• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    分布式發(fā)電反孤島控制的自動加速相移方法

    2014-01-28 07:24:36張榴晨MaryKayeChrisDiduch
    關(guān)鍵詞:弗雷德里克工程系孤島

    張榴晨,Mary Kaye,Chris Diduch,尹 俊

    (紐布倫斯維克大學(xué) 電氣與計算機(jī)工程系,加拿大 弗雷德里克頓 E3B5A3)

    1 Introduction

    With increasing applications of distributed generation(DG)systems,inverters have evolved from a traditional“power conversion device”into a“system integrator”.One of the most important functions of grid-connected inverters for DG systems is executing protection algorithms to meet the requirements for grid interconnection;particularly protection from“islanding”.Islanding is a condition in which DG systems continue to supply stable real and reactive power to local loads at sustained voltage and frequency,while the main electric power system is disconnected from the point of common coupling(PCC)to which DG systems are connected.Grid interconnection standards require that a DG be de-energized at the point of DG connection as shown in Figure 1 when an island is formed[1].Numerous approaches have been developed for automatically detecting the islanding formation and triggering protection;generally referred as anti-islanding techniques.

    Anti-islanding techniques can be classified into two categories:remote techniques and local techniques[2-4].While the remote islanding detection methods rely on communications between a centralized controller and distributed generators,local techniques tend to be more cost effective relying only on measurements and conditions at the DG site to implement anti-islanding algorithms and thus are widely used in DG inverters.Local techniques may be further classified as passive and active methods.

    圖1 分布式發(fā)電系統(tǒng)與電力系統(tǒng)的互聯(lián)關(guān)系Figure 1 Interconnection of a DG system with electric power system(EPS)

    Generally,passive islanding detection techniques have larger non-detection zones(NDZ)than their active counterparts.Passive schemes such as over/under voltage protection and over/under frequency relay protection(OFR/UFR)still play a very important role in the islanding prevention.Newer passive detection methods have been proposed,including:rate of change of output power,rate of change of frequency,rate of change of frequency over power,phase jump detection,harmonics detection,impedance identification and power spectral density[2-4].Recent development in passive islanding detection has resulted in reduced NDZ[2,4-5].

    Active anti-islanding techniques purposely inject perturbations into the DG’s output and detect the changes in the DG systems.Frequency or phase shift methods have been proposed and devel-oped,including slide-mode frequency shift(SMS)method[6],active frequency drift(AFD)method[7],active frequency drift with positive feedback(AFDPF)method[8],and automatic phase shift(APS)method[9]).These methods use positive feedback as a means to quickly shift the frequency of a DG unit away from its nominal value until over/under frequency protection is triggered.Most of commercial DG inverters adopt active anti-islanding techniques.Improvements have been sought to reduce the NDZ,shorten the islanding detection time,and reduce the disturbances to electric power systems.

    In this paper the authors propose an improved anti-islanding method for inverter-based DG systems called the accelerated automatic phase shift(AAPS)method.The method achieves significantly shortened times for detecting an island.Commercialized DG inverters using AAPS have passed anti-islanding tests for certification against UL and CSA standards for grid interconnection.

    2 APS and AAPS Algorithms

    The automatic phase shift method is actually a modified slide-mode frequency shift method with additional phase shift to break a possible stable operating point and drive the frequency into the OFR/UFR tripping window at the onset of an islanding condition.APS changes the phase shift angle,θAPS,of the inverter output current when there is a frequency deviation at the inverter’s terminal voltage[9],as follows,

    Here,αis a constant scaling factor,fis the detected frequency,fnis the nominal frequency of the power system(i.e.,60Hz or 50Hz),andθ0is the additional phase shift,i.e.a positive feedback introduced according to the frequency changeΔfssbetween two adjacent steady states,

    and

    where Δθis a constant,andθ0(k)=0,?k≤0.

    The additional change,θ0(k),ensures a continuous shift in frequency and guarantees that the OFR or UFR is eventually triggered when islanding occurs.However,it is difficult to determine every stable operating point outside of the OFR/UFR tripping window once an island occurs,which affects the effectiveness of the positive feedback(i.e.the additional phase shift).A small threshold could lead to zero additional phase shift and a large threshold may cause a phase shift in the inverter’s normal operation.Moreover,because this additional phase shift is only added at each possible stable operating point,the APS algorithm may respond slowly and even fail under certain load conditions.

