李蕊 胡學(xué)強
大量研究已經(jīng)證實雌激素具有神經(jīng)保護作用,然而長期服用雌激素可增加心血管疾病、婦科腫瘤等風險而限制了其臨床應(yīng)用,尋找中樞神經(jīng)系統(tǒng)(central nervous system,CNS)特異性靶點避免雌激素對其他系統(tǒng)的影響將為其治療CNS疾病提供新的思路。近年研究發(fā)現(xiàn)星形膠質(zhì)細胞在雌激素神經(jīng)保護作用中發(fā)揮重要作用?,F(xiàn)就星形膠質(zhì)細胞參與雌激素神經(jīng)保護作用的相關(guān)研究做一綜述。
早在二十年前學(xué)者們已發(fā)現(xiàn)星形膠質(zhì)細胞是雌激素(雌二醇)在大腦中的細胞靶點之一。腦組織星形膠質(zhì)細胞的核和胞漿中表達ERα和ERβ,但含量比外周器官低[1]。體外培養(yǎng)的星形膠質(zhì)細胞膜上也表達ERs[2]。星形膠質(zhì)細胞參與雌激素的神經(jīng)保護作用可能主要通過細胞膜及細胞核ERα。一項研究發(fā)現(xiàn)星形膠質(zhì)細胞ERα基因敲除后可完全阻止ERα配體(雌激素)對實驗性自身免疫性腦脊髓炎(experimental autoimmune encephalomyelitis, EAE)動物模型的神經(jīng)保護作用,而神經(jīng)元ERα基因敲除則對其沒有任何影響。因此推斷星形膠質(zhì)細胞的ERα信號在細胞保護中發(fā)揮重要作用[3]。雖然ERβ也介導(dǎo)部分雌激素的神經(jīng)保護作用[4],但ERβ基因敲除EAE中雌激素的神經(jīng)保護作用并未受影響[5],提示ERβ并不是雌激素發(fā)揮神經(jīng)保護作用的主要受體。
轉(zhuǎn)化生長因子α(transforming growth factor,TGFα)能夠刺激神經(jīng)細胞在受損成人大腦中增殖。2002年Galbiati等研究發(fā)現(xiàn)雌二醇上調(diào)培養(yǎng)的下丘腦1型星形膠質(zhì)細胞TGFα基因表達,推測可能與細胞核ER介導(dǎo)的機制有關(guān)。星形膠質(zhì)細胞源性TGFβ已被證實可降低缺血、缺氧、谷氨酸等引起的細胞損傷,且增多的TGFβ又能抑制星形膠質(zhì)細胞增生,減少膠質(zhì)瘢痕形成。2005年Dhandapani研究發(fā)現(xiàn)星形膠質(zhì)細胞可通過TGF-β的釋放介導(dǎo)雌二醇的神經(jīng)保護作用。在原代培養(yǎng)的嚙齒動物膠質(zhì)細胞中,雌二醇(1~10 nmol/L)通過ER依賴的磷酸肌醇3-kinase/Akt信號通路刺激星形膠質(zhì)細胞TGFβ1和TGFβ2的表達和釋放。17β-雌二醇通過刺激星形膠質(zhì)細胞合成和釋放TGFβ1抑制β淀粉樣蛋白的神經(jīng)毒性,ER拮抗劑可阻止該作用[6]。胰島素樣生長因子1(insulin-like growth factor 1,IGF-1)對少突膠質(zhì)細胞分化、成熟、增殖及髓鞘形成十分重要,雌激素則可刺激星形膠質(zhì)細胞增生及合成IGF-1。IGF-1介導(dǎo)的少突膠質(zhì)細胞增殖需要一些激酶系統(tǒng)的激活,如P13激酶/Akt和MEK1/ERK信號通路,而17β-雌二醇可以激活星形膠質(zhì)細胞MAP激酶系統(tǒng),進而激活ERK[7]。堿性成纖維細胞生長因子(basic fiberoblast growth factor,bFGF)是神經(jīng)膠質(zhì)細胞和施萬細胞的促有絲分裂原,并可促進神經(jīng)細胞的存活。雌激素在體內(nèi)外均可上調(diào)bFGF的mRNA表達[8]。
3.1雌激素抑制星形膠質(zhì)細胞炎性介質(zhì)的釋放雌二醇對星形膠質(zhì)細胞的抗炎作用,也有助于激素的神經(jīng)保護作用。雖然星形膠質(zhì)細胞在CNS炎性反應(yīng)形成中扮演什么角色還存在很大爭議,但現(xiàn)有證據(jù)顯示星形膠質(zhì)細胞可能參與免疫反應(yīng)的啟動和調(diào)節(jié)[9]。病理狀態(tài)下,星形膠質(zhì)細胞反應(yīng)性增生,釋放大量炎性細胞因子和趨化因子吸引巨噬細胞/小膠質(zhì)細胞和T細胞/巨噬細胞到達CNS炎性反應(yīng)部位。雌二醇可在體內(nèi)外下調(diào)反應(yīng)性膠質(zhì)增生[10],減少脂多糖(LPS)刺激培養(yǎng)的星形膠質(zhì)細胞一氧化氮和炎性反應(yīng)標志物如腫瘤壞死因子(TNF-α)、白細胞介素6(IL-6)和干擾素誘導(dǎo)蛋白10(IFN-γ-inducible protein,IP-10)的表達[11-12]。核轉(zhuǎn)錄因子-κB (NF-κB)是許多炎性反應(yīng)基因的潛在的早期即刻轉(zhuǎn)錄調(diào)節(jié)因子,雌激素則可減少LPS誘導(dǎo)的NF-κB激活[10, 12-13]。
