• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      土壤呼吸組分分離技術(shù)研究進(jìn)展

      2013-12-16 08:19:34陳敏鵬李銀坤梅旭榮
      生態(tài)學(xué)報(bào) 2013年22期
      關(guān)鍵詞:根際農(nóng)田組分

      陳敏鵬 ,夏 旭,* ,李銀坤,梅旭榮

      (1.中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;2.農(nóng)業(yè)部農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,北京 100081)

      土壤呼吸(RS)是陸地生態(tài)系統(tǒng)中的第二大碳通量過程,是影響大氣二氧化碳(CO2)濃度變化和全球碳循環(huán)的關(guān)鍵環(huán)節(jié)[1-2]。據(jù)估計(jì),每年因土壤呼吸向大氣釋放的CO2為50—75PgC,約占大氣碳庫的10%,是化石燃料燃燒排放量的10倍以上[3-4],因此土壤呼吸速率的微小變化將直接導(dǎo)致大氣CO2濃度和土壤碳累積速率的重大改變,從而加劇或減緩全球氣候變化[5-6]。雖然對(duì)土壤呼吸的重要作用已達(dá)成廣泛共識(shí),科學(xué)界對(duì)土壤呼吸關(guān)鍵機(jī)制和過程的理解仍十分有限。土壤呼吸組分分離的相關(guān)研究可以幫助明確土壤呼吸和碳素周轉(zhuǎn)過程及其對(duì)環(huán)境因子的響應(yīng)和適應(yīng),這不僅可以推動(dòng)全球碳循環(huán)模型的改進(jìn)(例如,白化土壤呼吸和碳固定過程、精確估算生態(tài)系統(tǒng)凈初級(jí)生產(chǎn)力[7],區(qū)分不同土壤呼吸組分對(duì)環(huán)境變量的敏感性等等[8-9]),而且有助于理解全球變化背景下土壤有機(jī)質(zhì)的變化格局、識(shí)別和篩選減緩?fù)寥烙袡C(jī)碳分解的對(duì)策和措施,因此成為陸地生態(tài)系統(tǒng)碳循環(huán)、氣候變化影響和適應(yīng)、土壤與植物營養(yǎng)等領(lǐng)域的熱點(diǎn)問題之一[10-12]。

      農(nóng)田生態(tài)系統(tǒng)是陸地生態(tài)系統(tǒng)最重要的組成部分。全球耕地面積約1381×102萬hm2,占陸地總面積的10.6%[13],全球農(nóng)田碳儲(chǔ)量達(dá)170PgC,占陸地碳儲(chǔ)量的10%以上[14]。,由于農(nóng)業(yè)生態(tài)系統(tǒng)跟人類活動(dòng)最密切,受人為干擾最大,它是唯一能在較短時(shí)間尺度實(shí)現(xiàn)調(diào)節(jié)功能的陸地生態(tài)系統(tǒng)碳庫[15]。因此,研究農(nóng)田生態(tài)系統(tǒng)土壤呼吸的過程和機(jī)理對(duì)促進(jìn)溫室氣體減排增匯、氣候變化適應(yīng)、糧食安全保障和農(nóng)業(yè)可持續(xù)發(fā)展都具有積極意義。

      1 土壤呼吸的組分界定

      土壤呼吸,也稱土壤總呼吸,嚴(yán)格意義上包括未擾動(dòng)土壤中產(chǎn)生CO2的所有代謝活動(dòng),它包括3個(gè)生物學(xué)過程和一個(gè)化學(xué)氧化過程,即微生物的呼吸和土壤有機(jī)質(zhì)分解過程(即微生物呼吸)、植物根和根際有機(jī)體呼吸過程(即純根和根際呼吸)、土壤動(dòng)物呼吸過程(RF)和含碳物質(zhì)的化學(xué)氧化過程[16-17]。由于后兩個(gè)過程對(duì)土壤呼吸的貢獻(xiàn)較小,機(jī)制尚不清楚,目前的相關(guān)研究主要集中于前兩個(gè)生物學(xué)過程。由于各過程呼吸性質(zhì)、呼吸主體、利用碳源、周轉(zhuǎn)速率、時(shí)空變異性以及對(duì)環(huán)境因子的響應(yīng)機(jī)制和適應(yīng)性的顯著差異,學(xué)者們對(duì)不同土壤呼吸進(jìn)行區(qū)分,以深入理解土壤呼吸的生態(tài)過程和微觀機(jī)制[18-20]。

