• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gear fault classification based on support vector machine*

    2014-03-09 03:32:04FengyunXIESanmaoXIE
    機(jī)床與液壓 2014年18期
    關(guān)鍵詞:斷齒波包方根

    Feng-yun XIE,San-mao XIE

    School of Mechanical and Electronical Engineering,East China Jiaotong University,Nanchang 330013,China

    Gear fault classification based on support vector machine*

    Feng-yun XIE?,San-mao XIE

    School of Mechanical and Electronical Engineering,East China Jiaotong University,Nanchang 330013,China

    Gears are critical elements in rotating machinery.An approach is proposed based on support vectormachine(SVM)to solve classification ofm ultip le gear conditions.These conditions are divided into normal,wear,and broken teeth conditions.The rootmean square(RMS)and the wavelet packet energy at different scales of the vibration signals of gearbox casing are emp loyed in constructing the features of classifier.SVMis emp loyed for the classifier,and it has the abilities ofmu lti-class classification and good generalization.The experim ental results show that the proposed method is able to discrim inate the gear faults clearly.

    Gear,Support vectormachine,F(xiàn)ault classification,Wavelet packet energy

    *Project supported by Jiangxi Province Education Department Science Technology Project(GJJ14365),and Jiangxi Province Nature Science Foundation (20132BAB201047,20114BAB206003)

    ? Feng-yun XIE,PhD.E-mail:xiefyun@163.com

    Gear systems arewidely used in rotatingmachinery,and gear abnormity is a crucial reason for machine failure.It is significant to study the technique of gear fault classification for increasingmachine processing reliability.Early fault detection in gears has been the subject of intensive investigation and many methods based on vibration signal analysis have been developed.For instance,Mcfadden proposed an interpolation technique for time domain averaging of gear vibration[1].Rafiee proposed a multi-layer perceptron neural network to recognize gears and bearings fault of a gearbox system[2].As a powerful machine learning approach for classification problems,support vectormachine is known to have good generalization ability.SVMare introduced by Vapnik in the late 1960s on the foundation of statistical learning theory.In the early 1990s,The techniques used for SVM started emergingwith greater availability of computing power and used in numerous practical applications[3 -5].

    In this paper,an approach based on vibration signal processing techniques and SVMis proposed for solving the gear fault classification.For classifying gear fault,the piezoelectric accelerometer is used for data acquisition.The features of the classification by SVMare considered on a dataset composed of two sets of features:the first is from the RMS of time domain,the second consists of the wavelet packet energy calculated in the time-frequency.Two sets of features provide sensitive information for a classifier.The classifier is based on SVM method.The results show that the proposed method has a good classification capability.

    1.Support vector machine theory

    SVMincorporates the maximal margin strategy and the kernelmethod.The architecture of a classical SVMis shown in Figure 1.

    Figure 1.Architecture of SVM

    SVMis a supervised learning approach used for nonlinear classification which has also led to many other recent developments in kernel based learning methods in general.The authors in this study used the one-against-allmethod for SVM multiclass classification[6].The“winner-takes-all”rule is used for the final decision,where thewinning class is the one corresponding to the SVM with the highest output.Thismethod constructs k SVM models where k is the number of classes.The ith SVMis trained with all of the examples in the ith classwith positive labels,and all other examples with negative labels.Given m training data(x1,y1),,(xm,ym),where xi∈ Rn,i=1,…,m and yi∈ {1,…,k}is the class of xi,the ith SVM solves the following problem:

    Where the training data xiismapped to a higher dimensional space by the functionΦand the penalty parameter C.ξis a slack variable,ω is aweight,and b is a threshold.

    After solving(1),k decision functions are obtained here:

    Where x is in the classwhich has the largest value of the decision function.Considering the problem of indivisible linear vectors,and selecting the relaxation factor,punishment parameter,and non-linear mapping core function,the sample can be mapped into a high dimension space and be transformed to a linear classification problem in attributive space.

    2.Experiment setup and signal analysis

    In order to research gear fault classification,a test bench of the gear fault simulation was set up.The experiment testing chart is shown in Figure 2.The vibration signals of machining process are obtained by piezoelectric accelerometer DH107.The vibration signals are amplified by charge amplifier5070 and simultaneously recorded by dynamic signal test and analysis system with 5 kHz sampling frequency.

