胡憲文,蔣玲玲,劉曉芬,吳 云,李 云,張 野
線粒體KATP通道介導(dǎo)遠(yuǎn)端缺血預(yù)處理對(duì)嚴(yán)重失血性休克大鼠在體心臟功能的保護(hù)作用
胡憲文,蔣玲玲,劉曉芬,吳 云,李 云,張 野
目的觀察遠(yuǎn)端缺血預(yù)處理(RIPC)對(duì)嚴(yán)重失血性休克大鼠在體心臟功能的保護(hù)作用及其機(jī)制。方法32只雄性SD大鼠,體重300~350 g,隨機(jī)分成4組:對(duì)照組(C組)、失血性休克組(S組)、RIPC組(R組)、RIPC+線粒體KATP通道阻滯劑組(B組),每組8只。采用經(jīng)大鼠頸動(dòng)脈60 min內(nèi)放血占總血容量50%,觀察30 min后經(jīng)頸靜脈30 min回輸釋放的血液建立嚴(yán)重失血性休克和復(fù)蘇模型。在放血前雙側(cè)后肢以止血帶捆綁阻斷血流5 min,再灌注5 min,反復(fù)4個(gè)循環(huán)形成RIPC。B組在RIPC前15 min經(jīng)頸靜脈注入線粒體KATP通道阻滯劑(5-羥基葵酸鹽)10 mg/kg。C組所有手術(shù)操作同S組,但不放血。持續(xù)監(jiān)測(cè)心電圖、平均動(dòng)脈壓(MAP)到血液回輸后2 h,在放血前、放血后、輸血前、輸血后即刻、輸血后1、2 h用彩色超聲儀測(cè)量心輸出量(CO)、左室射血分?jǐn)?shù)(LVEF)、左室短軸縮短率(LVFS)、心肌做功指數(shù)(MPI)、左室后壁厚度(LVPWD)。結(jié)果在失血和休克階段,與C組比較,S組、B組和R組MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01);血液回輸后,與C組比較,R組MAP、CO、LVEF、LVFS、MPI、LVPWD差異無(wú)統(tǒng)計(jì)學(xué)意義;與R組比較,S組和B組MAP、CO、LVEF、LVFS明顯降低(P<0.01),MPI、LVPWD明顯升高(P<0.01);S組和B組各心臟功能指標(biāo)差異無(wú)統(tǒng)計(jì)學(xué)意義。結(jié)論RIPC明顯保護(hù)嚴(yán)重失血性休克大鼠在體心臟功能,其保護(hù)作用可能與線粒體KATP通道激活有關(guān)。
遠(yuǎn)端缺血預(yù)處理;失血性休克;心功能;線粒體KATP通道
術(shù)中出血是大手術(shù)尤其選擇性血管外科手術(shù)的常見(jiàn)并發(fā)癥,嚴(yán)重術(shù)中出血會(huì)導(dǎo)致失血性休克,使圍術(shù)期死亡率增加到5%~8%[1]。盡管液體復(fù)蘇是治療失血性休克的主要方法,但失血性休克和復(fù)蘇可導(dǎo)致心肌的缺血再灌注損傷,直接影響心臟功能[2]。有報(bào)道[3-6]顯示遠(yuǎn)端缺血預(yù)處理(remote ischemic preconditioning,RIPC)對(duì)缺血再灌注心肌具有保護(hù)作用,然而RIPC是否能夠減輕嚴(yán)重失血性休克與復(fù)蘇導(dǎo)致的心肌缺血再灌注損傷,從而維護(hù)心臟功能,目前國(guó)內(nèi)外尚無(wú)報(bào)道。該研究旨在觀察RIPC對(duì)在體大鼠失血性休克與復(fù)蘇后心臟功能的影響,為臨床應(yīng)用提供參考依據(jù)。
1.1 藥品和儀器
戊巴比妥(Virbac AH Inc,批號(hào):E0149);5-羥基葵酸鹽(美國(guó)Sigma公司,批號(hào)SLBC7951V);抽血輸血雙向全自動(dòng)輸液泵(Genie TouchTM,美國(guó));動(dòng)物呼氣末CO2監(jiān)測(cè)儀(End-Til IL 200,美國(guó)Midmark-Cardell公司);動(dòng)物血壓心電圖監(jiān)護(hù)儀(Series 7010 monitor,美國(guó)Marquette公司)。
1.2 實(shí)驗(yàn)動(dòng)物
健康成年雄性SD大鼠32只,清潔級(jí),6月齡,體重300~350 g,由Harlan實(shí)驗(yàn)中心提供,大鼠自由攝食進(jìn)水,在室溫(22±1)℃,相對(duì)濕度(50±5)%,光照/黑夜周期12 h/12 h環(huán)境中適應(yīng)飼養(yǎng)1周后實(shí)驗(yàn)。術(shù)前12 h禁食。
1.3 動(dòng)物分組
32只大鼠隨機(jī)分為4組(每組8只):對(duì)照組(C組)、失血性休克組(S組)、RIPC組(R組)、RIPC+線粒體KATP通道阻滯劑組(B組)。經(jīng)大鼠左頸動(dòng)脈60 min內(nèi)放出血占總血容量50%,觀察30 min后經(jīng)右頸靜脈30 min內(nèi)回輸放出的血液建立嚴(yán)重失血性休克與復(fù)蘇模型[7]。C組所有手術(shù)操作同S組,但不放血。R組和B組在放血開(kāi)始前雙側(cè)后肢以止血帶捆綁阻斷血流5 min,松開(kāi)5 min,反復(fù)4次,每次捆綁以雙后肢皮膚顏色改變及超聲多普勒在捆綁下方聽(tīng)不到動(dòng)脈波動(dòng)為準(zhǔn)[8]。B組在RIPC前15 min經(jīng)頸靜脈注入線粒體KATP通道阻滯劑(5-羥基葵酸鹽)10 mg/kg[9]。
