陳 曦,陳 鑫,韓 霜,周玉貴
糖尿病脂質(zhì)代謝相關(guān)miRNAs的研究進(jìn)展
陳 曦,陳 鑫,韓 霜,周玉貴*
(南通大學(xué)附屬東臺(tái)醫(yī)院檢驗(yàn)科,江蘇東臺(tái)224200)
糖尿病脂質(zhì)代謝紊亂是由于患者胰島素分泌不足或作用的相對(duì)減弱,發(fā)生胰島素抵抗(insulin resistance,IR)使得脂質(zhì)代謝紊亂而引起的一種糖尿病并發(fā)癥。糖尿病脂質(zhì)代謝紊亂是糖尿病患者罹患心腦血管疾病的危險(xiǎn)因素,發(fā)生率約為50%,嚴(yán)重影響患者生活質(zhì)量。
miRNAs是一類由內(nèi)源基因編碼的,長(zhǎng)約22個(gè)核苷酸的非編碼單鏈小分子RNA,通過(guò)降解靶mRNA序列或抑制蛋白質(zhì)翻譯參與調(diào)控轉(zhuǎn)錄后水平的基因表達(dá)。miRNAs參與細(xì)胞的生長(zhǎng)、發(fā)育、增殖、分化、凋亡等生命過(guò)程[1]?,F(xiàn)有研究發(fā)現(xiàn)部分miRNAs在糖尿病的病理過(guò)程中起關(guān)鍵的調(diào)控作用,其作用機(jī)制已得到闡明。其中,與胰島功能和胰島素抵抗相關(guān)的miRNAs包括miR-375[2]和miR-29a[3]等;參與維持脂質(zhì)內(nèi)穩(wěn)態(tài)的miRNAs主要有miR-33[4]和miR-122[5]等。以下就miR-33、miR-122和miR-29a在糖尿病脂質(zhì)代謝紊亂中的作用機(jī)制和臨床應(yīng)用前景作一概述。
miR-33包括miR-33a和miR-33b兩個(gè)亞基,分別位于固醇調(diào)節(jié)元件結(jié)合蛋白(sterol regulatory element-binding proteins,SREBP)中SREBP-2和SREBP-1c的內(nèi)含子上。SREBP失調(diào)通常會(huì)引發(fā)2型糖尿病、肥胖、心血管疾病和脂肪肝。研究人員發(fā)現(xiàn)[6,7],miR-33a在進(jìn)化上具有高度保守性,而miR-33b在低等哺乳動(dòng)物(如嚙齒類生物)中缺乏保守性。miR-33a和miR-33b高度同源,兩者在膽固醇代謝、脂肪酸氧化和甘油三酯合成方面都發(fā)揮重要作用[8-10]。
1.1miR-33與膽固醇代謝
ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白1(ATP-binding cassettetransporter 1,ABCA1)的3'UTR與miR-33a有3個(gè)高度保守的結(jié)合位點(diǎn),被認(rèn)為是miR-33最有可能的靶基因之一。ABCA1的主要功能是促進(jìn)細(xì)胞內(nèi)游離膽固醇轉(zhuǎn)運(yùn)到細(xì)胞膜表面載脂蛋白A1(apolipoprotein A-1,apoA1)。據(jù)文獻(xiàn)報(bào)道m(xù)iR-33特異作用于靶基因并可靶向沉默ABCA1的表達(dá)[4,7,11]。脂肪細(xì)胞和巨噬細(xì)胞中miR-33a的過(guò)表達(dá)會(huì)抑制膽固醇流向apoA1,減少前高密度脂蛋白(preβ-h(huán)igh density lipoprotein,preβ-HDL)的合成,阻礙了膽固醇逆向轉(zhuǎn)運(yùn)(reverse cholesterol transportation,RCT)途徑[12-14]。Horie等[15]通過(guò)敲除小鼠SREBP-2內(nèi)含子中的miR-33a,發(fā)現(xiàn)這些miR-33(-/-)小鼠的肝細(xì)胞中ABCA1表達(dá)升高,血漿中HDL水平也升高25%-40%。Marquart等[6]發(fā)現(xiàn)抑制miR-33a可大幅提高ABCA1表達(dá)和HDL水平。