    Figure 2.Schematic diagram of testing system

    The gear conditions are divided into three categories:normal,wear,and broken teeth.The realtime processing signals under different conditions are shown as Figure 3.The fast Fourier transforms(FFT)processing results of the time domain signals are shown in Figure 4.

    The time-frequency amplitude is different significantly in the three different conditions as shown in Figure 3 and Figure 4.

    Figure 3.The time domain chart of vibration signals

    Figure 4.The frequency domain chart of vibration signals

    3.Feature extraction

    According to the results of vibration signals analysis,feature extractionmethod in this paper is adopted in time and time-frequency domain analysis.It includes RMS and the energy of wavelet package of vibration signals.

    RMS is a statisticalmeasure of themagnitude of a varying quantity that can reflect changes in the amplitude of time domain.Three group vibration signals are selected for experimental test.The RMS in the different conditions is calculated and the results of RMS are shown in Table 1.

    Table 1.RMS of vibration signals in different conditions

    The RMS of vibration signals in different gear conditions are denoted as feature T1.

    Wavelet package decomposition(WPD)is a wavelet transform where the signal is passed through more filters than discrete wavelet transform.WPD can record the detailed information about the different frequency bands,and is a good time-frequency analysis tool[7 -8].In this paper,the three-level wavelet packet decomposition with wavelet sym4 is carried out.The energy of the first and the second nodes in three different conditions are significantly different than that of other nodes.The energy summations of the first node and the second node in three different conditions are shown in Table 2.

    Table 2.Energy summations of the first and second nodes

    The energy summation of the first and second nodes in different gear conditions is denoted as feature T2.

    4.Gear fault classification

    In order tomake themulti-class gear fault classification,amulti-class classification system based on SVMis developed.The system is composed of three cascaded binary classifiers.The classification processing based on SVMis shown in Figure 5.

    Figure 5.Flow chart of the gear fault classification

    According to three gear conditions,two subclassifiers are designed.One distinguishes the normal and fault,the other distinguishes the fault typewhich iswear and broken teeth.

    Define class 1 as normal condition,class 2 as gear wear condition,and class3 as broken teeth condition.Select the radial basis function as the kernel function,the width of the radial basis kernel function asσ2=σ2=5,and the error penalty parameter as γ=1.The result of gear fault classification based on SVMis shown in Figure 6,where x1is RMS,and x2is the energy ofWPD.It can be clearly seen that all experimental data are classified correctly by SVM method.

    Figure 6.Results of gear fault classification based on SVM

    The feature values of the group 1 and group 2 are used for training SVMand the feature values of the group 3 is used for classification.The result of recognition based on SVMis shown in Table 3.

    Table 3.Result of classification based on SVM

    It can be seen that the result of recognition based on SVMis correct in Table 3.

    5.Conclusion

    A procedure is proposed for classification of gear condition using SVM classifiers by feature exaction from time-domain vibration signals.The RMS and energy of WPD are selected as the inputs of SVM.The gear processing conditions are divided into normal,wear and broken teeth.The SVM successfully classifies the signals of normal,wear,and broken teeth,and which is very effective.In future works,the comparison with other classification methods are recommended.

    [1] Mcfadden PD.Interpolation techniques for time domain averaging of gear vibration[J].Mechanical Systems and Signal Processing,1989(3):87 -97.

    [2] Rafiee J,Arvani F,Harifi A,et al.Intelligent condition monitoring of a gearbox using artificial neural network[J].Mech.Syst.and Signal Process,2007,21(4):1746-1754.

    [3] Xuan Jianping,Jiang Hanhong,Shi Tielin,et al.Gear fault classification using genetic programming and support vectormachines[J].International Journal of Information Technology,2005,11(9):19-27.

    [4] Samanta B.Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J].Mechanical Systems and Signal Processing,2004,18(3):625-644.

    [5] Huifang T,Shanxia S.Gear Fault Diagnosis Based on Rough Set and Support Vector Machine[J].Journal of Wuhan University of Technology, 2006, 28:1046-1051.

    [6] Chih-Wei Hsu,Chi-Jen Lin.A Comparison of methods formulticlass support vectormachines[J].IEEE Transactions on Neural Networks,2002(13):415 -425.

    [7] Xie fengyun.State recognition ofmachine tools processing based on wavelet packet and hidden Markov model[J].2013,41(7):202-205.

    [8] XIE FY.Hu YM,Wu B.A generalized interval probability-based optimization method for training generalized hidden Markovmodel[J].Signal Processing.2014,94(1):319-329.

