• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    參與回生玉米直鏈和支鏈淀粉理化特性研究

    2014-03-01 09:55:42郭俊杰孫海波連喜軍天津商業(yè)大學(xué)理學(xué)院化學(xué)系天津004天津市農(nóng)業(yè)科學(xué)院作物研究所天津0084華南理工大學(xué)輕工與食品學(xué)院廣東廣州50640天津商業(yè)大學(xué)天津市食品生物技術(shù)重點(diǎn)實(shí)驗(yàn)室生物技術(shù)與食品科學(xué)學(xué)院天津004
    食品工業(yè)科技 2014年14期
    關(guān)鍵詞:支鏈直鏈淀粉

    郭俊杰,孫海波,李 琳,連喜軍(.天津商業(yè)大學(xué)理學(xué)院化學(xué)系,天津004;.天津市農(nóng)業(yè)科學(xué)院作物研究所,天津0084;.華南理工大學(xué)輕工與食品學(xué)院,廣東廣州50640;4.天津商業(yè)大學(xué),天津市食品生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,生物技術(shù)與食品科學(xué)學(xué)院,天津004)

    參與回生玉米直鏈和支鏈淀粉理化特性研究

    郭俊杰1,孫海波2,李 琳3,連喜軍4,*
    (1.天津商業(yè)大學(xué)理學(xué)院化學(xué)系,天津300134;2.天津市農(nóng)業(yè)科學(xué)院作物研究所,天津300384;3.華南理工大學(xué)輕工與食品學(xué)院,廣東廣州510640;4.天津商業(yè)大學(xué),天津市食品生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,生物技術(shù)與食品科學(xué)學(xué)院,天津300134)

    研究了玉米回生淀粉中直鏈和支鏈淀粉的理化特性。實(shí)驗(yàn)結(jié)果表明,玉米回生淀粉中直鏈淀粉和支鏈淀粉吸附碘后的最大吸收波長(zhǎng)分別為548.0nm和452.9、578.9nm。X-射線結(jié)果顯示二者的不同類型的衍射角(2θ)分別為17.1°、22.4°、23.9°和17.0°、19.5°、22.0°、23.8°。電鏡結(jié)果表明玉米回生淀粉支鏈淀粉具有層狀結(jié)構(gòu)。

    理化特性,回生玉米淀粉,直鏈淀粉,支鏈淀粉

    淀粉回生是淀粉凝膠化后轉(zhuǎn)變成的一種有序結(jié)構(gòu),回生玉米淀粉中直鏈淀粉占76.4%,支鏈淀粉占23.6%[1]。在回生過程中直鏈淀粉形成含40~70個(gè)葡萄糖單位的雙螺旋,而支鏈淀粉形成的雙螺旋要短一些[2-4]?;厣矸劬w中可能包含這些雙螺旋,這些雙螺旋和半結(jié)晶區(qū)被無(wú)定型區(qū)分隔開[5-8]。已有的文獻(xiàn)僅對(duì)回生的玉米直鏈和支鏈淀粉原料的性質(zhì)進(jìn)行了表征[9-13],在回生過程中并不是所有淀粉鏈和一條淀粉鏈的全部碳原子都參與氫鍵的形成,所以只有部分鏈長(zhǎng)的淀粉形成了回生淀粉晶體,這部分淀粉的理化特性對(duì)深入了解淀粉回生有一定意義,本文通過酶解除掉未參與回生的淀粉,進(jìn)而用高濃度的堿液溶解回生玉米淀粉晶體,破壞氫鍵,采用正丁醇沉淀法和乙醇沉淀法制備其中的玉米直鏈和支鏈淀粉,測(cè)定它們的最大可見吸收、紅外、X-射線和電鏡圖譜,分析了它們的理化特性。

