王芬華,朱賢東,苗 慧
(1.安徽工程大學(xué)生物化學(xué)工程學(xué)院,安徽蕪湖 241000;2.阜陽師范學(xué)院化學(xué)化工學(xué)院,安徽阜陽 236032)
吡咯是一種重要的含氮五元雜環(huán)化合物,其衍生物廣泛應(yīng)用于聚合物、分子光學(xué)、電子學(xué)等領(lǐng)域,尤其在生命科學(xué)領(lǐng)域中大量含有吡咯環(huán)的天然物質(zhì),對(duì)生命過程起著不可替代的重要作用,如:亞鐵血紅素、葉綠素、膽色素等[1-2].吡咯衍生物的合成方法眾多,Paal-Knorr縮合法是最方便、最有效及使用范圍最廣的方法[3-5].綜合近年來的研究報(bào)道,新催化劑和新方法主要包括使用質(zhì)子酸、路易斯酸催化劑[6-9]及非均相催化劑[10]等,此外,微波輔助的合成方法[11]以及環(huán)境友好的離子液體[12]也被應(yīng)用于該反應(yīng).
本文在不需要任何催化劑的條件下,在反應(yīng)裝置中增加一分水器,將反應(yīng)中生成水從體系中移走,從而促進(jìn)了平衡向正方向移動(dòng),使多種伯胺與2,5-己二酮之間的Paal-Knorr縮合反應(yīng)能夠高產(chǎn)率地合成出多種吡咯衍生物.該方法不僅操作簡(jiǎn)便,且不需要任何催化劑,反應(yīng)終點(diǎn)容易判斷,產(chǎn)物容易分離純化,是一種綠色的合成過程.
熔點(diǎn)測(cè)定使用X-4型數(shù)字熔點(diǎn)儀;NMR使用Bruker-AV 300核磁共振儀(300 MHz for1H NMR;75.0 MHz for13C NMR)測(cè)定(用CDCl3作溶劑,TMS作內(nèi)標(biāo));HRMS使用Micromass GCT-MS測(cè)定,單晶衍射采用SMART APEXⅡ單晶X-射線衍射儀.所用試劑均為市售分析純,未經(jīng)處理,直接使用.
選取大小適當(dāng)?shù)木w,用X-Ray衍射法確定其結(jié)構(gòu),在SMART CCD衍射儀上收集衍射數(shù)據(jù).采用石墨單色的Mo-Kα射線,λ=0.710 73?,T=293(2)K,φ和ω掃描技術(shù),全部強(qiáng)度數(shù)據(jù)經(jīng)Lp因子校正,應(yīng)用SHELXTL-5.10程序,晶體結(jié)構(gòu)采用重原子法解出,經(jīng)多輪Fourier變換后得到全部非氫原子坐標(biāo)參數(shù),理論加氫法獲得所有氫原子坐標(biāo),對(duì)所有非氫原子經(jīng)全矩陣最小二乘法修正各向異性溫度因子.化合物k,m的結(jié)構(gòu)數(shù)據(jù)存于英國劍橋數(shù)據(jù)中心,CCDC號(hào)分別為967200和967201.晶體數(shù)據(jù)可以從劍橋晶體數(shù)據(jù)中心免費(fèi)獲得.
以產(chǎn)物a的合成方法為例,在一裝有分水器的的圓底燒瓶中,加入2,5-己二酮(5.7 g,0.05 mol)和苯胺(4.6 g,0.05 mol)溶于50 mL甲苯中于100℃下攪拌回流,根據(jù)分水器的量判斷反應(yīng)的完成程度,反應(yīng)結(jié)束后,減壓除去溶劑,得到淺黃色固體,粗產(chǎn)品用己烷和乙酸乙酯(1∶1)重結(jié)晶,得到白色晶體(7.8 g,92%).
a:白色固體,m.p.51~52℃(lit.[13]51~52℃);1H NMR(300 MHz,CDCl3)δ:7.47~7.43(m,3H,C6H5),7.24~7.21(m,2H,C6H5),5.92(s,2H,pyr),2.05(d,J=1.2 Hz,6H,CH3);13C NMR(75.0 MHz,CDCl3)δ:139.2,129.1,128.8,128.4,127.7,105.8,13.1.