ATP結(jié)合盒亞家族G成員1(ATP-binding cassette,sub-family G,member1,ABCG1)有助于細(xì)胞內(nèi)游離膽固醇的外排與HDL-2、HDL-3、成熟HDL以及除apoA1外其他富脂載脂蛋白的結(jié)合[16]。有研究發(fā)現(xiàn)小鼠巨噬細(xì)胞和肝細(xì)胞中miR-33a過(guò)表達(dá)會(huì)抑制ABCG1表達(dá),減少了HDL介導(dǎo)的膽固醇流出和成熟HDL的形成[17-19]。而尼曼匹克蛋白C型(Niemann Pick type C,NPC1)能促使膽固醇和其余脂質(zhì)從溶酶體轉(zhuǎn)運(yùn)至其他細(xì)胞結(jié)構(gòu)。NPC1與ABCA1的作用類似,均可促進(jìn)內(nèi)源性膽固醇合成和胞外攝取。在人NPC1基因的3'UTR包含2個(gè)高度保守的結(jié)合位點(diǎn)與miR-33相結(jié)合,表明miR-33可以抑制NPC1蛋白表達(dá),減輕膽固醇流出到apoA1[4,20]。
綜上研究結(jié)果表明,miR-33靶向調(diào)節(jié)ABCA1、ABCG1和NPC1等基因的表達(dá),協(xié)同調(diào)控細(xì)胞內(nèi)膽固醇的代謝水平,通過(guò)抑制miR-33的表達(dá)來(lái)升高血漿HDL水平對(duì)糖尿病脂質(zhì)代謝紊亂和心血管疾病的控制具有重要意義。
1.2miR-33與脂肪酸代謝
miR-33不僅調(diào)節(jié)膽固醇代謝,還參與調(diào)控脂肪酸氧化相關(guān)蛋白的表達(dá)。肉毒堿棕櫚酰基轉(zhuǎn)移酶(Carnitine palmitoyltransferase 1A,CPT1A)可催化長(zhǎng)鏈脂酰COA與肉堿合成脂酰肉堿,通過(guò)線粒體內(nèi)膜進(jìn)入線粒體基質(zhì)內(nèi)參與脂肪酸的β氧化[21]。脂酰肉毒堿轉(zhuǎn)移酶(carnitineO-octanoyltransferase,CROT)是一種偶聯(lián)短鏈脂肪酸耦合至肉堿運(yùn)送到線粒體基質(zhì)的過(guò)氧化物酶。羥烷基輔酶A脫氫酶B(hydroxyacyl-CoA dehydrogenaseβ,HADHB)則是在線粒體中進(jìn)行脂肪酸β氧化所必需的功能蛋白。CPT1A、CROT和HADHB均與miR-33有高度保守的結(jié)合位點(diǎn)[22]。Rayner[4]和Gerin[22]等研究證實(shí)SREBP參與脂肪酸磷脂的合成和脂肪酸β氧化,miR-33可抑制脂肪酸β氧化的編碼蛋白的翻譯,miR-33過(guò)表達(dá)會(huì)導(dǎo)致CPT1A,CROT和HADHB表達(dá)的降低,減少了脂肪酸的β氧化。Goedeke等[23]通過(guò)調(diào)節(jié)miR-33a*抑制CPT1A、CROT的表達(dá),減少脂肪酸β氧化,增加循環(huán)游離脂肪酸和肝細(xì)胞中甘油三酯的水平。
1.3miR-33與甘油三酯合成
miR-33靶向沉默能源傳感器磷酸腺苷(AMP)激活的蛋白激酶(AMP-activated protein kinase,AMPK)的表達(dá)[24]。AMPK是生物能量代謝調(diào)節(jié)的關(guān)鍵分子,是研究糖尿病及其他代謝相關(guān)疾病的核心。Najafi等[7]報(bào)道m(xù)iR-33通過(guò)對(duì)AMPK的調(diào)控影響甘油三酯合成。受體相互作用蛋白140(receptor-interacting protein 140,RIP140)是一種與核受體結(jié)合后負(fù)向調(diào)節(jié)脂肪組織中靶基因的轉(zhuǎn)錄輔抑制因子,與肝X受體(LXR)結(jié)合后可負(fù)向調(diào)節(jié)甘油三酯合成相關(guān)基因SREBP-1c、SCD-1等的表達(dá),Ho等[25]研究推測(cè)miR-33通過(guò)調(diào)節(jié)RIP140參與甘油三脂的合成。此外,SIRT6(sirtuin-6)是miR-33參與肝臟甘油三酯代謝的預(yù)測(cè)靶基因,抑制內(nèi)源性的miR-33能上調(diào)SIRT6的表達(dá),因此,過(guò)表達(dá)miR-33抑制SIRT6mRNA和相關(guān)蛋白的表達(dá)可有效促進(jìn)肝臟中甘油三酯的合成[22]。