    1 材料與方法

    1.1 材料與儀器

    玉米淀粉 市售;高溫ɑ-淀粉酶 由天津市諾奧科技發(fā)展有限公司提供;濃鹽酸、氫氧化鈉 均為分析純。

    YXQG02手提式電熱壓力蒸汽消毒器 山東安德醫(yī)療科技有限公司;電熱恒溫水浴鍋、DH-101-3BS電熱恒溫鼓風(fēng)干燥箱 天津市中環(huán)實(shí)驗(yàn)電爐有限公司;BCD-229KB海爾冰箱 青島海爾股份有限公司;LXJ-Ⅱ離心沉淀機(jī) 上海醫(yī)用分析儀器廠;FA1104N電子天平、YD202N電子天平 上海精密科學(xué)儀器有限公司;X射線衍射儀 D-500 Siemens;Bio-Rad FES135紅外分光光度計(jì),島津UV-2450/2550紫外可見分光光度計(jì),SCD 500離子濺射噴鍍儀,高分辨率掃描電鏡(SEM,LEO 1450 VP,UK)。

    1.2 實(shí)驗(yàn)方法

    1.2.1 玉米淀粉回生工藝 市售玉米淀粉稱重→溶解→糊化→高壓處理→自然冷卻→老化→離心→取沉淀→干燥→測(cè)定回生率[1]。

    將10g玉米淀粉加入100mL蒸餾水混合攪勻,在95℃水浴鍋中糊化30min,糊化徹底后在高壓鍋內(nèi)120℃中加熱30min,然后在4℃冰柜中老化24h,在錐形瓶中分別加入0.6mL α-淀粉酶(25000U/mL),在95℃水浴鍋中酶解30min,離心(3500r/min,5min),取出離心后的上層清液后加蒸餾水?dāng)嚢?,再離心(3500r/min,5min)一次,取出沉淀放入蒸發(fā)皿中,干燥稱重即為回生淀粉。

    1.2.2 玉米回生淀粉中直、支鏈淀粉制備 將1.2.1制備所得玉米回生淀粉溶于4mol/L KOH中,用6mol/L HCl調(diào)節(jié)pH為中性,向其中加入3倍體積正丁醇,離心得到玉米直鏈淀粉沉淀,上清液中加入4倍體積的乙醇,沉淀得到玉米支鏈淀粉。將所得淀粉置于干燥箱在60℃干燥至恒重。

    1.2.3 淀粉-碘復(fù)合物最大可見吸收波長(zhǎng)測(cè)定 將5mg淀粉(或回生淀粉)溶于4.0mol/L KOH溶液中,用4.0mol/L HCl調(diào)節(jié)至中性,滴入2滴碘-碘化鉀溶液(3∶1g/g),放置30min后,用島津UV-2450/2550紫外可見分光光度計(jì)掃描最大吸收波長(zhǎng)。

    1.2.4 淀粉紅外吸收測(cè)定 將5mg淀粉用研缽研成細(xì)粉,在120℃干燥箱干燥30min,與200mg KBr混合后壓片,在27℃下采用Bio-Rad FES135紅外分光光度計(jì)掃描。

    1.2.5 X-衍射測(cè)定 用銅箔和鎳箔包裹淀粉采用X-射線衍射儀掃描,掃描電流和電壓分別為27mA和50kV。掃描衍射角(2θ)從4到40,步長(zhǎng)為0.05,間隔時(shí)間為2s。

    1.2.6 淀粉電鏡觀察 用雙面膠帶將淀粉粘附于載物臺(tái)上,用SCD 500離子濺射噴鍍儀對(duì)其進(jìn)行噴金,然后用高分辨率掃描電鏡觀察淀粉粒形態(tài)與結(jié)構(gòu),并照相,電鏡加速電壓為10kV。

    2 結(jié)果與討論

    2.1 玉米回生淀粉中直鏈和支鏈淀粉可見吸收

    圖1為回生前后玉米淀粉中直鏈和支鏈淀粉吸附碘液后的可見最大吸收。由圖1可知,回生淀粉中直鏈和支鏈淀粉吸附碘后的最大吸收波長(zhǎng)分別由582nm減小到548nm,由590nm減小到578nm。根據(jù)文獻(xiàn)[14-16],只有聚合度(DP)為30~60的淀粉可以形成回生淀粉,比玉米原淀粉中聚合度為300~7000低很多[17]?;厣矸壑兄ф湹矸弁瑫r(shí)出現(xiàn)452nm吸收,說明淀粉分子中有部分短鏈生成,這部分短鏈可能是長(zhǎng)的A鏈部分與直鏈淀粉以氫鍵結(jié)合,在高濃度堿液溶解回生淀粉過程中攪拌時(shí)發(fā)生斷裂產(chǎn)生短A鏈,這部分A鏈仍能夠形成雙螺旋。

