測試結(jié)果見表5。由于分析樣品中均含有不同程度的鐵礦化,因此全鐵含量普遍偏高(FeOT=14.64%~23.77%)并導(dǎo)致其它主量元素含量相對偏低。
輝石巖SiO2為34.9%,Al2O3為7.79%,F(xiàn)eOT為23.77%,CaO為11.1%,MgO為7.05%,MnO為0.4%,K2O為0.5%,Na2O為1.81%,TiO2為6.13%,Mg#值為34.8;輝長巖SiO2含量較為均一,為34.36%~35.57%,CaO為11.33%~11.83%,K2O為0.23%~0.53%,Na2O為1.57%~1.86%,與輝石巖相比,輝長巖具有較低的FeOT(20.18%~21.71%)、MgO(4.97%~6.17%)、MnO(0.24%~0.30%)含量和Mg#值(30.0~34.8),而具有較高的Al2O3(9.48%~11.22%)和TiO2(6.34%~6.99%)含量;由于輝綠巖中鈦鐵礦化含量較輝長巖低,輝綠巖具有較高的SiO2(42.48%~46.39%)、Al2O3(11.90%~13.57%)、MgO(5.32%~6.04%)、K2O(0.58%~0.93%)、和Na2O(2.31%~2.92%)含量和Mg#值(34.8~42.6),而FeOT(14.64%~18.23%)、CaO(9.19%~10.09%)、TiO2(2.71%~4.28%)含量偏低。該地球化學(xué)成分與顯微結(jié)構(gòu)觀察和電子探針分析結(jié)果相一致,均表明輝長巖是主要含礦圍巖。
輝石巖稀土總量(∑REE)為160.7×10-6,輝長巖∑REE較高(224.6×10-6~250.7×10-6)。輝石巖和輝長巖具有相似的稀土配分曲線和微量元素蛛網(wǎng)圖解,呈現(xiàn)出富集LREE虧損HREE特征,總體呈右傾配分模式(圖5a),LREE和HREE元素中等程度分異((La/Yb)N=4.33~5.65,(Gd/Yb)N=3.54~4.24)。具有弱的Eu負(fù)異常(δEu=0.79~0.87),暗示曾發(fā)生斜長石的分離結(jié)晶作用。輝綠巖同樣具有右傾稀土配分模式(圖5a),LREE和HREE元素分異相對于輝石巖和輝長巖較弱,分別為(La/Yb)N=3.25~3.69,(Gd/Yb)N=1.72~2.24,Eu無明顯異常(δEu=0.90~1.00)。輝綠巖∑REE為151.9×10-6~168.2×10-6,相對于輝長巖較低,尤其是LREE含量明顯偏低,這可能與輝綠巖中缺乏磷灰石等富集LREE元素的礦物有關(guān)。
表5李家砭含礦巖體地球化學(xué)分析結(jié)果(主量元素:wt%;稀土和微量元素:×10-6)
Table 5 Major and trace elements of Lijiabian ore-bearing rock (major elements: wt%; trace elements: ×10-6)
樣品號LJB4LJB5LJB8LJB16LJB19LJB22LJB23LJB25LJB29巖性輝石巖輝長巖細(xì)粒輝綠巖SiO234.9035.5734.3634.6743.4143.7142.4842.6446.39TiO26.136.346.626.994.204.144.264.282.71Al2O37.7911.1111.229.4812.0811.9311.9011.9113.57Fe2O310.628.819.848.696.727.227.577.825.43FeO14.2112.2512.0013.8911.810.9611.4211.159.75MnO0.400.240.260.300.330.330.310.350.29MgO7.055.564.976.175.435.325.555.396.04CaO11.1011.3311.8311.809.479.649.599.1910.09Na2O1.811.811.861.572.712.922.652.902.31K2O0.500.530.370.230.740.580.770.660.93P2O52.263.854.414.500.580.580.570.580.38LOI1.010.530.22-0.100.630.851.031.240.32Total97.7897.9397.9698.1998.198.1898.198.1198.21FeOT23.7720.1820.8521.7117.8517.4618.2318.1914.64Mg#34.833.230.033.835.435.435.434.842.6Sc58.933.331.737.545.74445.445.646.1Cr56.644.366.55511.29.5511.513.569.6Co79.857.355.260.555.248.456.460.352.8Ni11558.673.176.143.435.741.341.241.3Cu55.458.457.56714649.39916452Ga18.521.422.420.22522.923.623.425.7Rb16.217.210.55.3434.417.629.518.449.3Sr125325315278265246250307304Y44.856.460.563.649.949.948.24846.7Zr66.873.969.285.6143180138118211Nb7.598.466.458.1521.721.820.719.417.5Cs2.52.782.11.425.632.883.932.115.96Ba21015195.165.9185258194391259Li22.56.283.811.841516.917.221.214.2V713487494445581