miR-122來(lái)源于人18號(hào)染色體上(18q21.31)的hcr基因轉(zhuǎn)錄本,是肝臟特異性非編碼的多聚腺苷酸RNA[26]。Krtzfeldt等[27]最早在研究中發(fā)現(xiàn)通過(guò)反義抑制miR-122的表達(dá),可以顯著降低血漿中膽固醇水平。有文獻(xiàn)報(bào)道[5,28-29],miR-122大約占肝細(xì)胞中miRNAs總量的70%,拮抗肝臟中的miR-122可降低體內(nèi)血漿總膽固醇水平。同時(shí)抑制miR-122能有效減少肝臟甘油三酯含量,加快脂肪酸氧化,顯著改善脂肪肝。Gao等[30]發(fā)現(xiàn)miR-122在高脂血癥患者中呈現(xiàn)高表達(dá),且與血漿中甘油三酯和膽固醇水平呈正相關(guān)。研究預(yù)測(cè)循環(huán)miR-122可被臨床用作單純性血脂代謝紊亂或糖尿病引發(fā)高脂血癥的檢測(cè)標(biāo)志物。
He等[3]首次發(fā)現(xiàn),miR-29a在糖尿病大鼠的骨骼肌、脂肪和肝臟組織中的表達(dá)均明顯上調(diào)。Herrera等[31]進(jìn)一步證實(shí)了在3T3-L1脂肪細(xì)胞中通過(guò)高表達(dá)miR-29a可顯著提高胰島β細(xì)胞的分泌功能,抑制胰島素刺激的葡萄糖攝取,促發(fā)IR,導(dǎo)致糖尿病的發(fā)生。Pandey等[32]研究結(jié)果顯示胰島素信號(hào)通路P13K中p85的3'UTR與miR-29a有特異的結(jié)合位點(diǎn)。當(dāng)葡萄糖水平增高,脂肪細(xì)胞中miR-29a表達(dá)上升,miR-29a與p85特異性結(jié)合增加,p85激活p110的能力降低,抑制了PIP2向PIP3磷酸化的轉(zhuǎn)變。由于PIP3的減少致使GLUT4轉(zhuǎn)位的缺乏,葡萄糖攝取減少。由此可見,高血糖可刺激脂肪細(xì)胞中miR-29a的高表達(dá),而miR-29a參與了胰島素信號(hào)通路異常在2型糖尿病的病變進(jìn)程,下調(diào)miR-29a的表達(dá)能有效控制2型糖尿病并在糖尿病脂質(zhì)代謝紊亂中起重要作用[33]。
現(xiàn)有研究已證實(shí)了部分miRNAs在脂代謝異常中的調(diào)控作用,但目前miRNAs在糖尿病脂質(zhì)代謝紊亂的臨床應(yīng)用研究尚處于起步階段,仍有許多問(wèn)題亟待解決。例如:miRNAs參與糖尿病脂質(zhì)代謝紊亂動(dòng)態(tài)調(diào)控的作用機(jī)制仍有待進(jìn)一步探討;不同類型糖尿病脂質(zhì)代謝紊亂發(fā)病機(jī)制的不同對(duì)相關(guān)miRNAs表達(dá)的影響;使用miRNAs靶向治療糖尿病脂質(zhì)代謝紊亂的預(yù)防和治療仍需進(jìn)一步遺傳和藥理研究等。隨著檢測(cè)方法的不斷成熟和研究的不斷深入,miRNAs參與糖尿病的病變進(jìn)程并在糖尿病脂質(zhì)代謝紊亂中起重要作用,通過(guò)聯(lián)合檢測(cè)miR-33、miR-122和miR-29a可有效提高診斷的靈敏度和特異性,對(duì)于糖尿病脂質(zhì)代謝紊亂的早期發(fā)現(xiàn)有積極意義。miRNAs作為預(yù)測(cè)糖尿病患者脂質(zhì)代謝紊亂的檢測(cè)指標(biāo),成為先于血脂譜變化的早期新型生物學(xué)標(biāo)志物,并為糖尿病脂質(zhì)代謝紊亂的診斷防治提供全新的理論依據(jù)和技術(shù)手段都將成為今后研究的重點(diǎn)和熱點(diǎn)。
[1]Hwang HW,Mendell J T.MicroRNAs in cell proliferation,cell death,and tumo rigenesis[J].Br J Caucer,2007,96:R40.
[2]El Ouaamari A,Baroukh N,Martens GA,et al.miR-375targets 3'-phosphoinositide-dependent protein kinase-1and regulates glucose-induced biological responses in pancreatic beta-cells[J].Diabetes,2008,57(10):2708.