    圖1 玉米直鏈淀粉(a)、玉米支鏈淀粉(b)、回生玉米直鏈淀粉(c)、回生玉米支鏈淀粉(d)可見最大吸收波長(zhǎng)Fig.1 The maximum absorbance wavelengths of maize amylose(a),amylopectin(b),retrograded maize amylose(c)and retrograded maize amylopectin(d)

    圖2 玉米直鏈淀粉(a)、玉米支鏈淀粉(b)、回生玉米直鏈淀粉(c)、回生玉米支鏈淀粉(d)的紅外吸收Fig.2 IR spectra of maize amylose(a),retrograded maize amylose(b)and maize amylopectin(c)and retrograded maize amylopectin(d)

    2.2 玉米回生淀粉中直鏈和支鏈淀粉紅外吸收

    圖2為未回生和回生玉米直、支鏈淀粉紅外圖譜。由圖2可知,回生玉米淀粉中直、支鏈淀粉與原玉米淀粉中直、支鏈淀粉紅外圖譜區(qū)別在1630、1420和573cm-1附近,分別代表水的C=O彎曲振動(dòng)、亞甲基的C-H彎曲振動(dòng)和淀粉C-C的骨架振動(dòng)[18]。圖2中b和d中水的C=O彎曲振動(dòng)和亞甲基的C-H彎曲振動(dòng)向高頻移動(dòng),這是由于回生玉米直、支鏈淀粉鏈長(zhǎng)縮短,束縛這兩種振動(dòng)的分子鍵減弱導(dǎo)致。其中的C-C骨架振動(dòng)減弱或消失可能是淀粉分子鏈減小后分子間氫鍵、范德華力等次級(jí)鍵加強(qiáng)所致?;厣ф湹矸鄞渭?jí)鍵作用比回生直鏈淀粉強(qiáng)。另外回生直、支鏈淀粉中的C-O-C彎曲振動(dòng)(1022cm-1附近)向低頻方向移動(dòng),說明此振動(dòng)減弱。這是由于回生直、支鏈淀粉鏈長(zhǎng)比原淀粉縮短很多,短鏈不容易發(fā)生扭曲,從而振動(dòng)減弱[19]。

    2.3 玉米回生淀粉中直鏈和支鏈淀粉X-射線衍射

    圖3為未回生和回生玉米直、支鏈淀粉X-射線衍射圖譜。根據(jù)參考文獻(xiàn)[9,20-22],回生淀粉晶型屬于B型或B+V型,衍射角2θ為6°、17°、19°、23°、25°。由圖3中a可知,玉米原淀粉中直鏈淀粉沒有衍射峰,屬于無(wú)結(jié)晶淀粉。原玉米支鏈淀粉衍射角2θ為16.8°、19.2°、21.1°?;厣衩椎矸壑兄辨湹矸垩苌浣?θ為17.1°、22.4°、23.9°,回生玉米淀粉中支鏈淀粉衍射角2θ為17.0°、19.5°、22.0°、23.8°。這些衍射角與玉米原淀粉的不同[23],不屬于已知的A、B、C、V型(15°、17°、23°為A型;5°、17°、22°、24°為B型;5°、15°、17°、23°為C型;17°、20°、24°為V型[24])。玉米直、支鏈淀粉在回生過程的相互作用可能影響回生淀粉的晶體形態(tài),這證實(shí)了文獻(xiàn)的推測(cè)[25]。根據(jù)文獻(xiàn)報(bào)道[26-27],衍射峰2θ= 20°是直鏈淀粉與脂肪結(jié)合物產(chǎn)生的,所以圖3中c和d中支鏈淀粉的2θ=19.5°處衍射峰可能是支鏈淀粉A鏈和脂肪的結(jié)合物產(chǎn)生的,由此分析玉米淀粉中脂肪主要與支鏈淀粉結(jié)合。