1.4 失血性休克和復(fù)蘇模型制作
大鼠麻醉前禁食8 h,自由飲水。腹腔內(nèi)注射戊巴比妥鈉50 mg/kg麻醉后仰臥位固定在實(shí)驗(yàn)臺(tái)上,氣管內(nèi)插管,保留自主呼吸。取頸正中切口,右頸靜脈置管用于輸血及測(cè)中心靜脈壓,左頸動(dòng)脈插管用于放血及測(cè)動(dòng)脈壓。經(jīng)頸靜脈給予肝素200 U/kg 10 min后,經(jīng)頸動(dòng)脈由抽血輸血雙向全自動(dòng)輸液泵(Genie TouchTM,美國(guó))在1 h內(nèi)持續(xù)放血,失血量占總血容量50%(總血容量占體重6.12%)[10]。觀察30 min后,經(jīng)頸靜脈在30 min內(nèi)回輸放出的血液,建立失血性休克和復(fù)蘇模型。所有動(dòng)物持續(xù)監(jiān)測(cè)心電圖、平均動(dòng)脈壓(mean artery pressure,MAP)到血液回輸后2 h。待清醒拔除所有導(dǎo)管,縫合傷口,肌肉注射青霉素預(yù)防感染。采用烤燈照射維持直腸溫約37℃。待大鼠翻正反射恢復(fù)且完全清醒后放回籠中飼養(yǎng)。
1.5 心功能測(cè)定
在放血前、放血結(jié)束即刻、血液回輸前、血液回輸后即刻、回輸后1、2 h,采用Vivid彩色超聲儀測(cè)量3個(gè)心動(dòng)周期左心室舒張末期內(nèi)徑和左心室收縮末期內(nèi)徑,計(jì)算心輸出量(cardiac output,CO)、左室射血分?jǐn)?shù)(left ventricular ejection fraction,LVEF)、左室短軸縮短率(left ventricular fraction shortening,LVFS)、左室收縮末期內(nèi)徑(left ventricular end-systolic dimension,LVDs)、左室舒張末期內(nèi)徑(left ventricular end-diastolic dimension,LVDd),LVFS=(LVDd-LVDs)/LVDd。測(cè)量3個(gè)心動(dòng)周期等容舒張時(shí)間(isovolumic relaxation time,IVRT)、等容收縮時(shí)間(isovolumic contraction time,IVCT)和射血時(shí)間(ejection time,ET),計(jì)算左心室心肌做功指數(shù)(myocardial power index,MPI),MPI=(IVCT+I(xiàn)VRT)/ET。測(cè)量3個(gè)心動(dòng)周期左室后壁厚度(left ventricular posterior wall dimension,LVPWD)。
1.6 統(tǒng)計(jì)學(xué)處理
2.1 一般情況
4組大鼠MAP、CO、LVEF、LVFS、 LVPWD、MPI在放血前基礎(chǔ)值差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。4組大鼠均經(jīng)受了從放血開(kāi)始到輸血后1 h的實(shí)驗(yàn)過(guò)程,但在輸血后2 h時(shí),C組有8只,R組有8只,S組剩余6只,B組剩余6只。
2.2 統(tǒng)計(jì)分析
在不同時(shí)間點(diǎn)多組均數(shù)比較采用單因素方差分析的F值見(jiàn)表1。
2.3 心功能測(cè)定
在失血和休克觀察階段,與C組比較,S組、R組和B組MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01);S組、R組和B組MAP、CO、LVEF、LVFS、MPI、LVPWD差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。血液回輸后,與C組比較,S組和B組MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01),R組和C組MAP、CO、LVEF、LVFS、MPI、LVPWD差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);與R組比較,S組和B組MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01);S組和B組MAP、CO、LVEF、LVFS、MPI、LVPWD差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。見(jiàn)表2。
表1 不同時(shí)間點(diǎn)多組均數(shù)比較單因素方差分析的F值