      在具體的研究中,由于區(qū)分標(biāo)準(zhǔn)和研究目的不同,研究者對(duì)土壤呼吸組分劃分方式也不相同(圖1)。最簡單的兩室模型根據(jù)呼吸主體不同將土壤呼吸區(qū)分為根呼吸(Rr)和微生物呼吸(Rb)[21]。多室模型則對(duì)上述兩個(gè)過程進(jìn)行了細(xì)化,一般的三室模型假設(shè)存在植物殘留且激發(fā)效應(yīng)(PE)對(duì)土壤呼吸的貢獻(xiàn)較低,將土壤呼吸劃分為根呼吸(Rr)、微生物呼吸或者土壤有機(jī)質(zhì)(SOM)分解(Rb/SOM)以及根際共生體(菌根)呼吸/根際微生物呼吸(Rz),其中 Rr又稱為自養(yǎng)呼吸(Ra)、Rb和 Rz合稱為異養(yǎng)呼吸(Rh)[22-24]。Kuzyahov[25]根據(jù)利用碳源和碳周轉(zhuǎn)速率的差異將土壤CO2通量分為5種主要來源:純根系呼吸(Rr)、根際微生物呼吸、死亡植物殘留物的微生物呼吸、源于有機(jī)質(zhì)添加的土壤呼吸(激發(fā)效應(yīng))和源于有機(jī)質(zhì)的基礎(chǔ)土壤呼吸。

      圖1根據(jù)土壤組分界定的經(jīng)典文獻(xiàn)繪制而成[21,23,25,28],可看出,目前學(xué)術(shù)界尚未形成對(duì)土壤呼吸組分界定的一致意見,許多概念的邊界仍十分模糊(例如土壤微生物呼吸的外延在文獻(xiàn)中就有最廣義、廣義和狹義3種區(qū)分),爭論焦點(diǎn)則集中在各呼吸過程的劃分,尤其是根際周圍各種呼吸過程的區(qū)分和界定方面[17,19]。例如,HOgberg等[26]認(rèn)為沒必要區(qū)分根際微生物呼吸和純根呼吸,但Kuzyakov[27]堅(jiān)持二者是不同過程。在實(shí)際研究中,區(qū)分純根呼吸和根際微生物呼吸十分困難,多數(shù)文獻(xiàn)測量的根呼吸都包括了純根呼吸和部分根際微生物呼吸。

      圖 1 土壤呼吸不同過程的區(qū)分[21,23,25,28]Fig.1 Definition of different soil respiration processes[21,23,25,28]

      2 土壤呼吸的組分分離技術(shù):分類和比較

      近十年來,各國研究者在實(shí)驗(yàn)室和田間條件下發(fā)展了多種土壤呼吸組分分離技術(shù)[11,25],它們可以分為三類,即物理分離法、同位素示蹤法和間接法[29-30]。目前應(yīng)用較多是根分離法、挖溝分離法、各種同位素法和根系生物量外推法[17,31](表 1)[17,19-20,25,29-37]。

      表 1 土壤呼吸組分分解技術(shù)原理及特征[17,19-20,25,29-37]Table 1 Theories and features of different partitioning techniques

      續(xù)表

      續(xù)表

      一般認(rèn)為,同位素法測量的人為影響最小,是最準(zhǔn)確的方法[29-30]。但是由于方法本身特性、土壤微生物的特性以及土壤有機(jī)基質(zhì)特征的不同,不同同位素方法在實(shí)際應(yīng)用中也體現(xiàn)出不同程度的不確定性,例如Werth&Kuzyakov[34]對(duì)利用13C自然豐度法的相關(guān)結(jié)果進(jìn)行統(tǒng)計(jì)誤差分析后認(rèn)為,不同研究之間的結(jié)果差異很大,不確定性很高。各種物理分離方法,例如根分離法、成分綜合法等,是在田間區(qū)分土壤呼吸最直接的方法,但是這些方法易產(chǎn)生微氣象偏差,根分離區(qū)域和普通樣地土壤溫度和土壤濕度的較大差異會(huì)影響土壤的SOM分解,從而帶來估計(jì)偏差[25]。Suleau等[35]認(rèn)為物理分離無法分離根移除區(qū)域的土壤,臨近區(qū)域的根系會(huì)滲入根移除區(qū)域,從而導(dǎo)致根移除區(qū)域土壤呼吸和根呼吸的高估,他們聲稱冬小麥根呼吸測量和分離的不確定性至少達(dá)20%,其他作物甚至達(dá)25%以上。Hanson等[29]則認(rèn)為根分離法受到農(nóng)田作物的嚴(yán)重妨礙且無法考慮根系分泌物對(duì)土壤SOM分解可能存在的激發(fā)效應(yīng),只適合高桿作物(如玉米、向日葵)。