    圖3 玉米直鏈淀粉(a)、玉米支鏈淀粉(b)、回生玉米直鏈淀粉(c)、回生支鏈淀粉(d)的X-射線衍射圖Fig.3 X-ray diffraction of maize amylose(a),retrograded maize amylose(b)and maize amylopectin(c)and retrograded maize amylopectin(d)

    2.4 玉米回生淀粉中直鏈和支鏈淀粉的電鏡掃描圖

    圖4為玉米回生淀粉中直鏈淀粉(a)和支鏈淀粉(b)的電鏡掃描圖。圖4中的支鏈淀粉具有層狀結(jié)構(gòu),這與文獻(xiàn)報(bào)道回生大米淀粉結(jié)構(gòu)相似[28]。由此推測(cè),回生淀粉中的層狀結(jié)構(gòu)主要由支鏈淀粉產(chǎn)生,支鏈淀粉在回生過程可能起到模板作用,直鏈淀粉沿著支鏈淀粉的層狀結(jié)構(gòu)排列成規(guī)則形狀,生成部分區(qū)域的有規(guī)則結(jié)晶。由于支鏈淀粉分子量遠(yuǎn)遠(yuǎn)大于直鏈淀粉,所以支鏈淀粉參與形成的回生淀粉可能抵抗淀粉酶水解能力更強(qiáng),開發(fā)含大量支鏈淀粉的回生抗性淀粉更具有現(xiàn)實(shí)意義。

    圖4 回生玉米淀粉中直鏈淀粉(a)和支鏈淀粉(b)掃描電鏡圖Fig.4 SEM of amylose(a)and amylopectin(b)fractions from retrograded maize starch

    3 結(jié)論

    實(shí)驗(yàn)結(jié)果表明,玉米回生淀粉中直、支鏈淀粉的鏈長(zhǎng)比原淀粉中的鏈長(zhǎng)大大縮短,分子內(nèi)和分子間作用力減弱。干燥過程回生玉米淀粉中直、支鏈淀粉形成新類型的結(jié)晶,支鏈淀粉是回生淀粉出現(xiàn)層狀結(jié)構(gòu)的主因。

    [1]Lian Xijun,Zhao Shuyi,Liu Qinsheng,et al.A photographic approach to the possible mechanism of retrogradation of sweet potato starch[J].International Journal of Biological Macromolecules,2011,48(1):125-128.

    [2]Jane Jay-Lin,Robyt John F.Structure studies of amylose-V complexes and retrograded amylose by action of alpha amylases,and a new method for preparing amylodextrins[J].Carbohydrate Research,1984,132(1):105-118.

    [3]V M Leloup,P Colonna,Stephen G Ring,et al.Microstructure of amylose gels[J].Carbohydrate Polymer,1992,18(3):189-197.

    [4]Liu Hua,Arntfield,Susan D Holley,et al.Amylose lipid complex formation in acetylated pea starch-lipid systems[J]. Cereal Chemistry,1997,74(2):159-162.

    [5]Bart Heyman,F(xiàn)ilip Van Bockstaele,Davy Van de Walle,et al.Long-term stability of waxy maize starch/xanthan gum mixtures prepared at a temperature within the gelatinization range[J].Food Research International,2014,55:229-238.

    [6]Xu Jin,F(xiàn)an Xuerong,Ning Yawei,et al.Effect of spring dextrin on retrogradation of wheat and corn starch gels[J].Food Hydrocolloids,2013,33(2):361-367.

    [7]P Ambigaipalan,R Hoover,E Donner,et al.Retrogradation characteristics of pulse starches[J].Food Research International,2013,54(1):203-212.

    [8]Bart Heyman,Winnok H De Vos,F(xiàn)rédéric Depypere,et al.Guar and xanthan gum differentially affect shearinduced breakdown of native waxy maize starch[J].Food Hydrocolloids,2014,35:546-556.