失血性休克是由于急性大量失血引起有效循環(huán)血量不足、急性微循環(huán)障礙、組織灌流不足,而導(dǎo)致組織與細(xì)胞缺血、缺氧、代謝障礙和器官功能受損為特征的綜合征。雖然液體復(fù)蘇是治療休克的主要方法,休克后再灌注會(huì)加重組織細(xì)胞進(jìn)一步損害[11]。報(bào)道[12]表明失血性休克和復(fù)蘇引起的重要器官缺血再灌注損傷的嚴(yán)重程度與出血量和休克時(shí)間有關(guān)。早期實(shí)驗(yàn)[13]證實(shí)失血性休克會(huì)導(dǎo)致心臟收縮功能減退,近來(lái)學(xué)者[14]發(fā)現(xiàn)嚴(yán)重失血性休克后心臟舒張功能亦受損。本實(shí)驗(yàn)中失血性休克模型采用的失血量占總血容量的50%,屬于重度失血性休克,總的休克時(shí)間也超過(guò)1 h,在回輸血液后,多普勒心臟檢測(cè)顯示S組大鼠失血性休克和血液回輸后LVEF和LVFS明顯降低,MPI和LVPWD明顯升高,說(shuō)明此時(shí)大鼠左心室收縮和舒張功能均明顯受損。
研究[3-6]表明遠(yuǎn)端肢體缺血預(yù)處理對(duì)缺血再灌注的心肌起保護(hù)作用。本實(shí)驗(yàn)在失血性休克發(fā)生前,采用雙后肢止血帶捆綁阻斷血流5 min,松開(kāi)5 min,反復(fù)4次造成RIPC。失血性休克與復(fù)蘇后,多普勒心臟檢測(cè)顯示R組LVEF和LVFS較S組明顯升高,MPI和LVPWD較S組明顯降低,血液回輸后血流動(dòng)力學(xué)較S組更平穩(wěn),表明RIPC保護(hù)了心肌,改善了心臟功能,從而提供較穩(wěn)定的血流動(dòng)力學(xué)。
表2 MAP和心功能指標(biāo)在大鼠失血性休克和復(fù)蘇中的變化(±s)
與C組比較:**P<0.01;與R組比較:#P<0.05,##P<0.01
項(xiàng)目放血前放血后輸血前輸血后即刻輸血后1 h輸血后2 h MAP(kPa)C組18.05±0.6717.72±0.6418.00±0.7218.12±0.6817.56±0.3917.65±0.49 R組17.87±0.606.64±0.36**7.77±0.76**17.40±0.8916.79±0.9717.11±0.60 B組17.72±0.876.15±0.59**6.85±0.55**13.28±0.71**##12.21±0.75**##11.43±0.74**##S組17.61±0.596.36±0.61**9.53±0.48**13.72±1.04**##12.28±1.36**##11.55±0.69**##CO(ml/min)C組107.5±1.9105.1±3.3105.7±3.5104.3±3.9105.7±2.2103.3±1.4 R組107.6±3.047.0±6.5**49.4±5.4**106.9±8.6101.5±9.898.0±9.7 B組104.6±5.743.4±5.1**44.1±5.5**68.3±5.1**##62.3±5.6**##58.3±8.3**##S組106.5±3.343.0±5.8**43.4±5.1**69.0±5.2**##60.4±5.1**##52.9±6.2**##LVEF(%)C組71.0±0.970.9±0.671.5±0.771.3±0.670.8±0.570.8±0.4 R組71.1±1.461.2±2.1**61.8±2.0**70.0±1.969.8±1.669.7±1.5 B組70.4±1.360.1±2.2**59.3±3.2**64.7±3.4**##61.1±2.7**##55.8±3.8**##S組69.5±1.661.8±3.1**60.6±2.2**63.8±2.3**##59.3±3.0**##53.0±3.6**##LVFS(%)C組34.1±3.833.2±2.633.5±3.433.4±3.233.5±3.033.4±3.2 R組34.4±3.524.8±2.2**24.2±2.3**33.2±3.032.4±3.232.3±3.1 B組34.7±3.123.6±1.8**23.1±1.7**25.1±1.7**##24.0±2.2**##22.7±2.4**##S組34.5±3.623.1±1.8**22.9±2.0**25.8±2.6**##24.5±2.2**##23.3±2.3**##LVPWD(cm)C組0.203±0.0290.201±0.0320.199±0.0280.200±0.0230.201±0.0320.203±0.029 R組0.211±0.0140.280±0.052**0.270±0.048**0.218±0.0200.215±0.0190.218±0.020 B組0.204±0.0220.271±0.040**0.305±0.045**0.280±0.028**##0.304±0.042**##0.312±0.024**##S組0.205±0.0300.327±0.055**0.325±0.051**0.291±0.040**##0.291±0.047**##0.307±0.023**##MPI C組0.69±0.030.70±0.040.69±0.030.69±0.040.70±0.030.70±0.02 R組0.69±0.031.07±0.06**1.01±0.12**0.74±0.060.72±0.060.70±0.04 B組0.68±0.021.14±0.07**1.16±0.12**1.10±0.08**##1.23±0.07**##1.35±0.07**##S組0.69±0.041.13±0.07**1.11±0.05**1.03±0.10**##1.25±0.10*#1.32±0.10*#