    基于支持向量機(jī)的齒輪故障分類*

    謝鋒云?,謝三毛

    華東交通大學(xué)機(jī)電學(xué)院,南昌 330013

    齒輪是旋轉(zhuǎn)機(jī)械中的關(guān)鍵元件。提出了一個(gè)基于支持向量機(jī)的齒輪多故障分類方法。齒輪狀態(tài)被劃分為正常、齒輪磨損和斷齒狀態(tài)。振動(dòng)信號(hào)的均方根和小波包能量被選作為分類器的特征參數(shù)。分類器選用支持向量機(jī)(SVM)。SVM具有良好的實(shí)用性及多分類能力。實(shí)驗(yàn)結(jié)果表明:提出的方法能很好地區(qū)分齒輪故障。

    齒輪;支持向量機(jī);故障分類;小波包能量

    TH 133;TP391

    10.3969/j.issn.1001-3881.2014.18.010

    2014-06-10

    猜你喜歡
    斷齒波包方根
    方根拓展探究
    40Cr變速箱齒輪斷裂原因分析
    基于小波包Tsallis熵和RVM的模擬電路故障診斷
    均方根嵌入式容積粒子PHD 多目標(biāo)跟蹤方法
    越野車后橋差速器齒輪斷齒分析
    北京汽車(2016年6期)2017-01-06 05:32:26
    采掘機(jī)械齒輪斷齒原因分析及其預(yù)防措施
    揭開心算方根之謎
    基于小波包變換的電力系統(tǒng)諧波分析
    小波包理論與圖像小波包分解
    關(guān)于回轉(zhuǎn)支承斷齒分析及解決對(duì)策的研究
    三级国产精品片| 亚洲成人一二三区av| 日本wwww免费看| 黄频高清免费视频| 在线天堂最新版资源| 永久免费av网站大全| 狠狠婷婷综合久久久久久88av| 99国产综合亚洲精品| 90打野战视频偷拍视频| 精品酒店卫生间| av.在线天堂| 国产女主播在线喷水免费视频网站| 欧美精品人与动牲交sv欧美| 久久精品亚洲av国产电影网| 成人黄色视频免费在线看| 最新中文字幕久久久久| 99热网站在线观看| 一级毛片电影观看| 中文字幕av电影在线播放| 欧美 亚洲 国产 日韩一| 亚洲av免费高清在线观看| 久久久久视频综合| 2022亚洲国产成人精品| 成人亚洲欧美一区二区av| 国产精品久久久av美女十八| 亚洲国产精品一区三区| 国产日韩一区二区三区精品不卡| 免费不卡的大黄色大毛片视频在线观看| av网站在线播放免费| 可以免费在线观看a视频的电影网站 | 亚洲av成人精品一二三区| 一级毛片 在线播放| 一本色道久久久久久精品综合| 十分钟在线观看高清视频www| 免费久久久久久久精品成人欧美视频| 综合色丁香网| 热re99久久国产66热| 日日摸夜夜添夜夜爱| 日本欧美国产在线视频| 日韩中文字幕欧美一区二区 | 亚洲欧洲精品一区二区精品久久久 | 大话2 男鬼变身卡| 亚洲天堂av无毛| 熟女少妇亚洲综合色aaa.| 2018国产大陆天天弄谢| 观看美女的网站| 又粗又硬又长又爽又黄的视频| 久久ye,这里只有精品| 精品第一国产精品| 国语对白做爰xxxⅹ性视频网站| 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| 91成人精品电影| 亚洲第一av免费看| 宅男免费午夜| 久久久久久久久久人人人人人人| 欧美精品一区二区大全| 26uuu在线亚洲综合色| 女人精品久久久久毛片| 国产男女内射视频| 日韩中文字幕视频在线看片| 啦啦啦在线观看免费高清www| 91久久精品国产一区二区三区| 啦啦啦在线免费观看视频4| 午夜福利影视在线免费观看| 麻豆乱淫一区二区| 伊人久久大香线蕉亚洲五| 国产日韩欧美在线精品| 18+在线观看网站| 90打野战视频偷拍视频| 亚洲av国产av综合av卡| 两性夫妻黄色片| 少妇人妻 视频| 亚洲精品国产色婷婷电影| 色播在线永久视频| 9热在线视频观看99| 国产成人精品一,二区| 99国产精品免费福利视频| 免费观看av网站的网址| 亚洲av欧美aⅴ国产| 