    [9]Zhang Binjia,Chen Ling,Zhao Yue,et al.Structure and enzymatic resistivity of debranched high temperature-pressure treated high-amylose corn starch[J].Journal of Cereal Science,2013,57(3):348-355.

    [10]R Luckett Curtis,Wang Ya-Jane.Effect of β-amylolysis on the resistant starch formation of debranched corn starches[J]. Journal of Agricultural and Food Chemistry,2012,60(18):4751-4757.

    [11]A Flores-Morales,M Jiménez-Estrada,R Mora-Escobedo. Determination of the structural changes by FT-IR,Raman,and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas[J].Carbohydrate Polymers,2012,87(1):61-68.

    [12]Singh Harinder,Lin Jheng-Hua,Huang Wei-Hsiang,et al. Influenceofamylopectinstructureonrheologicaland retrogradation properties of waxy rice starches[J].Journal of Cereal Science,2012,56(2):367-373.

    [13]Xu Jin,Zhao Wenxiu,Ning Yawei,et al.Comparative study of spring dextrin impact on amylose retrogradation[J].Journal of Agricultural and Food Chemistry,2012,60(19):4970-4976.

    [14]Singh Harinder,Lin Jheng-Hua,Huang Wei-Hsiang,et al. Influence of amylopectin structure on rheological and retrogradation properties of waxy rice starches[J].Journal of Cereal Science,2012,56(2):367-373.

    [15]J Silverio,H Fredriksson,R Andersson,et al.The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution[J]. Carbohydrate Polymers,2000,42(2):175-184.

    [16]PL Russell,CS Berry,P Greenwell.Characterisation of resistant starch from wheat and maize[J].Journal of Cereal Science,1989,9(1):1-15.

    [17]J P Mua,D S Jackson.Relationships between functional attributes and molecular Structures of amylose and amylopectin fractions from corn starch[J].Journal of Agricultural and Food Chemistry,1997,45(10):3848-3854.

    [18]Huang Zuqiang,Lu Jianping,Li Xuanhai,et al.Effect of mechanical activation on physico-chemicalpropertiesand structure of cassava starch[J].Carbohydrate Polymers,2007,68(1):128-135.

    [19]Lian Xijun,Zhang Kunsheng,Liu Qingfeng,et al.A possible structure of retrograded maize starch speculated by UV and IR spectrum of it and its components[J].International Journal of Biological Macromolecules,2012,50(1):119-124.

    [20]Michael J Gidley,Paul V Bulpin.Crystallisation of maltooligosaccharides as models of the crystalline forms of starch:minimum chain-length requirement for the formation of double helices[J].Carbohydrate Research,1987,161(2):291-300.

    [21]A C Freire,C C Fertig,F(xiàn) Podczeck,et al.Starch-based coatings for colon-specific drug delivery.Part I:The influence of heat treatment on the physico-chemical properties of high amylose maize starches[J].European Journal of Pharmaceutics and Biopharmaceutics,2009,72(3):574-586.

    [22]Xu Jin,Zhao Wenxiu,Ning Yawei,et al.Comparative study of spring dextrin impact on amylose retrogradation[J].Journal of Agricultural and Food Chemistry,2012,60(19):4970-4976.

    [23]H Jovin,S Sathaporn,S M Paul,et al.Kernel composition,starch structure,and enzyme digestibility of opaque-2 maize and quality protein maize[J].JournalofAgriculturaland Food Chemistry,2009,57(5):2049-2055.

    [24]Wei Cunxu,Xu Bin,Qin Fengling,et al.C-Type Starch from high-Amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme[J].Journal of Agricultural and Food Chemistry,2010,58(12):7383-7388.

    [25]? Rindlav-Westling,M Stading,Paul Gatenholm.Crystallinity and Morphology in films of starch,amylose and amylopectin blends[J].Biomacromolecules,2002,3(1):84-91.