黃色油狀液體[13],1H NMR(300 MHz,CDCl3)δ:5.76(s,2 H,pyr),3.72(t,J=7.5 Hz,2H,CH2),2.22(s,6H,CH3),1.63~1.55(m,2H,CH2),1.40~1.35(m,2H,CH2),0.95(t,J=7.2 Hz,2H,CH3);13C NMR(75 MHz,CDCl3)δ:127.4,105.3,43.6,33.5,20.4,14.1,12.7.
b:淺黃色固體,m.p.57~59℃(lit.[14]59~61℃);1H NMR(300 MHz,CDCl3)δ:7.38~7.02(m,4 H,C6H4),5.90(s,2 H,pyr),3.77(s,3 H,CH3),1.96(s,6H,CH3);13C NMR(75.0 MHz,CDCl3)δ:137.2,134.3,130.7,130.3,129.7,128.7,127.7,105.9,12.6.
c:黃色油狀液體;1H NMR(300 MHz,CDCl3)δ:7.56~7.30(m,4 H,C6H4),5.94(s,2H,pyr),1.97(s,6H,CH3);13C NMR(75.0 MHz,CDCl3)δ:156.0,130.3,129.5,129.1,127.6,120.7,112.1,105.3,55.7,12.6.HRMS(ESI)Calcd.for C12H13Cl N2(M+H+)220.0767,F(xiàn)ound:220.0761.
d:白色固體,m.p.48~49℃(lit.[13]52~53℃);1H NMR(300 MHz,CDCl3)δ:7.398~7.11(m,4H,C6H4),5.89(s,2 H,pyr),2.03(s,6 H,CH3);13C NMR(75.0 MHz,CDCl3)δ:140.4,134.7,130.1,129.0,128.6,128.0,126.7,106.4,13.1.
e:淺黃色固體,m.p.57~58℃(lit.[14]60~61℃);1H NMR(300 MHz,CDCl3)δ:7.13(d,J=8.7 Hz,2 H,C6H5),6.96(d,J=8.7 Hz,2 H,C6H5),5.88(s,2 H,pyr),3.85(s,3 H,CH3),2.01(s,6 H,CH3);13C NMR(75.0 MHz,CDCl3)δ:158.9,131.8,129.3,128.9,114.3,105.4,55.4,13.0.
f:白色固體,m.p.45~47℃(lit.[14]49~50℃);1H NMR(300 MHz,CDCl3)δ:7.43(d,J=9.0 Hz,2 H,C6H5),7.16(d,J=9.0 Hz,2H,C6H5),5.90(s,2 H,pyr),2.02(s,6 H,CH3);13C NMR(75.0 MHz,CDCl3)δ:137.9,133.6,129.6,129.0,128.7,106.1,13.0.
g:淺黃色固體,m.p.55~57℃(lit.[15]52~53℃);1H NMR(300 MHz,CDCl3)δ:7.73(d,J=8.4 Hz,2H,C6H5),7.33(d,J=8.4 Hz,2H,C6H5),5.92(s,2H,pyr),2.04(s,6H,CH3);13C NMR(75.0 MHz,CDCl3)δ:142.3,128.7,126.4,126.3,126.3,126.2,106.7,13.0.
h:白色固體,m.p.108~109℃;1H NMR(300 MHz,CDCl3)δ:8.05(br,1 H,NH),7.58(d,J=9.0 Hz,2 H,Ind),7.38(d,J=7.8 Hz,2 H,Ind),7.25~7.15(m,2 H,Ind),6.91(s,1 H,Ind),5.80(s,2H,pyr),4.02(t,J=9.0 Hz,2 H,CH2),3.06(t,J=9.0 Hz,2 H,CH2),2.22(s,6 H,CH3);13C NMR(75.0 MHz,CDCl3)δ:136.4,127.8,127.4,122.4,122.2,119.7,118.7,112.6,111.6,105.5,44.6,27.1,12.8.HRMS(ESI)Calcd.for C15H17N2(M+H+)225.139 2,F(xiàn)ound:225.139 2.C15H16N2.
i:黃色油狀液體[15],1H NMR(300 MHz,CDCl3)δ:5.76(s,2H,pyr),3.72(t,J=7.5 Hz,2H,CH2),2.22(s,6H,CH3),1.63~1.55(m,2H,CH2),1.40~1.35(m,2H,CH2),0.95(t,J=7.2 Hz,2H,CH3);13C NMR(75 MHz,CDCl3)δ:127.4,105.3,43.6,33.5,20.4,14.1,12.7.