529571570426La17.526.828.329.321.52219.721.121.4Ce45.866.771.272.450.852.24750.349.1Pr7.5410.911.812.17.827.957.217.747.02Nd41.357.964.366.338.739.136.237.832.1Sm11.51516.81710.310.39.6108.16Eu3.14.424.894.93.193.23.153.432.66Gd12.41618.418.310.711.410.111.18.9Tb1.852.282.582.651.81.841.751.791.53Dy9.6812.313.213.810.210.49.8610.18.88Ho1.772.142.262.441.941.911.871.891.71Er4.445.455.646.145.415.555.215.244.87Tm0.50.60.630.690.70.720.670.670.64Yb2.93.593.594.064.454.54.354.14.29Lu0.430.520.530.580.670.660.650.630.65Hf1.992.11.872.334.335.264.153.695.61Ta0.690.450.270.391.451.441.351.311.03Pb33.912.021.192.622.333.243.993.44Th0.440.530.610.640.470.630.420.510.67U0.110.140.170.180.130.20.130.140.19ΣREE160.7224.6244.1250.7168.2171.7157.3165.9151.9δEu0.790.870.850.850.930.900.981.000.95(La/Yb)N4.335.355.655.183.473.513.253.693.58(Gd/Yb)N3.543.694.243.731.992.101.922.241.72
表6李家砭輝長巖SHRIMP鋯石U-Pb測年數(shù)據(jù)
Table 6 SHRIMP zircon U-Pb data of gabbro from Lijiabian complex
測點(diǎn)號206Pbc(%)UTh(×10-6)232Th238U206Pb?(×10-6)207Pb?206Pb?±%207Pb?235U±%206Pb?238U±%206Pb238UAge(Ma)207Pb206PbAge(Ma)不諧和度1.10.063263621.1528.80.05923.60.8440.10291.7631±10575±79-102.10.084314651.12380.061520.8692.60.10251.6628.9±9.8658±4443.1-1171261.1214.10.06912.41.3353.60.14012.7845±22902±4964.10.132042201.1118.20.06130.8723.50.10361.8636±11641±6515.10.292452701.1421.40.05843.30.8173.90.10142.1623±13545±71-146.10.3885760.927.30.06237.50.8517.80.09912.1609±12684±160117.10.611231211.0210.70.05666.50.7856.80.10061.9618±11477±140-308.10.04127980.8011.10.06537.70.91480.10152623±12783±160209.11.391771560.9115.30.05435.30.7455.70.09951.9612±11382±120-6010.10.353553621.0630.90.05952.90.8293.30.1011.7620.2±9.9586±63-611.10.44135760.5811.40.06514.60.87850.09781.9602±11776±972312.10.071831730.97160.06282.40.88130.10181.8625±11700±521113.10.5872590.856.290.06087.20.8467.60.1012.6620±15630±1502
圖5 李家砭礦床含礦巖體稀土配分模式圖(a)和微量元素蛛網(wǎng)圖(b)(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough, 1989)Fig.5 Chondrite-normalized REE patterns and primitive mantle-normalized trace elements spider diagram for ore-bearing magma in Lijiabian Fe-Ti deposit (normalization values after Sun and McDonough, 1989)
在微量元素原始地幔標(biāo)準(zhǔn)化圖解上(圖5b),所有樣品呈現(xiàn)出強(qiáng)烈虧損Th、U、Zr、Hf等高場強(qiáng)元素,而相對富集大離子親石元素(如Rb、Ba等元素)。高場強(qiáng)元素Th-U-Zr-Hf的虧損體現(xiàn)出可能巖漿形成過程中受到俯沖流體的影響(Brenanetal., 1994),其中Zr、Hf等元素主要賦存于鋯石中(Beaetal., 2006),鋯石通常在含F(xiàn)e-Ti氧化物的輝長巖中作為晚期結(jié)晶的礦物相出現(xiàn)(Rubatto and Hermann, 2003),這使得演化程度較高的輝綠巖中可能含有更高的Zr和Hf元素(圖5b)。而輝長巖和輝石巖中P元素的顯著富集與兩者中磷灰石的發(fā)育有直接聯(lián)系。不同分析樣品的稀土和微量元素具有相似的配分模式曲線,顯示其具有相似源區(qū)及形成構(gòu)造環(huán)境。