    An improved algorithm called the accelerated automatic phase shift method is proposed by the authors[10].It forces additional phase shift when an islanding condition is hypothesized and evaluates the impact of every phase shift action on the period of the inverter output voltage.This algorithm causes an accelerated change in the phase shift for inverter-based DG systems when an islanding condition occurs and very small phase changes when the grid remains connected.The AAPS algorithm defines a basic phase shift between the output current and voltage of the inverter at each voltage cycle(k),

    and

    where T(k-1)is the measured period of the(k-1)thvoltage cycle;and Tavgis the average period in the N previous periods.

    In the conventional APS algorithm,the period of the output current which is directly under control in grid-connected DG inverters,is chosen as the assumed constant period of grid voltage,i.e.,1/60for a 60Hz power system.In the AAPS algorithm,the period of the current under control is chosen as the average of the previous N/2voltage periods which more closely represents the actual variation of frequency.During the next N voltage periods following the kthperiod,a logical relationship between the phase shift,θAAPS(j),and its impact on the next period T(j+1)is evaluated.Here,j=k-1,k,…k+N-1,and the added phase shift,θAAPS(j),is given by,

    and

    Where Δθis a small constant of phase shift,and sgn(ΔT)function is defined in(2).If an island persists,it is more likely that one of the following two“cause and effect”conditions hold,

    or

    Equation5refers to a scenario when the added phase shift,θALPS(j),to the inverter output current results in a change in the frequency of the inverter output voltage,when islanding occurs.If the probability of cause and effect(PCE)which satisfies the conditions in(5)is greater than 0.6at the end of Nvoltage cycles,then an additional phase shift is further introduced and Tavgremains at the previous value.

    Comparison of the AAPS algorithm with the traditional APS algorithm leads to the following observations:

    1)AAPS can follow the variation of the actual grid frequency thanks to theuse of Tavg,rather than a fixed value as in APS.

    2)Tavgmay be maintained as the nominal value of the grid period.This tends to assure a large difference betweenTavgand the actual period once an island is formed.

    3)A high PCE value may be used as a basis to continue to inject additional phase shift,i.e.,during periods when an island is hypothesized,leading to accelerated positive feedback on the frequency of the voltage.

    4)The comparison of the average over two consecutive records of N/2periods can eliminate excessive phase shift in grid-connected operation,resulting in minimum disturbance to normal DG operation.

    3 Simulation Results

    The typical schematic of the inverter for small wind turbines and the grid interconnection circuit are shown in Figure 2 .It depicts both the simulation model and the experimental test bed.The AAPS anti-islanding algorithm has been embedded into the inverter’s controller.For comparison,the APS algorithm is also realized in the same inverter controller.The simulation conditions are in Table 1 for purpose of verification.

    圖2 分布式發(fā)電的逆變器互聯(lián)系統(tǒng)原理示意Figure 2 Schematic circuits of the inverter-based DG interconnection system.

    表1 分布式發(fā)電的逆變器并網(wǎng)參數(shù)Table 1 Parameters of DG inverter and grid interconnection

    The breaker was opened at 0.5s,representing an islanding condition.Figure 3 shows that the APS algorithm failed to detect an islanding condition,a result of the balanced active power and reactive power between the DG and the local load.Figure 4 shows that the same islanding condition is detected by the AAPS algorithm.The probability of cause and effect is evaluated every 8 voltage cycles as an indicator of a hypothesized islanding condition.The PCE value increases dramatically after the islanding occurs and remains high as a result of the continuously additional phase shift.For testing purposes,the OFR/UFR tripping window is set at 59Hz/61Hz,a value much larger than practical power systems.Figure 3 and 4demonstrated the improvements of the proposed AAPS method in detecting islands over the traditional APS method.

    圖3 APS算法模擬反孤島研究中失敗實例(注意:在前幾周模擬啟動瞬變引起的突然相移可能沒有被考慮)Figure 3 An example of failure of APS algorithm in simulated anti-islanding studies(Note:the abrupt phase shift in the first few cycles is caused by the simulation startup transients and may be disregarded)

    圖4 成功的APPS反孤島算法Figure 4 Successful anti-islanding action by AAPS algorithm

    4 Testing for UL and CSA Certificatio

    The developed AAPS anti-islanding algorithm has been integrated with commercial inverters for small wind turbines and photovoltaic systems[11],and has been certified against UL1741and CSA C22.2No.107.1-01standards[12-13]in compliance with grid interconnection requirements.The certification tests for UL1741(Inverters,Converters,Controllers and Interconnection System Equipment for Use with Distributed Energy Resources)and CSA C22.2No.107.1-01(General Use Power Supplies)were conducted based on IEEE 1547.1Standard for Interconnecting Distributed Resources with Electric Power Systems[14].The anti-islanding test configuration of a 12kW wind turbine inverter is shown in Figure 5 .