j:淺黃色固體,m.p.74~76℃;1H NMR(300 MHz,CDCl3)δ:7.19~7.10(m,2H,C6H5),6.67~6.55(m,1H,C6H5),6.53~6.52(m,2 H,C6H5),5.73(s,2 H,pyr),3.90(t,J=6.6 Hz,2 H,CH2),3.33(t,J=6.6 Hz,2H,CH2),2.14(s,6H,CH3);13C NMR(75 MHz,CDCl3)δ:147.5,129.6,127.9,117.8,112.7,105.7,44.0,42.9,12.8.HRMS(ESI)Calcd.for C14H19N2(M+H+)215.154 8,F(xiàn)ound:215.154 9.
k:淺黃色固體,m.p.136~137℃(lit.[14]未報(bào)道);1H NMR(300 MHz,CDCl3)δ:5.78(s,4H,pyr),3.95(m,4 H,CH2),2.05(d,J=11.5 Hz,12H,CH3);13C NMR(75.0 MHz,CDCl3)δ:127.8,106.0,44.1,12.1.
l:淺黃色固體,m.p.67~68℃;1H NMR(300 MHz,CDCl3)δ:5.78(s,4 H,pyr),3.75(t,J=7.8 Hz,4H,CH2),2.18(s,12H,CH3),2.02~1.87(m,CH2);13C NMR(75.0 MHz,CDCl3)δ:127.2,105.7,440.7,32.4,12.6.HRMS(ESI)Calcd.for C15H23N2(M+H+)231.186 1,F(xiàn)ound:231.185 8.
m:淺黃色固體,m.p.76~78℃;1H NMR(300 MHz,CDCl3)δ:5.76(s,4H,pyr),3.84(m,4H,CH2,pyr),2.80(m,4 H,CH2NCH2),2.22(s,12 H,CH3);13C NMR(75.0 MHz,CDCl3)δ:127.9,105.6,50.3,44.0,12.9.m/z:calcd for C16H26N3(M+H+)260.212 6;Found:260.212 6.
底物普適性研究結(jié)果如表1所示.從實(shí)驗(yàn)結(jié)果可以看出,各種結(jié)構(gòu)的胺都可以與2,5-己二酮順利地反應(yīng)合成吡咯類衍生物.當(dāng)反應(yīng)底物為芳香胺時(shí),且取代基位于氨基的間位和對(duì)位,且電子效應(yīng)對(duì)反應(yīng)的影響較小,不管是供電子基還是吸電子基都能得到較高產(chǎn)率的產(chǎn)物.然而芳環(huán)上鄰位有取代基時(shí),不論是吸電子的(-Cl),還是供電子基(-OCH3),只能得到中等產(chǎn)率的產(chǎn)物,且反應(yīng)時(shí)間較長(zhǎng).這說明對(duì)此反應(yīng)的影響主要是空間效應(yīng),當(dāng)鄰位有取代基時(shí),由于位阻效應(yīng),影響了反應(yīng)的進(jìn)行.當(dāng)?shù)孜餅橹咀宓陌窌r(shí)都能高產(chǎn)率得到產(chǎn)物,如表1中8~13所示.
表1 胺類與2,5-己二酮的Paal-Knorr縮合反應(yīng)
單晶X-射線衍射分析表明,化合物k的單晶屬于正交晶系,Pbca空間群;化合物m的單晶屬于單斜晶系,P2(1)/n空間群.單晶衍射數(shù)據(jù)如表2所示.分子結(jié)構(gòu)圖如圖1所示.由圖1可知,化合物k以連接吡咯環(huán)的亞乙基中心成中心對(duì)稱結(jié)構(gòu),兩個(gè)吡咯環(huán)完全相互平行,空間取向處于反式.化合物m兩個(gè)吡咯環(huán)接近垂直,二面角為76.37°.兩化合物分子間均以微弱的π-π相互作用和范德華力形成三維晶胞堆積圖.