遠(yuǎn)端肢體缺血預(yù)處理對(duì)缺血再灌注后心肌保護(hù)作用的機(jī)制復(fù)雜,有學(xué)者[15]認(rèn)為線粒體KATP通道參與了其中的保護(hù)作用。線粒體KATP通道通過(guò)3個(gè)機(jī)制發(fā)揮臟器保護(hù)作用[16]:①促使線粒體膜去極化,減少再灌注期間Ca2+的攝取和Ca2+濃度;②保存缺血期間ATP,減低電壓依賴性離子通道活性;③減少再灌注期間活性氧的產(chǎn)生。在本研究中,在遠(yuǎn)端肢體缺血預(yù)處理前給予線粒體KATP通道阻滯劑后,多普勒心臟彩超結(jié)果顯示,遠(yuǎn)端肢體缺血預(yù)處理的心臟保護(hù)作用完全被抑制,說(shuō)明線粒體KATP通道參與了遠(yuǎn)端肢體缺血預(yù)處理的心臟功能的保護(hù)作用。
綜上所述,在失血性休克和復(fù)蘇大鼠在體模型中,RIPC減輕心肌缺血再灌注損傷,改善心臟功能,其心肌保護(hù)作用可能與其激活線粒體KATP通道有關(guān)。
[1] Copeland G P,Jones D,Walters M.POSSUM:a scoring system for surgical audit[J].Br J Surg,1991,78(3):355-60.
[2] Flaherty D C,Hoxha B,Sun J,et al.Pyruvate-fortified fluid resuscitation improves hemodynamic stability while suppressing systemic inflammation and myocardial oxidative stress after hemorrhagic shock[J].Mil Med,2010,175(3):166-72.
[3] Surendra H,Diaz R J,Harvey K,et al.Interaction of δ and κ opioid receptors with adenosine A1 receptors mediates cardioprotection by remote ischemic preconditioning[J].J Mol Cell Cardiol,2013,60:142-50.
[4] Wong G T,Lu Y,Mei B,et al.Cardioprotection from remote preconditioning involves spinal opioid receptor activation[J].Life Sci,2012,91(17-18):860-5.
[5] Hajrasouliha A R,Tavakoli S,Ghasemi M,et al.Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart[J].Eur J Pharmacol,2008,579(1-3):246-52.
[6] Szijártó A,Czigány Z,Turóczi Z,et al.Remote ischemic perconditioning-a simple,low-risk method to decrease ischemic reperfusion injury:models,protocols and mechanistic background[J].A Review J Surg Res,2012,178(2):797-806.
[7] Cammarata G A,Weil M H,F(xiàn)ries M,et al.Buccal capnometry to guide management of massive blood loss[J].J Appl Physiol,2006,100(1):304-6.
[8] Kristiansen S B,Henning O,Kharbanda R K,et al.Remote preconditioning reduces ischemic injury in the explanted heart by a KATPchannel dependent mechanism[J].Am J Physiol Heart Circ Physiol,2005,288(3):H1252-6.