      從分離目標(biāo)出發(fā),Kuzyakov[25]提出了理想分離方法的5個(gè)重要特征,即(1)對(duì)研究的生態(tài)系統(tǒng)或者土壤呼吸沒有顯著擾動(dòng);(2)適合分離所有不同組分;(3)可以適用于包括草地、作物、灌木和森林在內(nèi)的一系列生態(tài)系統(tǒng);(4)不依賴特定實(shí)驗(yàn)操作人員并可產(chǎn)生可重復(fù)、可靠的結(jié)果;以及(5)設(shè)備安裝、維護(hù)和分析都便宜簡單。他還認(rèn)為,雖然與其他方法相比,同位素標(biāo)記法對(duì)系統(tǒng)的擾動(dòng)小、測量精度高,優(yōu)勢不可替代,但是由于設(shè)備昂貴、分析困難,其實(shí)際應(yīng)用(尤其是大田應(yīng)用)受到很大限制[25,38-39]。因此,Kuzyakov[25]認(rèn)為同位素標(biāo)記法實(shí)用性低于根分離法;根系生物量法簡單易行,幾乎具有理想分離方法的所有特征,如在調(diào)查中加大樣本數(shù),將是一種非常理想的方法;組分集成分析法雖然通用性高,可分離3種(根呼吸、土壤中有機(jī)物的微生物分解和凋落物分解)甚至4種(根呼吸、根際微生物呼吸、土壤中有機(jī)物的微生物分解和凋落物分解)的呼吸組分,但對(duì)系統(tǒng)的擾動(dòng)較大,需進(jìn)一步改進(jìn)。雖然不同方法的準(zhǔn)確性和應(yīng)用性存在較大差異,對(duì)不同文獻(xiàn)的元數(shù)據(jù)分析卻表明不同分離方法對(duì)土壤呼吸組分分離沒有可量化的顯著影響[30-31]。

      現(xiàn)有方法對(duì)土壤根系呼吸和微生物呼吸的測量還較為精準(zhǔn),但尚沒有土壤動(dòng)物呼吸的有效測定方法[17],對(duì)不同植物不同生長階段根呼吸通量的比較和對(duì)環(huán)境因素的響應(yīng)也還沒有經(jīng)典結(jié)論。對(duì)分離方法的爭議本質(zhì)上源于對(duì)土壤過程的不同理解,因此分離技術(shù)的發(fā)展有賴于土壤呼吸機(jī)制理論深化[39]。研究者認(rèn)為應(yīng)對(duì)土壤呼吸進(jìn)行更細(xì)致的理論源分離,以更精確地估計(jì)不同來源的土壤呼吸通量[25,40]。技術(shù)上,土壤呼吸分離技術(shù)則有如下發(fā)展方向[11]:

      (1)發(fā)展科學(xué)易行的自動(dòng)連續(xù)監(jiān)測技術(shù),目前最有發(fā)展前景的兩種技術(shù)是自動(dòng)通量箱以及利用氣井或固態(tài)傳感器的土壤CO2濃度自動(dòng)監(jiān)測技術(shù);

      (2)同位素方法是直接獲取與植物和微生物機(jī)理相關(guān)的土壤呼吸定量數(shù)據(jù)最有前景的技術(shù),今后需進(jìn)一步強(qiáng)化碳在植物體內(nèi)的轉(zhuǎn)化機(jī)制、碳從根系向微生物的遷移機(jī)制以及自養(yǎng)呼吸和異氧呼吸的定量監(jiān)測[41-43];