    圖5 反孤島測試配置Figure 5 Anti-islanding test configuration.

    Under the rated and partial load conditions,the inductors and capacitors were adjusted to the resonant state,resulting in a minimum grid current.In this case the local load was supplied by the inverter even though the grid is still present.Circuit Breaker S3was then opened,disconnecting the grid and allowing the formation of an island.The islanding detection action of the AAPS algorithm was captured by the inverter output voltage and grid current waveforms,as in Figure 6 .The island was formed at the moment when the grid current dropped zero in Figure 6 .Then,the AAPS algorithm detected the formation of an island and de-energized the inverter,causing the inverter output voltage dropped to zero.The test conditions and results are summarized in Table 2 .Under the certification test conditions shown in Figure 6 ,it took the AAPS algorithm 181~268ms to deenergize the inverter,far less than 2.0sas required by grid interconnection standards.A total of 36anti-islanding certification tests were conducted under numerous operation conditions as specified by the IEEE interconnection standard[1,14],and have verified that the AAPS meet the anti-islanding requirement with a fast response and high reliability.

    圖6 局部和額定負(fù)載條件下的反孤島測試波形(電網(wǎng)電壓:100V/div;電網(wǎng)電流:10A/div)Figure 6 Anti-islanding test waveforms at partial and rated load conditions(grid voltage:100V/div;grid current:10A/div).

    表2 參考UL/CSA標(biāo)準(zhǔn)APPS反孤島測試條件及結(jié)果Table 2 Conditions and results of AAPS anti-islanding tests against UL/CSA standards

    5 Conclusions

    An accelerated automatic phase shift anti-islanding algorithm is presented in this paper along with the results of simulation and certification tests against grid interconnection standards.The simulation and test results have demonstrated that the AAPS method is an effective anti-islanding algorithm for inverter-based DG systems.The positive feedback process and the“cause and effect”logic of the AAPS algorithm results in a confirmation process for a hypothesized island and an accelerated addition of phase shift under a confirmed island,leading to a quick shut down of inverters in 100~300ms,far less than that required by gridinterconnection standards.The AAPS method has a very small phase shift in inverter’s output current when the DG system is connected to the grid,which gives little disturbance to the electrical power system and maintains a robust stability in inverter’s normal operation.The proposed anti-islanding algorithm has been applied to both singlephase and three-phase inverters for wind and small hydro DG systems,and the commercial singlephase inverters have been certified against UL and CSA grid interconnection standards.

    [1]IEEE Standard 1547—2003,Standard for interconnecting distributed resources with electric power systems[S].

    [2]Laaksonen H.Advanced islanding detection functionality for future electricity distribution networks[J].IEEE Transactions on Power Delivery,2013,28(4):2 056-2 064.

    [3]Pukar Mahat,Zhe Chen,Birgitte Bak-Jensen.Review on islanding operation of distribution system with distributed generation[C].IEEE Power and Energy Society General Meeting,San Diego,USA,2011.

    [4]Jun Yin,Diduch Chris P,Liuchen Chang.Islanding detection using proportional power spectral density[J].IEEE Transaction on Power Delivery,2008,23(2):776-784.

    [5]Ning Liu,Aljankawey A S,Diduch C P,et al.A new impedance-based approach for passive islanding detection scheme[C].The 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems,Rogers,USA,2013.

    [6]Smith G A,Onions P A,Infield D G.Predicting islanding operation of grid connected PV inverters[J].IEE Proceedings Electtric Power Application,2000,147(1):1-6.

    [7]Kern G A.SunSine300:Utility interactive ac module anti-islanding test results[C].26th IEEE Photovoltaic Specialists Conference,Anaheim,California,1997.

    [8]Ropp M E,Begovic M,Rohatgi A.Analysis and per-formance assessment of the active frequency drift method of islanding prevention[J].IEEE Transations Energy Conversion,1999,14(3):810-816.

