陶紅梅
數(shù)學(xué)是思維的體操,數(shù)學(xué)教學(xué)的主要任務(wù)是發(fā)展學(xué)生的思維。那么,在我們平時的教學(xué)中如何培養(yǎng)學(xué)生的思維能力呢?從兩次不同的教學(xué)中,我找到了答案。
第一次教學(xué):
師:通過剛才的探索與驗證,你們知道3的倍數(shù)有什么特征嗎?
生1:看看這個數(shù)加起來是不是3的倍數(shù)。
師:誰來說得更清楚些?
生2:只要一個數(shù)各位上的數(shù)字之和是3的倍數(shù),那這個數(shù)就是3的倍數(shù)。
師:是的,只要一個數(shù)各位上的數(shù)字之和是3的倍數(shù),那這個數(shù)就是3的倍數(shù)。(拿出一個計數(shù)器)你能很快判斷出老師所撥的數(shù)是不是3的倍數(shù)嗎?
生(高聲齊呼):能!
師(撥52):它是3的倍數(shù)嗎?你是怎么知道的?
生3:因為5+2=7,7不是3的倍數(shù),所以52不是3的倍數(shù)。
師:好的。(撥78)那78是3的倍數(shù)嗎?
生4:7+8=15,15是3的倍數(shù),所以78是3的倍數(shù)。
師(撥159):159呢?
……
反思:數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),學(xué)生學(xué)習(xí)數(shù)學(xué)的實質(zhì)就是一個思考的過程。本次教學(xué)中,借助計數(shù)器學(xué)生都能很快做出正確的判斷,掌握了3的倍數(shù)的特征。但我總覺得這樣的教學(xué)太順暢了,在沒有波瀾的學(xué)習(xí)中,學(xué)生少了些深刻的思考和體驗,對知識的掌握只停留在表面,不夠深入、細(xì)致。這也直接導(dǎo)致學(xué)生的學(xué)習(xí)僅僅為了獲得最后的結(jié)果,忽視了更有價值的思維過程。帶著這些疑問,我又進(jìn)行了第二次教學(xué)。
第二次教學(xué):
師:通過剛才的探索與驗證,你們知道3的倍數(shù)有什么特征嗎?
生1:看看這個數(shù)加起來是不是3的倍數(shù)。
師:誰來說得更清楚些?
生2:只要一個數(shù)各位上的數(shù)字之和是3的倍數(shù),那這個數(shù)就是3的倍數(shù)。
師:是的,只要一個數(shù)各位上的數(shù)字之和是3的倍數(shù),那這個數(shù)就是3的倍數(shù)。(拿出一個計數(shù)器)你能很快判斷出老師所撥的數(shù)是不是3的倍數(shù)嗎?
生(高聲齊呼):能!
師(撥52):它是3的倍數(shù)嗎?你是怎么知道的?
生3:因為5+2=7,7不是3的倍數(shù),所以52不是3的倍數(shù)。
師:好的。(撥78)那78是3的倍數(shù)嗎?
生4:7+8=15,15是3的倍數(shù),所以78是3的倍數(shù)。
師:看來,大家都能很好地掌握3的倍數(shù)的特征了?,F(xiàn)在老師變換一下形式,請你們閉上眼睛,用耳朵來聽老師在計數(shù)器上撥出的數(shù)是不是3的倍數(shù)。(學(xué)生有些不解地閉上眼睛,教室里瞬間安靜下來)
師:注意聽聽計數(shù)器上有幾顆珠子落下的聲音,我開始撥了。(一個一個地?fù)芟铝?顆珠子,1顆放在個位上,5顆放在十位上,然后迅速地把計數(shù)器藏起來)你們可以睜開眼睛了,能根據(jù)聽到的聲音,猜出我撥的是幾嗎?它是不是3的倍數(shù)?
生5:我聽到有6顆珠子落下的聲音,是6吧,它是3的倍數(shù)。
生6:我也聽到有6顆珠子落下的聲音,不一定是6,或許是15,它也是3的倍數(shù)。
生7:還有可能是24或42,它們也是3的倍數(shù)。
生8:會不會是123呢?它也是3的倍數(shù)。
師:通過剛才的活動,你發(fā)現(xiàn)了什么?同桌互相交流。(學(xué)生交流非常熱烈,都為自己的發(fā)現(xiàn)興奮不已)
生9:這個數(shù)不論是幾位數(shù),只要各位上的數(shù)字之和是6,就是3的倍數(shù)。
……
反思:
數(shù)學(xué)活動的核心是數(shù)學(xué)思考。教師要善于將教學(xué)內(nèi)容轉(zhuǎn)化成適合學(xué)生探索的問題,并給學(xué)生獨立思考的時間和空間,這樣學(xué)生的交流和討論才能深入,才能碰撞出思維的火花。
兩次不同的教學(xué)都完成了教學(xué)任務(wù),達(dá)到了教學(xué)目的。初看起來,這兩次教學(xué)的效果沒有多大差別,但是對于學(xué)生思維能力的培養(yǎng),效果卻是完全不同的。第一次教學(xué),學(xué)生都能根據(jù)3的倍數(shù)的特征作出正確的判斷,教學(xué)任務(wù)看似完成了,但這種理解只是停留在知識的表面,學(xué)生沒有進(jìn)行深入的思考,思維含量較低。第二次教學(xué),我利用學(xué)生已掌握的知識,在前一次教學(xué)上稍作改動,增加了“猜數(shù)”這一環(huán)節(jié),學(xué)生思維活躍,課堂氣氛熱烈,使學(xué)生對3的倍數(shù)的特征的理解由模糊到清晰、由抽象到具體,幫助學(xué)生牢固地掌握所學(xué)的知識。同樣是借助計數(shù)器進(jìn)行教學(xué),效果卻迥然不同。由于第二次教學(xué)中給學(xué)生提供了廣闊的思維空間,激活了多樣化的思維方式,學(xué)生自然能抓住知識的關(guān)鍵,主動根據(jù)一個數(shù)各位上的數(shù)字之和來推想這個數(shù)是多少,再去判斷是否是3的倍數(shù)。試想一下,如果學(xué)生看著計數(shù)器來練習(xí)的話,看到的只有“51”,而閉上眼睛,學(xué)生顯然“看”到了更多,思維能力也得到了很好的發(fā)展。因此,在數(shù)學(xué)教學(xué)中,教師應(yīng)讓學(xué)生學(xué)會思考,因為教學(xué)的成功就是在學(xué)生的思維深處留下知識發(fā)生、發(fā)展的軌跡,只有這樣才可以使我們的課堂更精彩。
(責(zé)編 杜 華)endprint