圖6 李家砭輝長巖SHRIMP鋯石U-Pb諧和圖(左)和鋯石陰極發(fā)光圖像(右)Fig.6 Zircon SHRIMP U-Pb concordia diagram (left) and CL images (right) of gabbro from Lijiabian complex
我們對李家砭輝長巖通過SHRIMP鋯石U-Pb年代學(xué)測定,以確定其成巖成礦時(shí)代,進(jìn)而為其形成與區(qū)域演化關(guān)系研究提供依據(jù)。該測試是在中國地質(zhì)科學(xué)院地質(zhì)研究所北京離子探針中心SHRIMP Ⅱ儀器完成的,具體測試條件及流程見宋彪等(2002)。對測試結(jié)果采用204Pb進(jìn)行普通鉛年齡校正。數(shù)據(jù)處理采用SQUID 11.03d和ISOPLOT 程序(Ludwig, 2001)。單個(gè)數(shù)據(jù)的誤差為1σ,加權(quán)平均年齡誤差為95%置信度。測試結(jié)果見表6和圖6。
輝長巖中的鋯石呈無色透明,多為半自形晶,發(fā)育不完整晶面,鋯石內(nèi)部較為干凈,裂隙和包裹體不發(fā)育,鋯石粒徑變化于70~180μm。鋯石陰極發(fā)光圖像呈灰白色-深灰黑色,多發(fā)育微弱且寬緩的板狀環(huán)帶(點(diǎn)6.1),僅少數(shù)發(fā)育微弱震蕩環(huán)帶(點(diǎn)1.1),顯示典型巖漿鋯石特征。
對該樣品中的13粒鋯石進(jìn)行了SHRIMP鋯石U-Pb年代學(xué)分析。其中12粒鋯石發(fā)育板狀環(huán)帶結(jié)構(gòu),其Th、U含量分別為59×10-6~465×10-6和72×10-6~431×10-6,Th/U比值為0.58~1.15,206Pb/238U加權(quán)平均年齡為621±6Ma(MSWD=0.79),該年齡代表了輝長巖形成時(shí)代;另一粒鋯石(點(diǎn)3.1)具有棱柱狀晶型,發(fā)育楔狀分帶結(jié)構(gòu),明顯不同于其他12粒鋯石的CL圖像,其206Pb/238U表面年齡為845±22Ma,可能代表了繼承性鋯石年齡。
李家砭Ti-Fe礦床中的含礦圍巖具有高TiO2(平均5.07%)和FeOT(平均19.21%)、低Na2O+K2O(平均2.87%)地球化學(xué)特征。除輝石巖發(fā)育單斜輝石的纖閃石化和斜長石的鈉黝簾石化外,輝長巖和輝綠巖均由普通輝石、頑火輝石、拉長石以及Ti-Fe氧化物共同構(gòu)成,具有鈣堿性巖漿巖的典型礦物組合(Irvine and Baragar, 1971; Ewartetal., 1992),同時(shí)普通輝石成分同樣顯示出鈣堿性巖漿特征(圖3c),這些事實(shí)說明李家砭雜巖體具有鈣堿性巖漿特征。巖體中MgO、Cr、Ni含量相對于原始地幔較低,反應(yīng)巖漿熔融后發(fā)生過分異作用(Aspleretal., 2002),同時(shí)LREE富集和較低的Mg#值(30.0~42.6)顯示這些鎂鐵質(zhì)巖石來自于演化程度較高的巖漿。而隨SiO2含量增加,輝綠巖中更低的FeOT、MgO、CaO含量以及輝綠中輝石較低的Mg#,均顯示輝綠巖具有比輝石巖和輝長巖更高的演化程度。
顯微鏡下觀察結(jié)果表明輝石巖和輝長巖中均有較多的鈦鐵氧化物(圖2d-f),但輝石巖和輝長巖地球化學(xué)成分則表現(xiàn)出這些巖石比輝綠巖含有更多的FeOT;同時(shí)輝石巖和輝長巖中發(fā)育有大量自形磷灰石。大量研究表明富含F(xiàn)、Cl和OH等揮發(fā)分的磷灰石對Fe-Ti氧化物礦床的成礦過程具有重要作用(Ripleyetal., 1998; Mitsis and Economou-Eliopoulos, 2001; Clark and Kontak, 2004;Zhouetal., 2005)。伴隨巖漿演化后期揮發(fā)分減少,輝綠巖中幾乎不含磷灰石,從而不利于成礦作用的進(jìn)行。
在Hf/3-Th-Ta圖解上(圖7a),所有樣品落于由E-MORB和板內(nèi)拉斑玄武巖組成的區(qū)域,而在Th/Yb-Nb/Yb圖解上(圖7b),分析樣品落于E-MORB附近區(qū)域內(nèi),表現(xiàn)出巖漿來自于E-MORB性質(zhì)的源區(qū)。然而,微量元素圖上并未呈現(xiàn)出典型的E-MORB巖漿性質(zhì),這除了與李家砭鎂鐵質(zhì)巖演化程度較高外,可能還與受俯沖流體的影響所致,體現(xiàn)為高場強(qiáng)元素Th-U-Zr-Hf的虧損(Brenanetal., 1994)。綜上所述,李家砭雜巖體可能形成于經(jīng)俯沖流體改造后的E-MORB巖漿源區(qū)。同時(shí),單斜輝石成分表現(xiàn)出島弧和大洋板內(nèi)巖漿的雙重屬性,表明李家砭雜巖體可能形成于弧后環(huán)境。
圖7 李家砭含礦巖體Hf/3-Th-Ta(a, 據(jù)Wood et al., 1979)和Th/Yb-Nb/Yb圖解(b, 據(jù)Pearce, 2008)IAT-島弧拉斑玄武巖;CAB-鈣堿性玄武巖;E-MORB-富集型洋中脊玄武巖;WPT-板內(nèi)拉斑玄武巖;WPAB-板內(nèi)堿性玄武巖;N-MORB-正常洋中脊玄武巖;OIB-洋島玄武巖Fig.7 Hf/3-Th-Ta (a, after Wood et al., 1979)和Th/Yb-Nb/Yb figures (b, after Pearce, 2008) for Lijiabian ore-bearing rock