[3]He A,Zho L,Gupta N,et al.Overexpression of micro ribonueleic acid 29,highly up-regulated in diabetic rats,leads to insulin resist ance In 3T3-L13adipocvte[J].Moi Endocrlnol,2007,21:2785.
[4]Rayner K J,Suarez Y,Davalos A,et al.MiR-33contributes to the regulation of cholesterol homeostasis[J].Science,2010,328(5985):1570.
[5]Esau C,Davis S,Murray SF,et al.miR-122regulation of lipid metabolism revealed by in vivo antisense targeting[J].Cell Metab,2006,3(2):87.
[6]Marquart T J,Allen R M,Ory D S,et al.miR-33links SREBP-2 induction to repression of sterol transporters[J].Proc Natl Acad Sci U S A,2010,107(27):12228.
[7]Najafi-Shoushtari S H,Kristo F,Li Y,et al.MicroRNA-33and the SREBP host genes cooperate to control cholesterol homeostasis[J].Science,2010,328(5985):1566.
[8]Moore KJ,Rayner KJ,Suárez Y,et al.miRNAs and cholesterol metabolism[J].Trends Endocrinol Metab,2010,21(12):699.
[9]Fernández-Hernando C,Suárez Y,Rayner K J,et al.MiRNAs in lipid metabolism[J].Curr Opin Lipidol,2011,22(2):86.
[10]Najafi-Shoushtari S H.MicroRNAs in cardiometabolic disease.Curr atheroscler rep,201,13(3):202.
[11]Wu JH,Gao Y,Ren AJ,et al.Altered miRNA expression profiles in retinas with diabetic retinopathy[J].Ophthalmic Res,2012,47(4):195.
[12]Vedhachalam C,Liu L,Nickel M,et al.Influence of ApoAIstructure on the ABCA1.mediated efflux of cellular lipids[J].Biol Chem,2004,279(48):49931.
[13]Rayner K J,Esau C C,Hussain F N,et al.Inhibition of miR-33a/b in non-h(huán)uman primates raises plasma HDL and lowers VLDL triglyc erides[J].Nature,2011,478(7369):404.
[14]Dávalos A,F(xiàn)ernández-Hernando C.From evolution to revolution:miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport[J].Pharmacol Res,2013,75:60.
[15]Horie T,Ono K,Horiguchi M,et al.MicroRNA-33encoded by an intron of sterol regulatory element-binding protein 2(Srebp2)regulates HDL in vivo[J].Proc Natl Acad Sci U S A,2010,107(40):17321.