3.2雌激素促進星形膠質(zhì)細胞對谷氨酸的再攝取在CNS中,星形膠質(zhì)細胞通過L-谷氨酸-天門冬氨酸轉(zhuǎn)運體(L-glutamate/L-aspartate trans-porter,GLAST)和谷氨酸轉(zhuǎn)運體(glutamate transporter-1,GLT-1)對細胞間隙的谷氨酸進行攝取,維持胞外正常的興奮性神經(jīng)遞質(zhì)濃度。持續(xù)高濃度的谷氨酸環(huán)境可促使小膠質(zhì)細胞和星形膠質(zhì)細胞NF-κB激活,誘導(dǎo)致炎基因合成使炎性反應(yīng)擴大,這是許多神經(jīng)系統(tǒng)炎性疾病及神經(jīng)退行性疾病的病理機制之一[14]。Liang等研究表明雌激素可增加阿爾茨海默病患者中星形膠質(zhì)細胞對谷氨酸的攝取而發(fā)揮神經(jīng)保護作用。Pawlak等進一步研究發(fā)現(xiàn)高濃度雌激素(10~100 nmol/L)增加GLAST和GLT-1的表達從而增加對谷氨酸再攝取作用,防止持續(xù)的神經(jīng)元興奮性毒性損傷及CNS炎性反應(yīng)的擴大。
3.3雌激素影響星形膠質(zhì)細胞與淋巴細胞的相互作用雌激素亦影響星形膠質(zhì)細胞與淋巴細胞的信號傳遞。早在1996年Gold等就已經(jīng)報道星形膠質(zhì)細胞可誘導(dǎo)致腦炎T細胞凋亡,而17β雌二醇可特異性增強這種效果。此外,雌激素阻止星形膠質(zhì)細胞表面主要組織相容性復(fù)合物Ⅱ類分子(major histocompatibility complex Ⅱ,MHC Ⅱ)的表達從而選擇性抑制星形膠質(zhì)細胞與淋巴細胞的交互作用。雌激素的這種作用機制并不受MHCⅡ類分子轉(zhuǎn)錄激活因子mRNA或蛋白水平的影響,而與MHCⅡ類分子啟動子的組蛋白乙?;癄顟B(tài)改變有關(guān)[15]。
不同區(qū)域神經(jīng)組織的星形膠質(zhì)細胞在病理狀態(tài)下可能通過不同途徑參與雌激素的神經(jīng)保護作用。雌激素下調(diào)大鼠海馬中老化相關(guān)星形膠質(zhì)細胞[16]。此外,雌二醇降低大腦皮質(zhì)和海馬腦損傷后膠質(zhì)細胞增殖[17],這與雌激素處理后的原代培養(yǎng)的星形膠質(zhì)細胞增殖減少、死亡增加的發(fā)現(xiàn)一致[18]。這些研究表明至少在灰質(zhì),雌二醇有助于減少神經(jīng)退行性變狀態(tài)下膠質(zhì)反應(yīng)。而與之相反的是,雌二醇增加cuprizone誘導(dǎo)的脫髓鞘模型中白質(zhì)星形膠質(zhì)細胞增殖[7, 19]。雌激素也增加脊髓機械損傷后星形膠質(zhì)細胞表面標志物膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein, GFAP)和反應(yīng)性星形膠質(zhì)細胞數(shù)量[20],以及興奮性損傷后嗅球GFAP表達[21]。有學(xué)者推測雌二醇對灰白質(zhì)星形膠質(zhì)細胞的作用可能不同,脊髓大部分由白質(zhì)組成可能是雌二醇對該處星形膠質(zhì)細胞的調(diào)節(jié)作用不同于海馬及腦皮質(zhì)星形膠質(zhì)細胞的原因。此外,星形膠質(zhì)細胞對激素不同的反應(yīng)可能與CNS雌激素受體的區(qū)域表達差異有關(guān)。雖然星形膠質(zhì)細胞的功能在不同區(qū)域及病理狀態(tài)下可能不同,但對雌二醇介導(dǎo)神經(jīng)保護似乎均有益。如在一些情況下雌二醇減少星形膠質(zhì)細胞數(shù)量及其促炎因子的表達[11-12, 22],而在另外一些情況下雌二醇增加星形膠質(zhì)細胞的數(shù)量及其分泌神經(jīng)保護因子,促進神經(jīng)細胞存活及再生[6-7, 10]。