      (3)促進(jìn)多種方法的結(jié)合,尤其是過程模型或者回歸方法[44-46]與物理分離方法或者同位素方法的同步觀測和模擬[31,47],以改良現(xiàn)有基于根部生物量的回歸方法。例如Xu等[48]認(rèn)為根部非結(jié)構(gòu)性碳(non-structural carbon)含量能比根部生物量更好地估計(jì)根呼吸強(qiáng)度。

      3 土壤呼吸組分分離技術(shù)在農(nóng)業(yè)生態(tài)系統(tǒng)的應(yīng)用

      全球農(nóng)業(yè)生態(tài)系統(tǒng)土壤碳儲(chǔ)量雖然只占陸地碳儲(chǔ)量的10%,但是它是最活躍、最可控和最易調(diào)節(jié)的土壤碳匯系統(tǒng)[49-51],農(nóng)田生態(tài)系統(tǒng)土壤呼吸組分對(duì)環(huán)境因子和農(nóng)業(yè)管理措施的響應(yīng)和模擬也成為國內(nèi)外農(nóng)業(yè)碳循環(huán)領(lǐng)域的研究熱點(diǎn)之一。

      國內(nèi)外現(xiàn)有土壤呼吸組分分離技術(shù)主要從森林和草地生態(tài)系統(tǒng)的相關(guān)研究中發(fā)展而來,它們?cè)谵r(nóng)田生態(tài)系統(tǒng)的應(yīng)用興起于20世紀(jì)末,但農(nóng)田生態(tài)系統(tǒng)土壤呼吸組分分離研究的深度和廣度都遠(yuǎn)遜于森林生態(tài)系統(tǒng)。目前,農(nóng)田生態(tài)系統(tǒng)中常用的組分分離技術(shù)包括組分集成分析法、根分離法、同位素法和回歸法,其中又以同位素法和回歸法的應(yīng)用最為廣泛,研究作物主要集中于玉米和小麥(表2)。

      農(nóng)田生態(tài)系統(tǒng)具有人工參與程度高、生長季節(jié)短等特點(diǎn),農(nóng)田地上地下生物量的碳分配、不同來源的呼吸機(jī)制與草地和森林生態(tài)系統(tǒng)有較大差異。例如,農(nóng)田作物活根的生長期較短,根呼吸對(duì)農(nóng)田生態(tài)系統(tǒng)土壤呼吸的貢獻(xiàn)低于森林和草地生態(tài)系統(tǒng)。一般而言不同生態(tài)系統(tǒng)根呼吸對(duì)土壤呼吸的貢獻(xiàn)約為30—80%[29-31],一些溫帶和熱帶地區(qū)的森林甚至可高達(dá)84%[52],但是農(nóng)田生態(tài)系統(tǒng)根呼吸(純根呼吸)對(duì)土壤呼吸的平均貢獻(xiàn)率一般不到 50%[6](表 2)[48,56]。

      表2 組分分離方法在農(nóng)田生態(tài)系統(tǒng)中的應(yīng)用及比較Table 2 Application and comparison of partitioning techniques in cropland ecosystem

      農(nóng)田生態(tài)系統(tǒng)根呼吸的貢獻(xiàn)因作物類型、生長階段、土壤性質(zhì)、環(huán)境狀況、試驗(yàn)條件、測量方法和分離技術(shù)的差異,變化巨大(表2)。由于不同研究對(duì)土壤呼吸的劃分和不同分離方法理論的巨大差異,不同研究結(jié)果之間往往難以比較。例如,雖然理論上純根呼吸(Rr)屬于自養(yǎng)呼吸而根際微生物呼吸屬于異養(yǎng)呼吸,但是很難進(jìn)一步區(qū)分純根呼吸(Rr)和根際微生物呼吸(Rz),不同試驗(yàn)對(duì)根呼吸的外延也不相同[23],現(xiàn)有田間測量的“根呼吸”多為根源呼吸(Rr+Rz)[29,34]。