    [9]Hung G,Chang C,Chen C.Automatic phase-shift method for islanding detection of grid-connected photovoltaic inverter[J].IEEE Transations Energy Conversion,2003,18(1):169-173.

    [10]Jun Yin,Liuchen Chang,Chris Diduch.A new adaptive logic phase-shift algorithm for anti-islanding protections in inverter-based DG systems[C].IEEE Power Electronics Specialist Conference,Recife,Brazil,2005.

    [11]Hossein Madadi Kojabadi,Bin Yu,Idris Gadoura,et al.A novel DSP-based current-controlled PWM strategy for single-phase grid connected inverters[J].IEEE Transactions on Power Electronics,2006,21(4):985-993.

    [12]UL 1741—2010.Inverters,converters,controllers and interconnection system equipment for use with distributed energy resources[S].

    [13]CSA C22.2No.107.1-01—2006.General use power supplies[S].

    [14]IEEE Standard 1547.1-2005.Standard for conformance test procedures for equipment interconnecting distributed resources with electric power systems[S].

    猜你喜歡
    弗雷德里克工程系孤島
    奇恥大辱
    為何我們今天必須聽聽弗雷德里克·道格拉斯在《合眾國的危險源頭》演說中發(fā)出的警告 精讀
    英語文摘(2022年1期)2022-02-16 01:19:06
    不再是孤島
    兩只兔子
    沒有人是一座孤島
    電子信息工程系
    機(jī)電工程系簡介
    孤島求生記
    穿行:服裝工程系畢業(yè)設(shè)計作品
    互聯(lián)互通破“孤島”
    久热久热在线精品观看| 深爱激情五月婷婷| av在线蜜桃| 91久久精品电影网| 成人三级黄色视频| 亚洲熟妇中文字幕五十中出| 亚洲aⅴ乱码一区二区在线播放| 1024手机看黄色片| 最近2019中文字幕mv第一页| 免费在线观看成人毛片| 亚洲欧美一区二区三区国产| 天天躁日日操中文字幕| 天美传媒精品一区二区| 搡老妇女老女人老熟妇| 亚洲熟妇中文字幕五十中出| 久久精品综合一区二区三区| 久久精品综合一区二区三区| 深爱激情五月婷婷| 丰满人妻一区二区三区视频av| АⅤ资源中文在线天堂| 在线观看美女被高潮喷水网站| 国产精品女同一区二区软件| 人体艺术视频欧美日本| 日韩国内少妇激情av| 国产精品国产高清国产av| 国产精品1区2区在线观看.| 边亲边吃奶的免费视频| 两个人的视频大全免费| 永久网站在线| 你懂的网址亚洲精品在线观看 | 欧美性猛交╳xxx乱大交人| 有码 亚洲区| 嫩草影院精品99| or卡值多少钱| 淫秽高清视频在线观看| 九九久久精品国产亚洲av麻豆| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品久久久久久婷婷小说 | av国产久精品久网站免费入址| 国产视频首页在线观看| 成人高潮视频无遮挡免费网站| 波多野结衣巨乳人妻| 大香蕉久久网| av福利片在线观看| 身体一侧抽搐| 久久精品91蜜桃| 成人毛片a级毛片在线播放| 日日啪夜夜撸| 久久婷婷人人爽人人干人人爱| 婷婷六月久久综合丁香| 久久久成人免费电影| 精品午夜福利在线看| 一级毛片电影观看 | 人妻少妇偷人精品九色| 女人被狂操c到高潮| 高清在线视频一区二区三区 | 亚洲中文字幕日韩| 亚洲av日韩在线播放| 精品熟女少妇av免费看| 欧美又色又爽又黄视频| 日产精品乱码卡一卡2卡三| 人人妻人人澡欧美一区二区| 看非洲黑人一级黄片| 两个人视频免费观看高清| 国产69精品久久久久777片| 欧美日本视频| 男女下面进入的视频免费午夜| 日本爱情动作片www.