[16]Li G,Gu HM,Zhang DW.ATP-binding cassette transporters and cholesterol translocation[J].IUBMB Life,65(6):505.
[17]Michael S,Brown,Jin Ye,et al.Goldstein.HDL miR-ed Down by SREBP Introns[J].Science,2010,328(5985):1495.
[18]Chen S G,Xiao J,Liu X H,et al.Ibrolipim increases ABCA1/G1 expression by the LXRαsignaling pathway in THP-1macrophagederived foam cell[J].Acta Pharmacol Sin,2010,31(10):1343.
[19]Hu Y W,Wang Q,Ma X,et al.TGF-beta1Up-regulates expression of ABCA1,ABCG1and SR-BI through Liver X receptor alpha signaling pathway in THP-1macrophage-derived foam cells[J].J Atheroscler Thromb,2010,17(5):493.
[20]Fernández-Hernando C,Moore KJ.MicroRNA modulation of cholesterol homeostasis[J].Arterioscler Thromb Vasc Biol,2011,31(11):2378.
[21]Rayner K J,Sheedy F J,Esau C C,et al.Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis[J].Clin Invest,2011,121(7):2921.
[22]Gerin I,Clerbaux L A,Haumont O,et al.Expression of miR-33 from an SREBP2intron inhibits cholesterol export and fatty acid oxidation[J].J Biol Chem,2010,285(44):33652.
[23]Goedeke Leigh,Vales-Lara Frances M,F(xiàn)enstermaker Michael,et al.A Regulatory Role for MicroRNA 33*in Controlling Lipid Metabolism Gene Expression[J].Mol Cell Biol,2013,33(11):2339.
[24]Rottiers V,Najafi-Shoushtari S H,Kristo F,et al.MicroRNAs in metabolism and metabolic diseases[J].Cold Spring Harb Symp Quant Biol,2011,76:225.
[25]Ho P C,Chang K C,Chuang Y S,et al.Cholesterol regulation of receptor-interacting protein 140via microRNA-33in inflammatory cytokine production[J].FASEB J,2011,25(5):1758.
[26]Henke J I,Goergen D,Zheng J,et al.microRNA-122stimulates translation of hepatitis C virus RNA[J].EMBO J,2008,27(24):3300.
[27]Krützfeldt J,Rajewsky N,Braich R,et al.Silencing of microRNAs in vivo with'antagomirs'[J].Nature,2005,438(7068):685.
[28]Elmen J,Lindow M,Schutz S,et al.LNA-mediated miRNA silencing in non-h(huán)uman primates[J].Nature,2008;452(7189):896-899.Doi:10.1038/nature06783.
[29]Lanford RE,Hildebrandt-Eriksen ES,Petri A,et al.Therapeutic silencing of miRNA-122in primates with chronic hepatitis C virus infection[J].Science,2010,327(5962):198.doi:10.1126/science.1178178.
[30]Gao W,He HW,Wang ZM,et al.Plasma levels of lipometabolism-related miR-122and miR-370are increased in patients with hyperlipidemia and associated with coronary artery disease[J].Lipids Health Dis,2012,11:55.doi:10.1186/1476-511X-11-55.
[31]Herrera BM,Lockstone HE,Taylor JM,et al.Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2diabetes[J].Diabetologia,2010,53(6):1099.
[32]Pandey AK,Verma G,Vig S,et al.miR-29alevels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2cells[J].Mol Cell Endocrinol,2011,332(1-2):125.
[33]Bagge A,Clausen TR,Larsen S,et al.MicroRNA-29ais up-regulated in beta-cells by glucose and decreases glucose-stimulatede insulin secretion[J].Biochem Biophys Res Commun,2012,426(2):266.
陳曦(1986-),女,技師,在讀研究生,主要從事分子生物學(xué)及免疫學(xué)研究。
2014-01-15)
1007-4287(2014)12-2074-03
醫(yī)學(xué)科技發(fā)展計(jì)劃項(xiàng)目(YK20130103)
*通訊作者