成人手机av| 日韩不卡一区二区三区视频在线| 中国三级夫妇交换| 国产精品女同一区二区软件| 一本久久精品| 麻豆精品久久久久久蜜桃| 成人二区视频| 美女午夜性视频免费| 国产在线视频一区二区| 国产女主播在线喷水免费视频网站| 日韩中字成人| 国产一区亚洲一区在线观看| 免费观看性生交大片5| 丝袜脚勾引网站| 国产日韩欧美亚洲二区| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 色播在线永久视频| 精品人妻在线不人妻| 亚洲精品日韩在线中文字幕| 亚洲精品久久午夜乱码| 老女人水多毛片| 国产有黄有色有爽视频| 亚洲av福利一区| 9热在线视频观看99| 亚洲视频免费观看视频| 国产 一区精品| 亚洲精品av麻豆狂野| 久久精品国产亚洲av天美| 成人亚洲欧美一区二区av| 精品久久蜜臀av无| 日韩一区二区三区影片| 亚洲成色77777| 女人精品久久久久毛片| 99热全是精品| 国产在线视频一区二区| 可以免费在线观看a视频的电影网站 | 一二三四在线观看免费中文在| 热99久久久久精品小说推荐| 五月伊人婷婷丁香| 亚洲四区av| 亚洲人成网站在线观看播放| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| 久久精品国产a三级三级三级| 熟女电影av网| 久久ye,这里只有精品| 久热久热在线精品观看| 中文字幕人妻丝袜制服| 欧美日韩视频高清一区二区三区二| 丝袜在线中文字幕| 满18在线观看网站| 在线观看美女被高潮喷水网站| 免费黄网站久久成人精品| 在线天堂最新版资源| 午夜久久久在线观看| 一边摸一边做爽爽视频免费| 日韩,欧美,国产一区二区三区| 日本wwww免费看| 亚洲av免费高清在线观看| 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 一二三四在线观看免费中文在| 欧美人与善性xxx| 精品国产乱码久久久久久小说| 国语对白做爰xxxⅹ性视频网站| 秋霞伦理黄片| 国产一区二区在线观看av| 女性被躁到高潮视频| 熟女av电影| 99香蕉大伊视频| 咕卡用的链子| a级片在线免费高清观看视频| 69精品国产乱码久久久| 久久精品国产综合久久久| 久久国产精品男人的天堂亚洲| 亚洲激情五月婷婷啪啪| 色播在线永久视频| 亚洲第一青青草原| 桃花免费在线播放| 蜜桃国产av成人99| 最近最新中文字幕大全免费视频 | 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边做爽爽视频免费| 大香蕉久久网| 亚洲欧洲日产国产| 欧美成人午夜免费资源| 免费高清在线观看视频在线观看| av电影中文网址| 久久精品aⅴ一区二区三区四区 | 国产无遮挡羞羞视频在线观看| av有码第一页| 欧美另类一区| av在线app专区| 伊人亚洲综合成人网| 青青草视频在线视频观看| 99久久人妻综合| 亚洲一码二码三码区别大吗| 久久人人爽av亚洲精品天堂| 国产成人精品一,二区| 青草久久国产| 久久精品国产亚洲av高清一级| 国产精品秋霞免费鲁丝片| 美女国产高潮福利片在线看| 国产精品.久久久| 国产男人的电影天堂91| 在线亚洲精品国产二区图片欧美| 亚洲精品自拍成人| av电影中文网址| 蜜桃在线观看..| 免费播放大片免费观看视频在线观看| 少妇人妻精品综合一区二区| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 亚洲精品成人av观看孕妇| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 免费黄网站久久成人精品| 亚洲欧美精品自产自拍| 久久ye,这里只有精品| 亚洲一区中文字幕在线| 秋霞伦理黄片| freevideosex欧美| 久久久久久久久免费视频了| 国产一区有黄有色的免费视频| 久久99蜜桃精品久久| 午夜91福利影院| 午夜福利一区二区在线看| 婷婷色综合大香蕉| 久久久久精品性色| 欧美日韩综合久久久久久| 亚洲欧洲日产国产| 伊人久久大香线蕉亚洲五| 久久久久久久久久久久大奶| 精品国产国语对白av| 人妻 亚洲 视频| 久久这里只有精品19| 午夜激情av网站| 岛国毛片在线播放| 国产激情久久老熟女| 欧美日韩亚洲高清精品| 最近最新中文字幕大全免费视频 | 久久久久人妻精品一区果冻| 一级爰片在线观看| 中文字幕人妻熟女乱码| 国产亚洲一区二区精品| 日韩人妻精品一区2区三区| 久久国产亚洲av麻豆专区| 日韩欧美一区视频在线观看| 亚洲av成人精品一二三区| 日韩 亚洲 欧美在线| 国产精品.