    [26]D Sievert,Z Czuchajowska,Y Pomeranz.Enzyme-resistant starch III.X-ray diffraction of autoclaved amylomaize starch and enzyme-resistant starch residues[J].Cereal Chemistry,1991,68(1):86-91.

    [27]M Sae-Hun,S Malshick.Mild hydrolysis of resistant starch from maize[J].Food Chemistry,2006,96(1):115-121.

    [28]Zhang Huanxin,Jin Zhengyu.Preparation of products rich in resistant starch from maize starch by an enzymatic method[J]. Carbohydrate Polymers,2011,86(4):1610-1614.

    Study on physicochemical characteristics of amylose and amylopectin fractions from retrograded maize starch

    GUO Jun-jie1,SUN Hai-bo2,LI Lin3,LIAN Xi-jun4,*
    (1.School of Science,Tianjin University of Commerce,Tianjin 300134,China;2.Tianjin Crops Research Institude,Tianjin Academy of Agricultural Science,Tianjin 300384,China;3.College of Light Industry and Food Sciences,South China University of Technology,Guangzhou 510640,China;4.The Tianjin Key Laboratory of Food Biotechnology,Department of Biological technology and Food Science,Tianjin University of Commerce,Tianjin 300134,China)

    Physicochemical characteristics of amylose and amylopectin fractions from retrograded maize starch were investigated by visible spectra,IR spectra,X-ray diffraction and SEM.The maximum visible absorbent wavelengths of maize amylose and amylopectin with iodine affinity were 548.0nm and 452.9nm,578.9nm respectively.X-ray diffraction showed diffraction peaks for amylose and amylopectin fractions of retrograded maize starch were at 2θ of 17.1°,22.4°,23.9°and 17.0°,19.5°,22.0°,23.8°respectively.Interaction between amylose and amylopectin had great effects on the diffraction pattern of maize starch.More lipids probably combined with amylopectin,not with amylose.The results of SEM showed that some kinds of layered structure existed in maize amylopectin fraction of retrograded maize starch.

    physicochemical properties;retrograded maize starch;amylose;amylopectin

    TS231

    A

    1002-0306(2014)14-0091-04

    10.13386/j.issn1002-0306.2014.14.011

    2013-11-06 *通訊聯(lián)系人

    郭俊杰(1977-),女,博士,研究方向:食品科學(xué)。

    國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(31130042);國(guó)家自然科學(xué)基金項(xiàng)目(31271935,31260396)。

    猜你喜歡
    支鏈直鏈淀粉
    從人工合成淀粉說開去
    異淀粉酶法高直鏈銀杏淀粉的制備
    MMT/淀粉-g-PAA的制備及其對(duì)鉻(Ⅵ)的吸附
    均相催化六氫苯酐與C10直鏈醇制備環(huán)保增塑劑及其性能
    蕉藕淀粉與薯類淀粉特性對(duì)比研究
    臭氧護(hù)理皮支鏈皮瓣200例觀察分析
    卵內(nèi)注射支鏈氨基酸對(duì)雞胚胎生長(zhǎng)發(fā)育和孵化時(shí)間的影響
    飼料博覽(2015年4期)2015-04-05 10:34:14
    3UPS-S并聯(lián)機(jī)構(gòu)單支鏈驅(qū)動(dòng)奇異分析
    直鏈淀粉磷脂復(fù)合物的制備及表征
    芭蕉芋支鏈淀粉的結(jié)構(gòu)表征與流變學(xué)特性分析
    嘉荫县| 吉隆县| 威海市| 日喀则市| 赤峰市| 志丹县| 土默特左旗| 汨罗市| 海城市| 五河县| 济宁市| 崇州市| 崇礼县| 达尔| 衡东县| 布拖县| 陕西省| 高邑县| 沙雅县| 华阴市| 乐业县| 武鸣县| 中宁县| 昭通市| 黄骅市| 拉萨市| 高州市| 涟源市| 巩义市| 阿勒泰市| 临高县| 长宁县| 永嘉县| 墨脱县| 阳城县| 邻水| 曲麻莱县| 万源市| 图片| 武陟县| 遵化市|