巖漿結(jié)晶分異型礦床是鎂鐵質(zhì)-超鎂鐵質(zhì)巖的一種重要成礦類型(Lister, 1966),其成礦特征表現(xiàn)為礦體主要產(chǎn)于巖漿巖內(nèi)部,礦化多呈浸染狀分布,礦石礦物組成與母巖漿基本相同,成礦作用和成巖作用近同時(shí)進(jìn)行,世界上眾多形成于輝長巖(斜長巖-蘇長巖)體內(nèi)的(釩)鈦磁鐵礦均屬于該成礦類型。李家砭雜巖體由輝石巖、輝長巖、輝綠巖和花崗巖共同組成,是小磨嶺雜巖的一部分,輝石巖、輝長巖和輝綠巖均發(fā)育不同程度的鈦鐵礦化,其中鈦鐵礦化主要呈透鏡狀、似層狀發(fā)育于大量出露具堆晶結(jié)構(gòu)的輝長巖中。金屬礦物主要為鈦磁鐵礦、鈦鐵礦以及少量的黃銅礦,而鈦磁鐵礦含量最高。鏡下可見半自形-他形鈦磁鐵礦和鈦鐵礦相伴產(chǎn)出,并與斜長石和輝石等礦物呈鑲嵌構(gòu)造,表明礦化與成巖是同期進(jìn)行的,這些結(jié)構(gòu)特征顯示該礦床為巖漿分異型礦床(Lister, 1966; Mathison, 1975)。區(qū)域上發(fā)育多個(gè)與新元古代鎂鐵質(zhì)-超鎂鐵質(zhì)巖相關(guān)的Ti-Fe礦床,如產(chǎn)于晚元古宙白雀寺雜巖體內(nèi)的略陽中壩子鈦磁鐵礦礦床(陳劍祥等,2013),礦化受輝長巖相帶控制,同樣是巖漿分異的產(chǎn)物。
區(qū)域研究表明,秦嶺造山帶內(nèi)廣泛發(fā)育新元古代巖漿作用。沿山陽-鳳鎮(zhèn)斷裂帶,斷續(xù)出露一系列新元古代巖體,如磨溝峽閃長巖(SHRIMP 743±12Ma;牛寶貴等,2006)、黑溝雜巖體內(nèi)堿性花崗巖(SHRIMP 686±10Ma;牛寶貴等,2006)和冷水溝輝長巖(SHRIMP 680±9Ma;作者未發(fā)表資料)、色河二長花崗巖(SHRIMP 709±8Ma;王濤等,2009)以及板板山鉀長花崗巖(SHRIMP 730±8Ma;吳發(fā)富等,2012)。礦物組合和地球化學(xué)特征表明南秦嶺發(fā)育743~680Ma具有高鉀鈣堿性-堿性的A型花崗質(zhì)巖石(Chenetal., 2006;Wangetal., 2013)。此外,勉略蛇綠混雜帶內(nèi)也發(fā)育大量新元古代(1006~808Ma)超鎂鐵質(zhì)和鎂鐵質(zhì)巖塊(張宗清等,1996,2005;夏林圻等,1996;閆全人等,2007),具有N-MORB地球化學(xué)特征(許繼鋒等,1997;賴紹聰?shù)龋?003);在該混雜帶北側(cè)白水江增生雜巖中也存在778~667Ma輝長輝綠巖,具有OIB地球化學(xué)特征(王濤等,2011)。這些新元古代MORB和OIB型基性火山巖的發(fā)育,記錄了新元古代時(shí)期古秦嶺洋的演化(閆全人等,2007;王宗起等,2009)。巖石學(xué)和巖石地球化學(xué)分析結(jié)果表明,南秦嶺鎮(zhèn)安一帶新元古代耀嶺河群形成島弧環(huán)境(凌文黎等,2002a;蘇春乾等,2006);在南秦嶺南緣碧口、西鄉(xiāng)、安康一帶也存在有新元古代島弧火山巖和花崗巖(凌文黎等,1996, 2002b;張宏飛等,1997;王宗起,1998;Yanetal., 2003, 2004;劉樹文等,2009a,b)。同時(shí),Yanetal.(2010)通過砂巖碎屑組成及物源區(qū)性質(zhì)研究認(rèn)為新元古代時(shí)期在揚(yáng)子板塊北緣存在有與大洋俯沖作用密切相關(guān)的島弧巖漿事件。這些事實(shí)共同表明,新元古代時(shí)期揚(yáng)子板塊北緣為活動(dòng)大陸邊緣。然而,大量740~660Ma的堿性火山巖和花崗巖可能是由于新元古代晚期俯沖作用引起的島弧裂陷或弧后擴(kuò)張背景下的產(chǎn)物。
SHRIMP鋯石U-Pb年代學(xué)的研究表明,李家砭輝長巖形成時(shí)代為621±6Ma,其中有845±22Ma的繼承鋯石。該繼承性鋯石發(fā)育完整的晶面,不具有輝長巖鋯石的板狀環(huán)帶,并且輝長巖中還捕獲了部分發(fā)育密集巖漿環(huán)帶的自形鋯石,具有中-酸性巖漿巖特征,這些繼承鋯石的特征表明該輝長巖巖漿在形成過程中捕獲了部分早期中-酸性巖漿巖,可與本區(qū)發(fā)育的早-中新元古代中酸性島弧巖石相對應(yīng)。同時(shí),礦物學(xué)、地球化學(xué)共同表明,李家砭輝長巖巖漿屬于鈣堿性巖漿巖,且具有島弧和大洋板內(nèi)玄武巖的雙重地球化學(xué)屬性。這進(jìn)一步表明,李家砭輝長巖及相關(guān)的Ti-Fe礦床形成于弧后盆地,同時(shí)也表明新元古代晚期(621Ma)在揚(yáng)子北緣存在弧后盆地伸展作用。
(1)李家砭雜巖體由輝石巖、輝長巖、輝綠巖和少量的花崗巖共同組成;鈦鐵礦化主要發(fā)育于堆晶輝長巖中;該礦床為巖漿分異型礦床。
(2)李家砭雜巖體具有E-MORB和島弧玄武巖的雙重巖漿性質(zhì),形成于弧后盆地。
(3)SHRIMP鋯石U-Pb測年結(jié)果表明,李家砭雜巖體及Ti-Fe礦床形成于621±6Ma。
致謝北京離子探針中心楊淳副研究員、董春艷博士在SHRIMP鋯石U-Pb測年工作中給予了指導(dǎo)和幫助;中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所陳振宇博士在電子探針分析過程中提供了幫助;貴刊編輯和二位匿名審稿人對本文提出了建設(shè)性修改意見;在此一并表示感謝!