久久久| 久久久精品94久久精品| 丝瓜视频免费看黄片| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美网| a级片在线免费高清观看视频| av免费在线看不卡| 国产亚洲一区二区精品| 永久免费av网站大全| 少妇猛男粗大的猛烈进出视频| 在线观看免费视频网站a站| 亚洲欧洲国产日韩| 秋霞在线观看毛片| 中文字幕另类日韩欧美亚洲嫩草| 91精品伊人久久大香线蕉| 国产午夜精品一二区理论片| 欧美精品国产亚洲| 日韩制服丝袜自拍偷拍| 69精品国产乱码久久久| 激情视频va一区二区三区| 免费观看av网站的网址| 精品国产国语对白av| 高清视频免费观看一区二区| 免费av中文字幕在线| 99久久人妻综合| 街头女战士在线观看网站| 国产精品嫩草影院av在线观看| 亚洲,欧美精品.| 日本午夜av视频| 亚洲国产最新在线播放| 亚洲精品一区蜜桃| 亚洲国产精品999| 久久精品亚洲av国产电影网| 91在线精品国自产拍蜜月| 久久久久久人妻| 免费观看av网站的网址| 日本猛色少妇xxxxx猛交久久| 麻豆精品久久久久久蜜桃| 日韩,欧美,国产一区二区三区| 日韩中字成人| 国产综合精华液| 精品久久久精品久久久| 蜜桃国产av成人99| videosex国产| 观看av在线不卡| 精品卡一卡二卡四卡免费| 在线免费观看不下载黄p国产| 一区二区日韩欧美中文字幕| 一级,二级,三级黄色视频| 欧美日韩视频高清一区二区三区二| 国产欧美日韩一区二区三区在线| 久久久国产精品麻豆| 亚洲av男天堂| 欧美精品亚洲一区二区| 热99久久久久精品小说推荐| 亚洲色图 男人天堂 中文字幕| 久久午夜福利片| 午夜福利视频在线观看免费| 伊人亚洲综合成人网| 国产精品女同一区二区软件| 九九爱精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美国产精品一级二级三级| 欧美日韩亚洲高清精品| 熟女电影av网| 久久久精品94久久精品| 久久精品国产a三级三级三级| 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 亚洲少妇的诱惑av| 久久精品aⅴ一区二区三区四区 | 91成人精品电影| 欧美精品人与动牲交sv欧美| 人人澡人人妻人| 国产在线一区二区三区精| 国产免费现黄频在线看| av免费在线看不卡| 亚洲欧美精品综合一区二区三区 | 欧美日韩一级在线毛片| 午夜老司机福利剧场| 精品人妻在线不人妻| 观看av在线不卡| 超碰成人久久| 国产成人午夜福利电影在线观看| 又大又黄又爽视频免费| 高清欧美精品videossex| 国产精品国产av在线观看| 99热国产这里只有精品6| 一本久久精品| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 国产黄色视频一区二区在线观看| 不卡视频在线观看欧美| 亚洲精品乱久久久久久| av女优亚洲男人天堂| 宅男免费午夜| 青春草亚洲视频在线观看| 国产xxxxx性猛交| 99热网站在线观看| 国产亚洲av片在线观看秒播厂| 国产成人av激情在线播放| 在线观看一区二区三区激情| 国产精品亚洲av一区麻豆 | 国产有黄有色有爽视频| 看免费av毛片| 国产亚洲av片在线观看秒播厂| 国产在线免费精品| 精品人妻在线不人妻| 丝袜美腿诱惑在线| 国产一区亚洲一区在线观看| 水蜜桃什么品种好| 