在线观看| 国产精品久久久久久久久免| 免费av不卡在线播放| 久久久久久伊人网av| 一边摸一边抽搐一进一小说| 精品久久久噜噜| 国产成人精品久久久久久| 国产男人的电影天堂91| 中文字幕精品亚洲无线码一区| 波多野结衣巨乳人妻| 久久久午夜欧美精品| 成人漫画全彩无遮挡| 建设人人有责人人尽责人人享有的 | 日韩成人伦理影院| 免费播放大片免费观看视频在线观看 | 久久草成人影院| 精品酒店卫生间| 久久这里只有精品中国| 大香蕉97超碰在线| 久久久欧美国产精品| 神马国产精品三级电影在线观看| 噜噜噜噜噜久久久久久91| 三级国产精品片| 国产伦一二天堂av在线观看| av免费观看日本| 天美传媒精品一区二区| 成人亚洲精品av一区二区| 亚洲最大成人中文| 97超视频在线观看视频| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| av播播在线观看一区| 亚洲av一区综合| 亚洲av不卡在线观看| 国产精品1区2区在线观看.| 亚洲av成人精品一二三区| 亚洲婷婷狠狠爱综合网| 久久精品熟女亚洲av麻豆精品 | 免费观看a级毛片全部| 91在线精品国自产拍蜜月| 中文字幕制服av| 亚洲最大成人中文| 国产欧美另类精品又又久久亚洲欧美| 秋霞在线观看毛片| 黄色配什么色好看| 日韩大片免费观看网站 | 国产高清不卡午夜福利| 精品久久国产蜜桃| 久久草成人影院| 亚洲欧美日韩东京热| 少妇被粗大猛烈的视频| 大香蕉97超碰在线| 久久久久免费精品人妻一区二区| 久久久久精品久久久久真实原创| 大香蕉97超碰在线| 亚洲性久久影院| 91av网一区二区| 性插视频无遮挡在线免费观看| 尤物成人国产欧美一区二区三区| 两个人的视频大全免费| 99九九线精品视频在线观看视频| 蜜桃久久精品国产亚洲av| 成人亚洲欧美一区二区av| 免费不卡的大黄色大毛片视频在线观看 | 建设人人有责人人尽责人人享有的 | 亚洲成人中文字幕在线播放| av国产久精品久网站免费入址| 精品久久久噜噜| 男人舔奶头视频| 校园人妻丝袜中文字幕| 亚洲人成网站高清观看| 日本五十路高清| 69人妻影院| 国产乱人偷精品视频| 国产女主播在线喷水免费视频网站 | 日韩成人av中文字幕在线观看| 亚洲久久久久久中文字幕| 亚洲中文字幕日韩| 18禁在线播放成人免费| 十八禁国产超污无遮挡网站| 村上凉子中文字幕在线| 日韩av在线大香蕉| 赤兔流量卡办理| 国产一区二区三区av在线| 91精品伊人久久大香线蕉| 99热这里只有是精品50| 精品人妻视频免费看| 色播亚洲综合网| 国产大屁股一区二区在线视频| 国内精品美女久久久久久| 亚洲精品国产成人久久av| 国产v大片淫在线免费观看| 国产高清不卡午夜福利| 欧美性猛交╳xxx乱大交人| 亚洲美女搞黄在线观看| 寂寞人妻少妇视频99o| 国产高清国产精品国产三级 | 菩萨蛮人人尽说江南好唐韦庄 | 国产熟女欧美一区二区| 18禁在线播放成人免费| 国产精品麻豆人妻色哟哟久久 | 听说在线观看完整版免费高清| 极品教师在线视频| 我的老师免费观看完整版| 中文字幕熟女人妻在线| 国产在视频线在精品| 永久免费av网站大全| 国产精品精品国产色婷婷| 99热这里只有精品一区| 汤姆久久久久久久影院中文字幕 | 成人性生交大片免费视频hd| 日韩国内少妇激情av| 国产精品,欧美在线| 韩国av在线不卡| av福利片在线观看| 我要搜黄色片| 久久精品熟女亚洲av麻豆精品 | av又黄又爽大尺度在线免费看 | 一区二区三区高清视频在线| 欧美zozozo另类| 中文字幕久久专区| 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 