      國內(nèi)農(nóng)田生態(tài)系統(tǒng)土壤呼吸組分分離研究起步于20世紀(jì)末,但近幾年才得以較快發(fā)展。目前在國內(nèi)農(nóng)田生態(tài)系統(tǒng)中應(yīng)用較多的分離技術(shù)包括根分離法和根系生物量外推法,國際上流行的同位素方法由于設(shè)備昂貴應(yīng)用較少(表3)[58-78]。國內(nèi)農(nóng)田生態(tài)系統(tǒng)的土壤呼吸組分分離研究主要關(guān)注生長季根呼吸對(duì)土壤呼吸的貢獻(xiàn)和對(duì)環(huán)境因子的響應(yīng),研究作物以冬小麥居多,但各研究者對(duì)根呼吸的內(nèi)涵和外延卻不十分明確,多數(shù)研究的分離對(duì)象為根源呼吸(Rr+Rz),少有研究進(jìn)一步區(qū)分純根呼吸和根際共生體呼吸,因此觀測到的根呼吸貢獻(xiàn)偏大(10% —90%)[29]。

      表3 各組分分離方法在中國農(nóng)田生態(tài)系統(tǒng)中的應(yīng)用與比較Table 3 Application and comparison of partitioning techniques in Chinese cropland ecosystem

      4 結(jié)論和展望

      隨著全球變化研究的不斷升溫,土壤呼吸組分分離技術(shù)及相關(guān)機(jī)理研究也日益成為研究熱點(diǎn)。雖然隨著技術(shù)的不斷發(fā)展,土壤呼吸組分分離技術(shù)和相關(guān)機(jī)制的研究也取得了較大進(jìn)展,但是在今后和未來仍然面對(duì)著許多挑戰(zhàn),未來相關(guān)研究主要的突破在于:(1)突破現(xiàn)有分離方法在農(nóng)田生態(tài)系統(tǒng)應(yīng)用的局限性,根據(jù)農(nóng)田生態(tài)系統(tǒng)的特點(diǎn),深入分析農(nóng)田生態(tài)系統(tǒng)土壤呼吸的碳源、呼吸主體和呼吸過程,利用現(xiàn)有土壤呼吸觀測技術(shù),改進(jìn)現(xiàn)有組分分離法和根分離法,強(qiáng)化土壤呼吸組分和環(huán)境因子的同步觀測,以準(zhǔn)確地評(píng)估農(nóng)田碳收支;(2)土壤呼吸過程在現(xiàn)有全球碳循環(huán)模型仍是一個(gè)“黑箱”,利用土壤呼吸各組分的定位觀測數(shù)據(jù)開展大尺度的模擬研究,研究不同呼吸組分對(duì)不同環(huán)境因子(溫度、濕度、養(yǎng)分、氣候因子及生物因子)的交互響應(yīng)機(jī)制,白化、改進(jìn)或者重構(gòu)現(xiàn)有全球碳模型的碳氮過程,并在機(jī)理模型中考慮重要的土壤呼吸過程(例如激發(fā)效應(yīng));(3)利用FACE試驗(yàn),研究CO2濃度和溫度升高對(duì)不同土壤呼吸組分的影響并利用碳循環(huán)模型對(duì)響應(yīng)機(jī)制和過程進(jìn)行模擬,以評(píng)估不同氣候變化情景和全球碳循環(huán)之間的響應(yīng)和適應(yīng)機(jī)制;以及(4)分析土壤各呼吸組分與植物生長、土壤水分、土壤氮循環(huán)和養(yǎng)分狀況之間的交互作用,以識(shí)別和評(píng)估農(nóng)田管理措施對(duì)土壤SOM、溫室氣體排放、環(huán)境影響和作物產(chǎn)量的綜合影響。

      [1] Box E.Geographical dimension of terrestrial net and gross primary productivity.Radiation and Environmental Biophysics,1978,15:305-322.

      [2] Houghton R A.Balancing the global carbon budget.Annual Review of Earth and Planetary Sciences,2007,35:313-347.

      [3] Raich J W,Tufekcioglu A.Vegetation and soil respiration:Correlation and controls.Biogeochemistry,2000,48:71-90.

      [4] Schlesinger W H,Andrews J A.Soil respiration and the global carbon cycle.Biogeochemistry,2000,48:7-20.

      [5] Boden T A,Marland G,Andres R J.Global,Regional,and National Fossil-Fuel CO2Emissions.Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,U.S.Department of Energy,Oak Ridge,Tenn.,U.S.A.2010.doi 10.3334/CDIAC/00001_V2010.