Aspler LB, Cousens BL and Chiarenzelli JR. 2002. Griffin gabbro sills (2.11Ga), Hurwita Basin, Nunavut, Canada: Long-distance lateral transport of magmas in western Churchill province crust. Precambrian Research, 117(3-4): 269-294
Bea F, Montero P and Ortega M. 2006. A LA-ICP-MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon-forming processes. The Canadian Mineralogist, 44(3): 693-714
Brenan JM, Shaw HF, Phinney DL and Ryerson FJ. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128(3-4): 327-339
Chen JX, Wu XB, Zhang HF and Wei ZD. 2013. Geological characteristics and prospecting direction study of Zhongbazi Ti magnetite deposit in Lueyang County, Shaanxi Province. Northwestern Geology, 46(2): 111-118 (in Chinese with English abstract)
Chen ZH, Lu SN, Li HK, Li HM, Xiang ZQ, Zhou HY and Song B. 2006. Constraining the role of the Qinling orogen in the assembly and break-up of Rodinia: Tectonic implications for Neoproterozoic granite occurrences. Journal of Asian Earth Sciences, 28(1): 99-115
Clark AH and Kontak DJ. 2004. Fe-Ti-P oxide melts generated through magma minxing in the Antauta Subvolcanic Center, Peru: Implications for the origin of nelsonite and iron oxide-dominated hydrothermal deposits. Economic Geology, 99(2): 377-395
Cui JT, Zhao CY and Ji WH. 1998. Early pre-Cambrian metamorphic rock series have been recognized in primary Devonian system, Zhashui, Shaanxi. Geology of Shaanxi, 16(2): 17-26 (in Chinese with English abstract)
Cui JT. 2003. Lao’ansi terrane and its geological tectonic characterisitics in Zhashui area, Shaanxi. Northwestern Geology, 36(1): 18-24 (in Chinese with English abstract)
Dong YP, Liu XM, Santosh M, Chen Q, Zhang XN, Li W, He DF and Zhang GW. 2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze block, China: Constraints from zircon U-Pb geochronology and geochemistry. Precambrian Research, 196-197: 247-274
Du DH. 1986. Study of the Devonian of the Qinba Area, Shaanxi Province. Xian: Xi’an Jiaotong University Press, 230 (in Chinese)
Du YS. 1997. Devonian Sedimentary Geology of Qinling Orogenic Belt. Wuhan: China University of Geosciences Press, 130 (in Chinese)
Ewart A, Schon RW and Chappell BW. 1992. The Cretaceous volcanic-plutonic province of the central Queensland (Australia) coast-a rift related ‘calc-alkaline’ province. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 327-345
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548
Lai SC, Zhang GW, Dong YP, Pei XZ and Chen L. 2003. Geochemistry and regional distribution of ophiolites and associated volcanic in Mianlue suture, Qinling-Dabie Mountains. Science in China (Series D), 32(12): 1174-1183 (in Chinese)
Le Bas MJ. 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260(4): 267-288
Leterrier J, Maury RC, Thonon P, Girard D and Marchal M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59(1): 139-154
Ling WL, Zhang BR, Zhang HF and Luo TC. 1996. An isotopic envidence for oceanic crust subduction and crust-mantle recycling in Meso-Neproterozoic along northern margin of Yangtze Craton. Earth Science, 21(3): 332-336 (in Chinese with English abstract)
Ling WL, Wang XH, Cheng JP, Yang YC and Gao S. 2002a. Recognition and geological significance of Zhen’an arc-volcanic suite, South Qinling orogenic belt. Geochimica, 31(3): 222-229 (in Chinese with English abstract)
Ling WL, Gao S, Ouyang JP, Zhang BR and Li HM. 2002b. Time andectonic setting of the Xixiang Group: Constraints from zircon U-Pb geochronology and geochemistry. Science in China (Series D), 32(2): 101-112 (in Chinese)
Lister GF. 1966. The composition and origin of selected Iron-Titanium deposits. Economic Geology, 61(2): 275-310