人体艺术视频欧美日本| 国产黄片视频在线免费观看| 99久久精品一区二区三区| 少妇被粗大猛烈的视频| 99热6这里只有精品| 大香蕉久久网| 最近视频中文字幕2019在线8| 亚洲久久久久久中文字幕| 91久久精品电影网| 日韩高清综合在线| 欧美日韩国产亚洲二区| 欧美精品国产亚洲| 蜜桃亚洲精品一区二区三区| 国产精品综合久久久久久久免费| 亚洲五月天丁香| 欧美变态另类bdsm刘玥| 国产欧美另类精品又又久久亚洲欧美| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 狠狠狠狠99中文字幕| 国产大屁股一区二区在线视频| 只有这里有精品99| 日韩亚洲欧美综合| 亚洲经典国产精华液单| 99九九线精品视频在线观看视频| 黄色欧美视频在线观看| 日本wwww免费看| 能在线免费观看的黄片| 九九在线视频观看精品| 亚洲av电影在线观看一区二区三区 | 嫩草影院入口| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久影院| 亚洲欧美一区二区三区国产| 亚洲av电影不卡..在线观看| www日本黄色视频网| 国产高清国产精品国产三级 | 最近的中文字幕免费完整| 亚洲人成网站在线观看播放| 国产乱人视频| АⅤ资源中文在线天堂| 亚洲综合精品二区| av在线老鸭窝| 免费观看在线日韩| 欧美一区二区国产精品久久精品| 干丝袜人妻中文字幕| 亚洲国产精品合色在线| 久久精品国产自在天天线| 国产在视频线精品| 久久久久久久久久久丰满| 久久久久久久久久成人| av国产免费在线观看| 国产精品久久视频播放| 级片在线观看| 国产午夜福利久久久久久| 日韩欧美精品v在线| 91久久精品国产一区二区成人| 成人亚洲精品av一区二区| 在线a可以看的网站| 少妇的逼好多水| 亚洲欧美日韩高清专用| 亚洲国产日韩欧美精品在线观看| 国产精品福利在线免费观看| АⅤ资源中文在线天堂| 午夜激情福利司机影院| 日日摸夜夜添夜夜添av毛片| 婷婷色麻豆天堂久久 | 国产av一区在线观看免费| 人人妻人人澡人人爽人人夜夜 | 欧美+日韩+精品| 男人舔奶头视频| 校园人妻丝袜中文字幕| 久久亚洲国产成人精品v| 99久久中文字幕三级久久日本| 成人鲁丝片一二三区免费| 边亲边吃奶的免费视频| 国产精品熟女久久久久浪| 女人久久www免费人成看片 | 午夜福利在线观看免费完整高清在| 国产高清有码在线观看视频| 中文资源天堂在线| 九九热线精品视视频播放| 又黄又爽又刺激的免费视频.| 美女大奶头视频| 狂野欧美白嫩少妇大欣赏| 日本免费在线观看一区| 日本av手机在线免费观看| 精品久久久久久久人妻蜜臀av| 美女黄网站色视频| 亚洲天堂国产精品一区在线| 欧美bdsm另类| 18禁动态无遮挡网站| 亚洲精品久久久久久婷婷小说 | 国产精品一区二区三区四区免费观看| 视频中文字幕在线观看| 日韩在线高清观看一区二区三区| 亚洲熟妇中文字幕五十中出| 男女那种视频在线观看| 久久久久久伊人网av| 晚上一个人看的免费电影| 神马国产精品三级电影在线观看| 狂野欧美白嫩少妇大欣赏| 国产午夜福利久久久久久| 毛片一级片免费看久久久久| 久久久久国产网址| 少妇裸体淫交视频免费看高清| 一级毛片aaaaaa免费看小| 精品一区二区免费观看| 亚洲人成网站在线播| 欧美日韩在线观看h| 少妇人妻精品综合一区二区| 91午夜精品亚洲一区二区三区| 免费人成在线观看视频色| 草草在线视频免费看| 久久久国产成人精品二区| 午夜日本视频在线| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 性色avwww在线观看| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频 | 久久久欧美国产精品| 久久人人爽人人爽人人片va| 成人综合一区亚洲| АⅤ资源中文在线天堂| 国产淫语在线视频| 国产成人精品婷婷| 国产精品电影一区二区三区| 麻豆国产97在线/欧美| 国产成人精品一,二区| 黄片wwwwww| 超碰97精品在线观看| ponron亚洲| 国产亚洲av嫩草精品影院| 在线a可以看的网站| 少妇猛男粗大的猛烈进出视频 | 国产伦理片在线播放av一区| 