国产精品二区激情视频| 亚洲综合色网址| 黄色 视频免费看| 久久免费观看电影| 精品少妇内射三级| 免费黄网站久久成人精品| 免费大片黄手机在线观看| 黄片无遮挡物在线观看| 亚洲国产最新在线播放| kizo精华| 日日撸夜夜添| 国产亚洲一区二区精品| 国产有黄有色有爽视频| 观看美女的网站| 国产日韩欧美在线精品| 午夜av观看不卡| 又黄又粗又硬又大视频| 午夜福利,免费看| 可以免费在线观看a视频的电影网站 | 爱豆传媒免费全集在线观看| 久久久精品区二区三区| 免费观看在线日韩| 国产视频首页在线观看| 高清在线视频一区二区三区| 国产精品成人在线| 欧美人与性动交α欧美软件| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇人妻精品综合一区二区| 日产精品乱码卡一卡2卡三| 欧美日韩av久久| 中文天堂在线官网| 久久人人爽人人片av| 亚洲激情五月婷婷啪啪| 精品国产超薄肉色丝袜足j| 亚洲人成电影观看| 久热久热在线精品观看| 日韩不卡一区二区三区视频在线| 男女午夜视频在线观看| 亚洲成国产人片在线观看| 日本91视频免费播放| av免费观看日本| 黄色 视频免费看| 五月伊人婷婷丁香| 亚洲av在线观看美女高潮| 久久久精品国产亚洲av高清涩受| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| 日韩欧美一区视频在线观看| 国产一区二区 视频在线| 久久亚洲国产成人精品v| 久久午夜综合久久蜜桃| 亚洲精品美女久久av网站| 一区二区三区四区激情视频| videosex国产| 久久国内精品自在自线图片| 久久久久久久久久久久大奶| 国产亚洲一区二区精品| 26uuu在线亚洲综合色| 亚洲图色成人| 大码成人一级视频| 日韩欧美一区视频在线观看| 人人澡人人妻人| 久久久久国产网址| 精品卡一卡二卡四卡免费| 国产熟女欧美一区二区| 中文乱码字字幕精品一区二区三区| 欧美精品人与动牲交sv欧美| 国产精品一二三区在线看| 波多野结衣一区麻豆| 999久久久国产精品视频| 菩萨蛮人人尽说江南好唐韦庄| 女人高潮潮喷娇喘18禁视频| 可以免费在线观看a视频的电影网站 | 久久精品国产亚洲av涩爱| 啦啦啦视频在线资源免费观看| 亚洲av电影在线进入| 丰满少妇做爰视频| 亚洲av日韩在线播放| 国产黄色视频一区二区在线观看| 青草久久国产| 久久精品国产亚洲av天美| 18禁裸乳无遮挡动漫免费视频| 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 在线精品无人区一区二区三| 王馨瑶露胸无遮挡在线观看| 国产成人精品无人区| 人妻少妇偷人精品九色| 只有这里有精品99| 纯流量卡能插随身wifi吗| 亚洲av男天堂| 久热这里只有精品99| 午夜老司机福利剧场| 欧美激情高清一区二区三区 | 精品一品国产午夜福利视频| 久久热在线av| 高清视频免费观看一区二区| 好男人视频免费观看在线| 国产成人精品久久久久久| 欧美日韩av久久| 久久99精品国语久久久| 纯流量卡能插随身wifi吗| 国产成人免费观看mmmm| 久热这里只有精品99| 黄片播放在线免费| 久久精品人人爽人人爽视色| 欧美 亚洲 国产 日韩一| 精品人妻偷拍中文字幕| 美女视频免费永久观看网站| 日韩一卡2卡3卡4卡2021年| 国产色婷婷99| 国产精品女同一区二区软件| 欧美最新免费一区二区三区| 9热在线视频观看99| 91国产中文字幕| 久久人人97超碰香蕉20202| 日韩三级伦理在线观看| 少妇的逼水好多| 人人妻人人添人人爽欧美一区卜| 久久鲁丝午夜福利片| av国产精品久久久久影院| 高清视频免费观看一区二区| 久久影院123| 亚洲欧美日韩另类电影网站| 国产精品久久久久久精品古装| 日韩人妻精品一区2区三区| 国产精品久久久久久精品电影小说| 欧美日韩一区二区视频在线观看视频在线| 热re99久久国产66热| 国产一区二区激情短视频 | 另类精品久久| 满18在线观看网站| a级毛片黄视频| 永久免费av网站大全| 人妻少妇偷人精品九色| 边亲边吃奶的免费视频| 亚洲欧美中文字幕日韩二区| 日本-黄色视频高清免费观看| av卡一久久| 亚洲,欧美,日韩| 欧美国产精品一级二级三级| 秋霞伦理黄片| www.