Liu RY, Niu BG, He ZJ and Ren JS. 2011. LA-ICP-MS zircon U-Pb geochronology of the eastern part of the Xiaomaoling composite intrusive in Zhashui area, Shaanxi, China. Geological Bulletin of China, 30(2-3): 448-460 (in Chinese with English abstract)
Liu SW, Yan QR, Li QG and Wang ZQ. 2009a. Petrogenesis of granitoid rocks in the Kangding Complex, weastern margin of the Yangtze Craton and its tectonic significance. Acta Petrologica Sinica, 25(8): 1883-1896 (in Chinese with English abstract)
Liu SW, Yang K, Li QG, Wang ZQ and Yan QR. 2009b. Petrogenesis of the Neoproterozoic Baoxing Complex and its constraint on the tectonic environment in western margin of Yangtze Craton. Earth Science Frontiers, 16(2): 107-118 (in Chinese with English abstract)
Ludwig KR. 2001. Squid 1.02: A User Manual. Berkeley: Berkeley Geochronology Center Special Publication, 2: 19
Mathison CI. 1975. Magnetites and ilmenites in the Somerset dam layered basic intrusion, southeastern Queensland. Lithos, 8(2): 93-111
Mattauer M, Matte P, Malavielle J, Tapponnier P, Maluski H, Xu ZQ, Lu YL and Tang YQ. 1985. Tectonics of the Qinling belt: Build up and evolution of eastern Asia. Nature, 317(6037): 496-500
Meng QR and Zhang GW. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27: 123-126
Mitsis I and Economou-Eliopoulos M. 2001. Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece. American Mineralogist, 86(10): 1143-1150
Morimoto N. 1988. Nomenclature of pyroxenes. Mineralogy and Petrology, 39(1): 55-76
Nisbet EG and Pearce JA. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2): 149-160
Niu BG, He ZJ, Ren JS, Wang J and Deng P. 2006. SHRIMP U-Pb ages of zircons from the intrusions in the western Douling-Xiaomaoling uplift and their geological significances. Geological Review, 52(6): 826-835 (in Chinese with English abstract)
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Litho, 100(1-4): 14-48
Ripley EM, Severson MJ and Hauck SA. 1998. Evidence for sulfide and Fe-Ti-P-rich liquid immiscibility in the Duluth Complex, Minnesota. Economic Geology, 93(7): 1052-1062
Rubatto D and Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187
Shaw CSJ and Panczak RS. 1996. Barium-and titanium-rich biotite and phlogopite from the western and eastern gabbro, Coldwell Alkaline Complex, Northwestern Ontario. The Canadian Mineralogist, 34(5): 967-975
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount Making and Procedure of the SHRIMP dating. Geological Review, 48(Suppl.): 26-30 (in Chinese with English abstract)
Su CQ, Hu JM, Li Y and Liu JQ. 2006. The existence of two different tectonic attributes in Yaolinghe Group in south Qinling region. Acta Petrologica et Mineralogica, 25(4): 287-298 (in Chinese with English abstract)
Sun SS and Mcdonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Wang HZ, Xu CY and Zhou ZG. 1982. Tectonic development of the continental margins on both sides of the palaeo-Qinling margin realm. Acta Geologica Sinica, 56(3): 270-280 (in Chinese with English abstract)
Wang T, Wang ZQ, Yan Z, Yan QR, Zhan YL and Xiang ZJ. 2009. Geochemical characteristics and zircon SHRIMP U-Pb dating of Sehe granite in Shanyang County, Shaanxi Province and its geological significance. Acta Geologica Sinica, 83(11): 1657-1666 (in Chinese)
Wang T, Wang ZQ, Yan QR, Yan Z, Qin XF, Zhang YL and Xiang ZJ. 2011. The formation age and geochemical characteristics of the metavolcanic rock blocks of the Baishuijiang Group in South Qinling. Acta Petrologica Sinica, 27(3): 645-656 (in Chinese with English abstract)
Wang XX, Wang T and Zhang CL. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72: 129-151
Wang ZQ. 1998. Collision orogenic process of the South Qinling and its coupling with the evolution of the northern Yangtze margin, China. Ph. D. Dissertation. Beijing: Institute of Geology, Chinese Academy of Sciences, 1-103 (in Chinese with English summary)