亚洲最大成人av| a级一级毛片免费在线观看| 久久精品影院6| 国产又黄又爽又无遮挡在线| 亚洲av免费在线观看| 18禁动态无遮挡网站| 国产真实伦视频高清在线观看| 一级黄片播放器| 日韩一本色道免费dvd| 麻豆成人午夜福利视频| 日本免费一区二区三区高清不卡| 人妻少妇偷人精品九色| 国产高潮美女av| 日韩亚洲欧美综合| 一区二区三区高清视频在线| 国产精品一区www在线观看| 国产一级毛片七仙女欲春2| 男插女下体视频免费在线播放| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩卡通动漫| 国产黄片美女视频| 久久午夜福利片| 女人久久www免费人成看片 | 亚洲精品乱码久久久久久按摩| 成人性生交大片免费视频hd| 又粗又爽又猛毛片免费看| 国产成人aa在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲国产色片| 日韩av不卡免费在线播放| 能在线免费观看的黄片| 日日啪夜夜撸| 久久精品国产亚洲网站| 日韩欧美精品v在线| 婷婷色av中文字幕| 色噜噜av男人的天堂激情| 欧美成人免费av一区二区三区| 国产精品国产三级国产专区5o | 亚洲美女视频黄频| 亚洲欧美精品综合久久99| 亚洲欧美精品专区久久| 乱系列少妇在线播放| 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 国产精品蜜桃在线观看| 看非洲黑人一级黄片| 中文字幕制服av| 久久精品久久久久久噜噜老黄 | 国产成人精品婷婷| 午夜视频国产福利| 久久综合国产亚洲精品| www.av在线官网国产| 亚洲aⅴ乱码一区二区在线播放| 国产精品国产高清国产av| 色播亚洲综合网| 亚洲成色77777| 国产精品久久视频播放| 日本-黄色视频高清免费观看| 日本欧美国产在线视频| 一区二区三区高清视频在线| 一级黄片播放器| 自拍偷自拍亚洲精品老妇| 超碰97精品在线观看| 91av网一区二区| 成人亚洲精品av一区二区| 久久亚洲精品不卡| 国产高清三级在线| 久久久久久国产a免费观看| 99久久精品一区二区三区| 真实男女啪啪啪动态图| 爱豆传媒免费全集在线观看| 国产色婷婷99| 日韩强制内射视频| 国产精品乱码一区二三区的特点| 少妇猛男粗大的猛烈进出视频 | 亚洲在久久综合| 欧美激情在线99| 大香蕉久久网| 亚洲va在线va天堂va国产| 午夜福利在线观看免费完整高清在| 好男人在线观看高清免费视频| 全区人妻精品视频| av国产久精品久网站免费入址| 内射极品少妇av片p| 在线免费观看的www视频| 内地一区二区视频在线| 亚洲欧美日韩无卡精品| 成年免费大片在线观看| eeuss影院久久| 国产视频内射| 男女下面进入的视频免费午夜| 色尼玛亚洲综合影院| 97超视频在线观看视频| 欧美变态另类bdsm刘玥| 日本爱情动作片www.在线观看| 国产精品.久久久| 一边摸一边抽搐一进一小说| 边亲边吃奶的免费视频| 麻豆av噜噜一区二区三区| 天天躁日日操中文字幕| 看免费成人av毛片| 一级毛片我不卡| 最近中文字幕2019免费版| 美女内射精品一级片tv| 亚洲最大成人中文| 99九九线精品视频在线观看视频| 最近最新中文字幕大全电影3| 亚洲欧美成人综合另类久久久 | 国产 一区精品| 能在线免费观看的黄片| 欧美最新免费一区二区三区| 丰满乱子伦码专区| 成年av动漫网址| 久久久午夜欧美精品| 亚洲国产色片| 岛国毛片在线播放| 中国国产av一级| 青春草视频在线免费观看| 美女国产视频在线观看| 欧美成人免费av一区二区三区| 午夜福利在线在线| 能在线免费观看的黄片| 国产午夜福利久久久久久| 一区二区三区免费毛片| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 国产一级毛片在线| 免费看a级黄色片| 免费黄色在线免费观看| 大话2 男鬼变身卡| 最近手机中文字幕大全| 少妇熟女aⅴ在线视频| 天美传媒精品一区二区| 高清视频免费观看一区二区 | 91精品伊人久久大香线蕉| 亚洲国产高清在线一区二区三| 亚洲欧美一区二区三区国产| 3wmmmm亚洲av在线观看| 国产成人a区在线观看| 综合色av麻豆| 