除了經(jīng)典的雌激素受體激活途徑,雌激素還可通過非經(jīng)典受體激活途徑介導(dǎo)神經(jīng)保護。激活星形膠質(zhì)細胞上的TrkA受體可調(diào)節(jié)軸突生長和突觸可塑性[23]。線粒體呼吸鏈功能障礙多伴隨神經(jīng)系統(tǒng)退行性變。雌激素作用于星形膠質(zhì)細胞調(diào)節(jié)線粒體呼吸鏈活性,上調(diào)線粒體呼吸鏈復(fù)合物亞基的基因表達及線粒體DNA含量。該過程是否依賴細胞核及線粒體ER受體研究結(jié)果不一致[24-26]。另外,雌二醇通過增加腦實質(zhì)反應(yīng)性星形膠質(zhì)細胞和血管周圍膠質(zhì)細胞足突上水通道蛋白4表達抑制腦水腫[27]。
綜上所述,星形膠質(zhì)細胞在雌激素神經(jīng)保護作用中發(fā)揮重要作用,且主要依賴于星形膠質(zhì)細胞膜ERs和核ERs。如何特異性激活星形膠質(zhì)細胞上的ER發(fā)揮類雌激素的神經(jīng)保護作用,而避免雌激素的其他不良反應(yīng)需要進一步研究。選擇性雌激素受體調(diào)節(jié)劑(selective estrogen receptor modulators,SERMs)已為人類帶來了希望[5]。雷洛昔芬作為SERMs的代表,因其對骨組織有雌激素作用(ER激動劑作用),而對乳腺和子宮具有抗雌激素作用(ER拮抗劑作用),已經(jīng)成功地作為絕經(jīng)后婦女骨質(zhì)疏松的預(yù)防藥物。這將使臨床應(yīng)用SERMs特異性激活星形膠質(zhì)細胞ER發(fā)揮雌激素樣神經(jīng)保護作用成為可能。體外實驗已證實他莫昔芬、雷洛昔芬、ospemifene和bazedoxifene 4種SERMs可作用于星形膠質(zhì)細胞的ER發(fā)揮神經(jīng)保護作用。 這4種SERMs均可降低LPS處理的星形膠質(zhì)細胞IL-6和IP-10表達[12]。此外他莫昔芬降低星形膠質(zhì)細胞轉(zhuǎn)運L-谷氨酸,該過程涉及PI3K和MAPK信號轉(zhuǎn)導(dǎo)通路[28]。雷洛昔芬可減少老年動物大腦中星形膠質(zhì)細胞的數(shù)量[1]。ospemifene和bazedoxifene可能通過轉(zhuǎn)錄因子P65(NF-κB家族成員)基因轉(zhuǎn)位阻斷其轉(zhuǎn)錄活性抑制星形膠質(zhì)細胞NF-κB誘導(dǎo)的促炎趨化因子和細胞因子轉(zhuǎn)錄[12]。進一步探尋星形膠質(zhì)細胞與雌激素之間的相互作用有助于更好地指導(dǎo)其臨床應(yīng)用。
[1]Arevalo MA, Diz-Chaves Y, Santos-Galindo M,et al. Selective oestrogen receptor modulators decrease the inflammatory response of glial cells[J]. J Neuroendocrinol, 2012, 24:183-190.
[2]Pawlak J, Karolczak M, Krust A,et al. Estrogen receptor-alpha is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway[J]. Glia, 2005, 50: 270-275.
[3]Spence RD, Hamby ME, Umeda E,et al. Neuroprotection mediated through estrogen receptor-alpha in astrocytes[J]. Proc Natl Acad Sci U S A, 2011, 108: 8867-8872.
[4]Tiwari-Woodruff S, Morales LB, Lee R, Voskuhl RR. Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)alpha and ERbeta ligand treatment[J]. Proc Natl Acad Sci U S A, 2007, 104: 14813-14818.
[5]胡曉,王建怡,秦新月. 激素治療多發(fā)性硬化的可能機制[J]. 中國神經(jīng)免疫學(xué)和神經(jīng)病學(xué)雜志, 2010, 17(1): 66-68.