Wang ZQ, Yan QR, Yan Z, Wang T, Jiang CF, Gao LD, Li QG, Chen JL, Zhang YL, Liu P, Xie CL and Xiang ZJ. 2009. New division of the main tectonic units of the Qinling Orogenic belt, central China. Acta Geologica Sinica, 83(11): 1527-1546 (in Chinese with English abstract)
Wood DA, Joron JL and Treuil M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic setting. Earth and Planetary Science Letters, 45(2): 326-336
Wu FF, Wang ZQ, Wang T, Yan Z and Chen L. 2012. SHRIMP zircons U-Pb ages and geochemical characteristics of the Banbanshan K-feldspar granite in Shanyang, southern Qinling orogenic belt. Journal of Mineral Petrology, 32(2): 63-73 (in Chinese with English abstract)
Xia LQ, Xia ZC and Xu XY. 1996. The confirmation of continental flood basalt of the Proterozoic Xixiang Group in the South Qinling Mountains, and its geological implications. Geological Review, 42(6): 513-522 (in Chinese with English abstract)
Xu JF, Yu XY, Li XH, Han YW, Sheng JH and Zhang BR. 1997. The discovery of highly depleted N-MORB volcanic rock: The new evidence of Mianlue old ocean basin. Chinese Science Bulletin, 42(22): 2414-2418 (in Chinese)
Yan QR, Wang ZQ, Hanson AD, Yan Z, Druschke PA, Wang T, Liu DY, Song B and Jiang CF. 2003. SHRIMP age and geochemistry of the Bikou volcanic terrane: Implications for Neoproterozoic tectonics on the northern margin of the Yangtze Craton. Acta Geologica Sinica, 77(4): 479-490
Yan QR, Hanson AD, Wang ZQ, Druschke PA, Yan Z, Wang T, Liu DY, Song B, Jian P, Zhou H and Jiang CF. 2004. Neoproterozoic subduction and rifting on the northern margin of the Yangtze plate, China: Implications for Rodinia reconstruction. International Geology Review, 46(9): 817-832
Yan QR, Wang ZQ, Yan Z, Xiang ZJ, Chen JL and Wang T. 2007. SHRIMP analyses for ophiolitic-mafic bllocks in the Kangxian-Mianxian section of the Mianxian-Lueyang mélange: Their geological implications. Geological Review, 53(6): 755-764 (in Chinese with English abstract)
Yan Z, Wang ZQ, Yan QR, Wang T, Xiao WJ, Li JL, Han FL, Chen JL and Yang YC. 2006. Devonian sedimentary environments and provenance of the Qinling Orogen: Constraints on Late Paleozoic southward accretionary tectonics of the North China Craton. International Geology Review, 48(7): 585-615
Yan Z, Wang ZQ, Wang T, Yan QR, Xiao WJ, Li JL, Han FL and Chen JL. 2007. Tectonic setting of Devonian sediments in the Qinling orogen: Constraints from detrital modes and geochemistry of clastic rocks. Acta Petrologica Sinica, 23(5): 1023-1042 (in Chinese with English abstract)
Yang Z, Dong YP, Zhou DW, Yu J and Ma HY. 2008. Geochemistry and geologic significance of basic rocks in the Xianmoling complex in the Zhashui area, South Qinling, China. Geological Bulletin of China, 27(5): 611-617 (in Chinese with English abstract)
Yan Z, Wang ZQ, Chen JL, Yan QR and Wang T. 2010. Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze Block, China: U-Pb geochronology and petrography of sandstones. Journal of Asian Earth Science, 37(4): 322-334
Yan Z, Wang ZQ, Yan QR, Wang T and Guo XQ. 2012. Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling orogenic belt. Journal of Sedimentary Research, 82(1): 9-20
Yang ZH. 1991. Tectonic Facies and Mineralization of Marginal Translation Basins. Beijing: Science Press, 228 (in Chinese)
Zhang GW. 1988. Formation and Evolution of the Qinling Orogenic Belt. Xi’an: Northwest University Publishing House, 1-192 (in Chinese)
Zhang GW, Zhang BR and Yuan XC. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 485 (in Chinese)
Zhang HF, Zhang BR, Ling WL, Gao S and Ouyang JP. 1997. Late Proterozoic crustal accretion of South Qinling: Nd isotopic study from granitic rocks. Geochemica, 26(5): 16-24 (in Chinese with English abstract)