网址你懂的国产日韩在线| 久久久色成人| 国产一区二区三区av在线| 蜜桃亚洲精品一区二区三区| 亚洲成人精品中文字幕电影| 性色avwww在线观看| av又黄又爽大尺度在线免费看 | 黄色一级大片看看| 在线观看美女被高潮喷水网站| 两性午夜刺激爽爽歪歪视频在线观看| 久久久精品欧美日韩精品| 人人妻人人看人人澡| 九九热线精品视视频播放| 国产又色又爽无遮挡免| 国产精品三级大全| 亚洲成av人片在线播放无| 我要看日韩黄色一级片| 久久久久免费精品人妻一区二区| 乱人视频在线观看| 伦精品一区二区三区| av视频在线观看入口| av天堂中文字幕网| 欧美成人一区二区免费高清观看| 国产精品久久久久久久电影| 亚洲最大成人手机在线| 寂寞人妻少妇视频99o| 国产片特级美女逼逼视频| 国产一级毛片七仙女欲春2| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 1024手机看黄色片| 波多野结衣高清无吗| 欧美丝袜亚洲另类| av在线观看视频网站免费| 热99re8久久精品国产| 国产亚洲5aaaaa淫片| 女人被狂操c到高潮| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 亚洲欧美日韩无卡精品| 免费看av在线观看网站| 只有这里有精品99| 麻豆精品久久久久久蜜桃| 国产三级中文精品| 少妇熟女欧美另类| 神马国产精品三级电影在线观看| 韩国av在线不卡| 国产亚洲5aaaaa淫片| 麻豆av噜噜一区二区三区| 亚洲欧美日韩无卡精品| 嘟嘟电影网在线观看| 欧美bdsm另类| 亚洲精品乱码久久久v下载方式| 日本wwww免费看| 国产综合懂色| 国产男人的电影天堂91| 联通29元200g的流量卡| 国产一区二区在线av高清观看| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添av毛片| 免费观看人在逋| 国产精品一区二区三区四区免费观看| 欧美成人a在线观看| 国产熟女欧美一区二区| 亚洲av免费高清在线观看| 大话2 男鬼变身卡| 亚洲欧美一区二区三区国产| 久久99精品国语久久久| 蜜桃亚洲精品一区二区三区| 少妇丰满av| 亚洲在线自拍视频| 日本免费a在线| 国内精品美女久久久久久| 99久国产av精品| 变态另类丝袜制服| 精品酒店卫生间| 亚洲欧美一区二区三区国产| 九九久久精品国产亚洲av麻豆| 日韩欧美在线乱码| 最近手机中文字幕大全| 成人三级黄色视频| 久久精品熟女亚洲av麻豆精品 | 最后的刺客免费高清国语| 只有这里有精品99| 亚洲在线自拍视频| 女人十人毛片免费观看3o分钟| 两个人的视频大全免费| 蜜桃久久精品国产亚洲av| 综合色av麻豆| 全区人妻精品视频| 欧美成人精品欧美一级黄| 国产黄a三级三级三级人| 国产黄片美女视频| a级毛色黄片| 亚洲国产欧美在线一区| 日本熟妇午夜| 国产成人aa在线观看| www.色视频.com| 高清视频免费观看一区二区 | 免费一级毛片在线播放高清视频| 日韩av在线大香蕉| 2022亚洲国产成人精品| 久久久a久久爽久久v久久| 久久99热这里只频精品6学生 | 男人的好看免费观看在线视频| 亚洲精品日韩av片在线观看| 成人欧美大片| 能在线免费看毛片的网站| 少妇人妻一区二区三区视频| 精品久久久噜噜| 国产成人a∨麻豆精品| 天堂中文最新版在线下载 | 亚洲aⅴ乱码一区二区在线播放| 日韩av不卡免费在线播放| 中文在线观看免费www的网站| 中文字幕熟女人妻在线| 国产极品精品免费视频能看的| 中文字幕免费在线视频6| 成人特级av手机在线观看| 国产精品久久久久久久电影| 亚洲欧美精品综合久久99| 久久久精品94久久精品| 熟女电影av网| 亚洲av不卡在线观看| 噜噜噜噜噜久久久久久91| 午夜福利在线观看免费完整高清在| 中文字幕免费在线视频6| 最近视频中文字幕2019在线8| 国内精品美女久久久久久| 国产久久久一区二区三区| 深爱激情五月婷婷| 男的添女的下面高潮视频| 老师上课跳d突然被开到最大视频| 久久99热这里只频精品6学生 | 老司机影院成人| 日韩制服骚丝袜av| av在线亚洲专区| 成人av在线播放网站| av免费在线看不卡| 少妇熟女aⅴ在线视频|