[6]Sortino MA, Chisari M, Merlo S,et al. Glia mediates the neuroprotective action of estradiol on beta-amyloid-induced neuronal death[J]. Endocrinology, 2004, 145: 5080-5086.
[7]Kipp M, Beyer C. Impact of sex steroids on neuroinflammatory processes and experimental multiple sclerosis[J]. Front Neuroendocrinol, 2009, 30: 188-200.
[8]Melcangi RC, Cavarretta I, Magnaghi V,et al. Interactions between growth factors and steroids in the control of LHRH-secreting neurons[J]. Brain Res Brain Res Rev, 2001, 37: 223-234.
[9]Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity[J]. Trends Immunol,2007, 28: 138-145.
[10]Arevalo MA, Santos-Galindo M, Acaz-Fonseca E,et al. Gonadal hormones and the control of reactive gliosis[J]. Horm Behav, 2013, 63: 216-221.
[11]Kipp M, Karakaya S, Johann S,et al. Oestrogen and progesterone reduce lipopolysaccharide-induced expression of tumour necrosis factor-alpha and interleukin-18 in midbrain astrocytes[J]. J Neuroendocrinol, 2007, 19: 819-822.
[12]Cerciat M, Unkila M, Garcia-Segura LM, et al. Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro[J]. Glia, 2010, 58: 93-102.
[13]Giraud SN, Caron CM, Pham-Dinh D,et al. Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes[J]. Proc Natl Acad Sci U S A, 2010, 107: 8416-8421.
[14]張廣云, 胡曉, 婁磊,等. 雌激素及其受體對谷氨酸誘導(dǎo)神經(jīng)細胞損傷的作用[J]. 第二軍醫(yī)大學(xué)學(xué)報, 2011, 32: 795-798.
[15]Adamski J, Ma Z, Nozell S,et al. 17beta-Estradiol inhibits class Ⅱ major histocompatibility complex (MHC) expression: influence on histone modifications and cbp recruitment to the class Ⅱ MHC promoter[J]. Mol Endocrinol, 2004, 18: 1963-1974.
[16]Saravia F, Beauquis J, Pietranera L, et al. Neuroprotective effects of estradiol in hippocampal neurons and glia of middle age mice[J]. Psychoneuroendocrinology, 2007, 32: 480-492.
[17]Garcia-Estrada J, Del Rio JA, Luquin S,et al. Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury[J]. Brain Res, 1993, 628: 271-278.
[18]Zhang L, Li B, Zhao W,et al. Sex-related differences in MAPKs activation in rat astrocytes: effects of estrogen on cell death[J]. Brain Res Mol Brain Res, 2002, 103: 1-11.
[19]Acs P, Kipp M, Norkute A,et al. 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice[J]. Glia, 2009, 57: 807-814.
[20]Ritz MF, Hausmann ON. Effect of 17beta-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats[J]. Brain Res, 2008, 1203:177-188.
[21]Lewis DK, Johnson AB, Stohlgren S,et al. Effects of estrogen receptor agonists on regulation of the inflammatory response in astrocytes from young adult and middle-aged female rats[J]. J Neuroimmunol, 2008, 195: 47-59.
[22]Rubio N, Cerciat M, Unkila M,et al. An in vitro experimental model of neuroinflammation: the induction of interleukin-6 in murine astrocytes infected with Theiler’s murine encephalomyelitis virus, and its inhibition by oestrogenic receptor modulators[J]. Immunology, 2011, 133: 360-369.
[23]McCarthy JB, Barker-Gibb AL, Alves SE, et al. TrkA immunoreactive astrocytes in dendritic fields of the hippocampal formation across estrous[J]. Glia, 2002, 38: 36-44.
[24]Guo J, Duckles SP, Weiss JH,et al. 17beta-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-glucose deprivation/reperfusion[J]. Free Radic Biol Med, 2012, 52: 2151-2160.
[25]Arnold S, de Araujo GW, Beyer C. Gender-specific regulation of mitochondrial fusion and fission gene transcription and viability of cortical astrocytes by steroid hormones[J]. J Mol Endocrinol, 2008, 41: 289-300.
[26]Araujo GW, Beyer C, Arnold S. Oestrogen influences on mitochondrial gene expression and respiratory chain activity in cortical and mesencephalic astrocytes[J]. J Neuroendocrinol, 2008, 20: 930-941.
[27]Rutkowsky JM, Wallace BK, Wise PM, et al. Effects of estradiol on ischemic factor-induced astrocyte swelling and AQP4 protein abundance[J]. Am J Physiol Cell Physiol, 2011, 301: C204-212.
[28]Lee E, Sidoryk-Wegrzynowicz M, Farina M,et al. Estrogen attenuates manganese-induced glutamate transporter impairment in rat primary astrocytes[J]. Neurotox Res, 2012, 23: 124-130.