Zhang ZQ, Tang SH, Wang JH, Zhang GW, Chen JY and Yang YC. 1996. Age of ophiolites in the Qinling Mountains: Isotopic and fossil evidences, their contradiction and explanation. In: Zhang Q (ed.). Study on Ophiolites and Geodynamics. Beijing: Geological Publishing House, 146-149 (in Chinese)
Zhang ZQ, Tang SH, Zhang GW, Yang YC and Wang JH. 2005. Ages of metamorphic mafic-andesitic volcanic rock blocks and tectonic evolution complexity of Mianxian-Lueyang ophiolitic mélange belt. Acta Geologica Sinica, 79(4): 531-539 (in Chinese)
Zhou MF, Robinson PT, Lesger CM, Keays RR, Zhang CJ and Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280
附中文參考文獻(xiàn)
陳劍祥, 吳新斌, 張海峰, 衛(wèi)中弟. 2013. 陜西略陽中壩子鈦磁鐵礦床地質(zhì)特征及找礦方向研究. 西北地質(zhì), 46(2): 111-118
崔建堂, 趙長纓, 計(jì)文化. 1998. 柞水原劃泥盆系中發(fā)現(xiàn)早前寒武紀(jì)變質(zhì)巖系. 陜西地質(zhì), 16(2): 17-26
崔建堂. 2003. 陜西柞水地區(qū)老安寺巖群及其地質(zhì)構(gòu)造特征. 西北地質(zhì), 36(1): 18-24
杜定漢. 1986. 陜西秦巴地區(qū)泥盆系研究. 西安: 西安交通大學(xué)出版社, 1-230
杜遠(yuǎn)生. 1997. 秦嶺造山帶泥盆紀(jì)沉積地質(zhì)學(xué)研究. 武漢: 中國地質(zhì)大學(xué)出版社, 1-130
賴紹聰, 張國偉, 董云鵬, 裴先治, 陳亮. 2003. 秦嶺-大別勉略構(gòu)造帶蛇綠巖與相關(guān)火山巖性質(zhì)及其時(shí)空分布. 中國科學(xué)(D輯), 33(12): 1174-1183
凌文黎, 張本仁, 張宏飛, 駱庭川. 1996. 揚(yáng)子克拉通北緣中、新元古代洋殼俯沖及殼幔再循環(huán)作用的同位素地球化學(xué)證據(jù). 地球科學(xué), 21(3): 332-336
凌文黎, 王歆華, 程建萍, 楊永成, 高山. 2002a. 南秦嶺鎮(zhèn)安島弧火山巖的厘定及其地質(zhì)意義. 地球化學(xué), 31(3): 222-229
凌文黎, 高山, 歐陽建平, 張本仁, 李惠民. 2002b. 西鄉(xiāng)群的時(shí)代與構(gòu)造背景: 同位素年代學(xué)及地球化學(xué)制約. 中國科學(xué)(D輯), 32(2): 101-112
劉仁燕, 牛寶貴, 何政軍, 任紀(jì)舜. 2011. 陜西柞水地區(qū)小茅嶺復(fù)式巖體東段LA-ICP-MS鋯石U-Pb定年. 地質(zhì)通報(bào), 30(2-3): 448-460
劉樹文, 閆全人, 李秋根, 王宗起. 2009a. 揚(yáng)子克拉通西緣康定雜巖中花崗質(zhì)巖石的成因及其構(gòu)造意義. 巖石學(xué)報(bào), 25(8): 1883-1896
劉樹文, 楊凱, 李秋根, 王宗起, 閆全人. 2009b. 新元古代寶興雜巖的巖石成因及其對揚(yáng)子西緣構(gòu)造環(huán)境的制約. 地學(xué)前緣, 16(2): 107-118
牛寶貴, 何政軍, 任紀(jì)舜等. 2006. 秦嶺地區(qū)陡嶺-小茅嶺隆起帶西段幾個(gè)巖體的SHRIMP鋯石U-Pb測年及其地質(zhì)意義. 地質(zhì)論評, 52(6): 826-835
宋彪, 張玉海, 萬渝生, 簡平. 2002. 鋯石SHRIMP樣品靶制作、年齡測定及有關(guān)現(xiàn)象討論. 地質(zhì)論評, 48(增刊): 26-30
蘇春乾, 胡建民, 李勇, 劉繼慶. 2006. 南秦嶺地區(qū)存在兩種不同構(gòu)造屬性的耀嶺河群. 巖石礦物學(xué)雜志, 25(4): 287-298
王鴻禎, 徐成彥, 周正國. 1982. 東秦嶺古海域兩側(cè)大陸邊緣區(qū)的構(gòu)造發(fā)展. 地質(zhì)學(xué)報(bào), 56(3): 270-280
王濤, 王宗起, 閆臻, 閆全人, 張英利, 向忠金. 2009. 山陽色河花崗巖地球化學(xué)特征和鋯石SHRIMP U-Pb年代學(xué). 地質(zhì)學(xué)報(bào), 83(11): 1657-1665
王濤, 王宗起, 閆全人, 閆臻, 覃小鋒, 張英利, 向忠金. 2011. 南秦嶺白水江群變基性火山巖塊體的形成時(shí)代及其地球化學(xué)特征. 巖石學(xué)報(bào), 27(3): 645-656
王宗起. 1998. 南秦嶺中段碰撞造山帶及其與陸緣盆地演化的耦合關(guān)系. 博士學(xué)位論文. 北京: 中國科學(xué)院地質(zhì)研究所, 1-103
王宗起, 閆全人, 閆臻, 王濤, 姜春發(fā), 高聯(lián)達(dá), 李秋根, 陳雋璐, 張英利, 劉平, 謝春林, 向忠金. 2009. 秦嶺造山帶主要大地構(gòu)造單元的新劃分. 地質(zhì)學(xué)報(bào), 83(11): 1527-1546
吳發(fā)富, 王宗起, 王濤, 閆臻, 陳雷. 2012. 南秦嶺山陽板板山鉀長花崗巖體SHRIMP鋯石U-Pb年齡與地球化學(xué)特征. 礦物巖石, 32(2): 63-73
夏林圻, 夏祖春, 徐學(xué)義. 1996. 南秦嶺元古宙西鄉(xiāng)群大陸溢流玄武巖的確定及其地質(zhì)意義. 地質(zhì)論評, 42(6): 513-522
許繼鋒, 于學(xué)元, 李獻(xiàn)華, 韓吟文, 盛吉虎, 張本仁. 1997. 高度虧損的N-MORB型火山巖的發(fā)現(xiàn): 勉略古洋盆存在的新證據(jù). 科學(xué)通報(bào), 42(22): 2414-2418
閆全人, 王宗起, 閆臻, 向忠金, 陳雋璐, 王濤. 2007. 秦嶺勉略構(gòu)造混雜帶康縣-勉縣段蛇綠巖塊-鐵鎂質(zhì)巖塊的SHRIMP年代及其意義. 地質(zhì)論評, 53(6): 755-764
閆臻, 王宗起, 王濤, 閆全人, 肖文交, 李繼亮, 韓芳林, 陳雋璐. 2007. 秦嶺造山帶泥盆系形成構(gòu)造環(huán)境: 來自碎屑巖組成和地球化學(xué)方面的約束. 巖石學(xué)報(bào), 23(5): 1023-1042
楊釗, 董云鵬, 周鼎武, 于君, 馬海勇. 2008. 南秦嶺柞水地區(qū)小磨嶺雜巖基性巖類的地球化學(xué)特征及其地質(zhì)意義. 地質(zhì)通報(bào), 27(5): 611-617
楊志華. 1991. 邊緣轉(zhuǎn)換盆地的構(gòu)造巖相與成礦. 北京: 科學(xué)出版社, 1-228
張國偉. 1988. 秦嶺造山帶的形成及其演化. 西安: 西北大學(xué)出版社, 1-192
張國偉, 張本仁, 袁學(xué)成. 2001. 秦嶺造山帶與大陸動(dòng)力學(xué). 北京: 科學(xué)出版社, 485
張宏飛, 張本仁, 凌文黎, 高山, 歐陽建平. 1997. 南秦嶺新元古代地殼增生事件: 花崗質(zhì)巖石釹同位素示蹤. 地球化學(xué), 26(5): 16-24
張宗清, 唐索寒, 王進(jìn)輝, 張國偉, 陳家義, 楊永成. 1996. 秦嶺蛇綠巖的年齡: 同位素年代學(xué)和古生物證據(jù), 矛盾及其理解. 見: 張旗主編. 蛇綠巖與地球動(dòng)力學(xué). 北京: 地質(zhì)出版社, 146-149
張宗清, 唐索寒, 張國偉, 楊永成, 王進(jìn)輝. 2005. 勉縣-略陽蛇綠混雜巖帶鎂鐵質(zhì)-安山質(zhì)火山巖塊年齡和該帶構(gòu)造演化的復(fù)雜性. 地質(zhì)學(xué)報(bào), 79(4): 531-539