熟女人妻精品国产| 日韩视频在线欧美| 可以免费在线观看a视频的电影网站 | 久久国产亚洲av麻豆专区| 亚洲久久久国产精品| 久久人人爽av亚洲精品天堂| 久久亚洲国产成人精品v| 成人影院久久| a级片在线免费高清观看视频| 亚洲精品国产色婷婷电影| 99re6热这里在线精品视频| 91久久精品国产一区二区三区| 一区二区日韩欧美中文字幕| www.精华液| 人妻 亚洲 视频| 男女高潮啪啪啪动态图| 另类亚洲欧美激情| 久久久精品94久久精品| 考比视频在线观看| 亚洲精品国产一区二区精华液| 美女午夜性视频免费| 高清av免费在线| 国产色婷婷99| 亚洲欧洲日产国产| 午夜免费观看性视频| 多毛熟女@视频| 亚洲精品久久成人aⅴ小说| 亚洲欧洲日产国产| 精品国产一区二区三区四区第35| 爱豆传媒免费全集在线观看| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久精品古装| 欧美精品一区二区免费开放| 精品国产超薄肉色丝袜足j| 只有这里有精品99| 少妇熟女欧美另类| 麻豆av在线久日| 国产精品国产三级国产专区5o| 国产一区二区三区av在线| 啦啦啦啦在线视频资源| 午夜福利一区二区在线看| 国产精品av久久久久免费| 一本久久精品| 高清黄色对白视频在线免费看| 99久久精品国产国产毛片| 国产白丝娇喘喷水9色精品| 啦啦啦在线观看免费高清www| 久久精品熟女亚洲av麻豆精品| 男女边吃奶边做爰视频| 日韩视频在线欧美| 午夜激情久久久久久久| 国产不卡av网站在线观看| 日本爱情动作片www.在线观看| 国产成人精品福利久久| 美国免费a级毛片| 亚洲欧美精品自产自拍| 欧美人与性动交α欧美软件| 满18在线观看网站| 我要看黄色一级片免费的| 寂寞人妻少妇视频99o| 国产精品99久久99久久久不卡 | 国产女主播在线喷水免费视频网站| 国产片特级美女逼逼视频| 边亲边吃奶的免费视频| 亚洲精品日本国产第一区| 日韩av在线免费看完整版不卡| 国产成人aa在线观看| 国产黄色免费在线视频| 超碰97精品在线观看| 亚洲色图 男人天堂 中文字幕| 黄网站色视频无遮挡免费观看| 国产精品偷伦视频观看了| 久久久精品区二区三区| 欧美人与性动交α欧美精品济南到 | 九九爱精品视频在线观看| av免费在线看不卡| 久久狼人影院| 欧美中文综合在线视频| 蜜桃在线观看..| 久久久精品94久久精品| 久久久久精品人妻al黑| 一区二区三区乱码不卡18| 亚洲男人天堂网一区| 亚洲精品久久午夜乱码| 日韩欧美一区视频在线观看| 亚洲综合色惰| 久久这里有精品视频免费| 久久99热这里只频精品6学生| 高清视频免费观看一区二区| 黄色毛片三级朝国网站| av有码第一页| 久久国内精品自在自线图片| 久久久亚洲精品成人影院| 人妻系列 视频| 波多野结衣一区麻豆| 飞空精品影院首页| 18禁裸乳无遮挡动漫免费视频| 蜜桃在线观看..| 免费av中文字幕在线| 欧美黄色片欧美黄色片| 色视频在线一区二区三区| 性高湖久久久久久久久免费观看| 中文乱码字字幕精品一区二区三区| 老鸭窝网址在线观看| 韩国av在线不卡| 成人黄色视频免费在线看| 亚洲美女搞黄在线观看| 有码 亚洲区| 精品酒店卫生间| 精品久久久精品久久久| 午夜福利网站1000一区二区三区| a 毛片基地| 一级,二级,三级黄色视频| 亚洲精品国产av蜜桃| 日韩av免费高清视频| 久久毛片免费看一区二区三区| 亚洲情色 制服丝袜| 久久鲁丝午夜福利片| 咕卡用的链子| 亚洲激情五月婷婷啪啪| 国产成人欧美| 中文字幕色久视频| 成人午夜精彩视频在线观看| √禁漫天堂资源中文www| 亚洲第一青青草原| 观看美女的网站| 丝袜美腿诱惑在线| 国产精品久久久久久精品电影小说| 国产精品无大码| 国产野战对白在线观看| 国产亚洲欧美精品永久|