[9] 趙 翚,董海龍,熊利澤,等.線粒體ATP敏感性鉀離子通道參與遠(yuǎn)程預(yù)處理對(duì)大鼠腦保護(hù)作用的機(jī)制[J].第四軍醫(yī)大學(xué)學(xué)報(bào),2007,28(18):1633-5.
[10]Fang X,Tang W,Sun S,et al.Comparison of buccal microcirculation between septic and hemorrhagic shock[J].Crit Care Med,2006,34(12 Suppl):S447-53.
[11]Nandra K K,Takahashi K,Collino M,et al.Acute treatment with bone marrow-derived mononuclear cells attenuates the organ injury/dysfunction induced by hemorrhagic shock in the rat[J].Shock,2012,37(6):592-8.
[12]Horton J W,McDonald G.Heart and brain nucleotide pools during hemorrhage and resuscitation[J].Am J Physiol,1990,259(6Pt2):H1781-8.
[13]Shahani R,Klein L V,Marshall J G,et al.Hemorrhage-induced alpha-adrenergic signaling results in myocardial TNF-alpha expression and contractile dysfunction[J].Am J Physiol Heart Circ Physiol,2001,281(1):H84-92.
[14]Suzuki K,Ogino R,Nishina M,et al.Effects of hypertonic saline and dextran 70 on cardiac functions after burns[J].Am J Physiol Heart Circ Physiol,1995,268(2Pt2):H856-64.
[15]Sato T,Sasaki N,Seharaseyon J,et al.Selective pharmacological agents implicate mitochondrial but not sarcolemmal KATPchannels in ischaemic cardioprotection[J].Circulation,2000,101(20):2418-23.
[16]Ardehali H,O’Rourke B.Mitochondrial KATPchannels in cell survival and death[J].J Mol Cell Cardiol,2005,39(1):7-16.
Remote ischemic preconditioning improves cardiac dysfunction via mitochondrial KATPchannel activation in vivo rat model of severe hemorrhagic shock
Hu Xianwen,Jiang Lingling,Liu Xiaofen,et al
(Dept of Anesthesiology,The Second Affiliated Hospital of Anhui Medical University,Hefei 230601)
ObjectiveTo investigate the effects of remote ischemic preconditioning on cardiac dysfunction in vivo rat model of severe hemorrhagic shock and its potential mechanism.MethodsThirty-two male Sprague-Dawley rats,weighting 300~350 g,were randomized into four groups:control(C)group;shock(S)group;Remote ischemic preconditioning(R)group;Remote ischemic preconditioning with mitochondrial KATPchannel blocker(B)group.Hemorrhagic shock and resuscitation were induced by reduction of 50%of total blood volume over an interval of 1 hour,30 mins after bleeding,reinfusion was initiated with the shed blood over the ensuing 30 mins.RIPC was performed by four cycles of 5 mins of limbs ischemia followed by reperfusion for 5 mins.The mitochondrial KATPchannel blocker(5-hydroxydeconate)was injected into the right atrium fifteen minutes before the initiation of RIPC.The procedure in control group was the same as shock group but not bleeding.Electrocardiogram and mean artery pressure(MAP)were continuously measured to 2 h after reinfusion.Cardiac function was measured by echocardiography at baseline,after bleeding,before reinfusion,after reinfusion and at hourly intervals after reinfusion.ResultsCompared with C group,MAP,CO,LVEF,LVFS were significantly decreased and MPI,LVPWD were significantly increased in R,S and B groups(P<0.01)during hemorrhagic and shock phase.After reinfusion,MAP,CO,LVEF,LVFS,MPI,LVPWD were not different between R group and C group.Compared with R group,MAP,CO,LVEF,LVFS were significantly decreased and MPI,LVPWD were significantly increased in S group than B group(P<0.01).There were no differences of cardiac function indexes between S group than B group.ConclusionRIPC obviously improves cardiac dysfuntion in vivo rat following severe hemorrhagic shock and resuscitation,the result is associated with the activation of mitochondrial KATPchannel.
remote ischemic preconditioning;hemorrhagic shock;cardiac funtion;mitochondrial KATPchannel
R 605.971;R 654.2;R 971.2
A
1000-1492(2014)06-0735-04
2014-01-15接收
國(guó)家自然科學(xué)基金青年基金(編號(hào):81200089)
安徽醫(yī)科大學(xué)第二附屬醫(yī)院麻醉科,合肥 230601
胡憲文,男,副主任醫(yī)師,碩士生導(dǎo)師,責(zé)任作者,E-mail:huxianwen001@126.com