圖1 化合物k和m的分子結(jié)構(gòu)圖,氫原子省略
在無催化劑的條件下,利用分水器裝置分出反應(yīng)體系中生成的水,并根據(jù)生成水的量來判斷反應(yīng)的終點(diǎn),合成了一系列單吡咯和雙吡咯類衍生物.通過1H NMR、13C NMR和質(zhì)譜對(duì)所有化合物的結(jié)構(gòu)進(jìn)行了表征,并用單晶X-射線衍射法測(cè)定了化合物k和m的晶體結(jié)構(gòu).該合成方法與其他方法相比較,具有反應(yīng)過程簡(jiǎn)單、產(chǎn)率高、產(chǎn)物易提純等優(yōu)點(diǎn),為該類化合物的合成提供了一種簡(jiǎn)單、有效、快速的合成方法.
表2 化合物k和m的單晶衍射數(shù)據(jù)
[1] Fürstner A,Szillat H,Gabor B,et al.Platinum and acid-catalyzed enyne metathesis reactions:mechanistic studies and applications to the syntheses of streptorubin B and metacycloprodigiosin[J].J.Am.Chem.Soc.,1998,120(33):8 305-8 314.
[2] Fürstner A.Chemistry and biology of roseophilin and the prodigiosin alkaloids:a survey of the last 2500 years[J].Angew.Chem.Int.Ed.,2003,42(31):3 582-3 603.
[3] Rao H S P,Jothilingam S.One-pot synthesis of pyrrole derivatives from(E)-1,4-diaryl-2-butene-1,4-diones[J].Tetrahedron Lett.,2001,42(37):6 595-6 597.
[4] Biava M,Porretta G C,Poce G,et al.Antimycobacterial Agents.Novel Diarylpyrrole Derivatives of BM212 Endowed with High Activity toward Mycobacterium tuberculosis and Low Cytotoxicity[J].J.Med.Chem.,2006,49(16):4 946-4 952.
[5] Vooturi S K,Cheung C M,Rybak M J,et al.Design,synthesis,and structure-activity relationships of benzophenonebased tetraamides as novel antibacterial agents[J].J.Med.Chem.,2009,52(16):5 020-5 031.
[6] Rahmatpour A.Zr OCl2·8H2O as a highly efficient,eco-friendly and recyclable lewis acid catalyst for one-pot synthesis of N-substituted pyrroles under solvent-free conditions at room temperature[J].Appl Organomet.Chem.,2011,25(8):585-590.
[7] Abid M,Spaeth A,T?r?k B.Solvent-free solid acid-catalyzed electrophilic annelations:a new green approach for the synthesis of substituted five-membered N-h(huán)eterocycles[J].Adv.Synth.Catal.,2006,348(15):2 191-2 196.
[8] Teimouri A,Chermahini A N.One-pot green synthesis of pyrrole derivatives catalyzed by nano sulfated zirconia as a solid acid catalyst[J].Chin.J.Chem.,2012,30(2):372-376.
[9] Yuan S Z,Lin J,Xu L.A convenient synthesis of pyrroles catalyzed by acidic resin under solvent-free condition[J].Chin.Chem.Lett.,2010,21(6):664-668.
[10]Devi A,Shallu,Sharma mL,et al.Paal-Knorr pyrrole synthesis using recyclable amberlite IR 120 acidic resin:a green approach[J].Synth.Commun.,2012,42(10):1 480-1 488.
[11]Minetto G,Raveglia L F,Taddei M.Microwave-assisted paal-knorr reaction.a rapid approach to substituted pyrroles and furans[J].Org.Lett.,2004,6(3):389-392.
[12]Wang B,Gu Y L,Luo C,et al.Pyrrole synthesis in ionic liquids by Paal-Knorr condensation under mild conditions[J].Tetrahedron Lett.,2004,45(17):3 417-3 419.
[13]朱新海,陳功,許遵樂,等.甲酸催化的室溫?zé)o溶劑條件下利用Paal-Knorr反應(yīng)合成吡咯衍生物的方法[J].有機(jī)化學(xué),2008,28(1):115-119.
[14]Handy S,Lavender K.Organic synthesis in deep eutectic solvents:Paal-Knorr reactions[J].Tetrahedron lett.,2013,54(33):4 377-4 379.
[15]Duan F J,Ding J C,Deng,et al.An approach to the Paal-Knorr pyrroles synthesis in the presence ofβ-cyclodextrin in aqueous media[J].Chin.Chem.Lett.,2013,24:793-796.