      [6] Raich J W,Tufekcioglu A.Vegetation and soil respiration:correlation and controls.Biogeochemistry,2000,48:71-90.

      [7] Gower S T,Krankina O,Olson R J,Apps M,Linder S,Wang C.Net primary production and carbon allocation patterns of boreal forest ecosystems.Ecological Applications,2001,11:1395-1411.

      [8] Boone R D,Nadelhoffer K J,Canary J D,Kaye J P.Roots exert a strong influence on the temperature sensitivity of soil respiration.Nature,1998,396:570-572.

      [9] Widen B,Majdi H.Soil CO2efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation.Canadian Journal of Forest Research,2001,31:786-796.

      [10] Balser T C,Wixon D L.Investigating biological control over soil carbon temperature sensitivity.Global Change Biology,2009,15:2935-2949.

      [11] Vargas R,Carbone M S,Reichstein M,Baldocchi D D.Frontiers and challenges in soil respiration research:from measurements to model-data integration.Biogeochemistry,2010,102:1-13.

      [12] Yang Y,Huang M,Liu H S,Liu H J.The interrelation between temperature sensitivity and adaptability of soil respiration.Journal of Natural Resources,2011,26(10):1811-1820.

      [13] FAO(Food and Agriculture Organization of the United States).http://faostat.fao.org.2012.

      [14] Follett R F,Kimble G M,Lal R.The Potential of U.S.Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect.Boca Raton:CRC Press LLC,2001.

      [15] Pan G X,Li LQ,Zheng J F,Zhang X H,Zhou P.Perspectives on cycling and sequestration of organic carbon in paddy soils of China.Acta Pedologica Sinica,2008,45(5):901-914.

      [16] Fang C,Moncrief J B.An open-top chamber for measuring soil respiration and the influence of pressure difference on CO2efflux measurement.Functional Ecology,1998,12:319-325.

      [17] Wang B,Jiang Y,Guo H,Zhao G D,Bai X L.Soil respiration and its three biological processes.Chinese Journal of Soil Science,2011,42(2):483-490.

      [18] Baggs E M.Partitioning the components of soil respiration:a research challenge.Plant Soil,2006,284:1-5.

      [19] Jin Z,Dong Y S,Qi Y C.Review on the approaches of separating autotrophic and heterotrophic components of soil respiration.Progress in Geography,2006,25(4):22-23.

      [20] Wu H J,Cai D X.A review of soil respiration fractionation and the effect of agriculture management.Chinese Soil and Fertilizer,2010,6:10-15.

      [21] Raich J W,Nadelhoffer K J.Belowground carbon allocation in forest ecosystems:global trends.Ecology,1989,70:1346-1354.

      [22] Bond-Lamberty B,Wang C K,Gower S T.A global relationship between the heterotrophic and autotrophic components of soil respiration.Global Change Biology,2004,10:1756-1766.

      [23] Werth M,Subbotina I,Kuzyakov Y.Three-source partitioning of CO2efflux from soil planted with maize by13C natural abundance fails due to inactive microbial biomass.Soil Biology and Biochemistry,2006,38:2772-2781.

      [24] Taneva L,Gonzalez-Meler M A.Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO2enrichment.Biogeosciences Discuss,2011,8:2875-2911.

      [25] Kuzyakov Y.Sources of CO2efflux from soil and review of partitioning methods.Soil Biology and Biochemistry,2006,38:425-448.

      [26] Hogberg P,Buchmann N,Read D J.Comments on Yakov Kuzyakov′s review“Sources of CO2efflux from soil and review of partitioning methods”.Soil Biology and Biochemistry,2006,38(9):2997-2998

      [27] Kuzyahov Y.Response to the comments by Peter Hogberg,Nina Buchmann and David J.Read on the review“Sources of CO2efflux from soil and review of partitioning methods”.Soil Biology and Biochemistry,2006,38(9):2999-3000.

      [28] Kelting D L,Burger J A,Edwards G S.Estimating root respiration,microbial respiration in the rhizosphere,and root-free soil respiration in forest soils.Soil Biology and Biochemistry,1998,30(7):961-968.

      [29] Hanson P J,Edwards N T,Garten C T,Andrews J A.Separating root and soil microbial contributions to soil respiration:A review of methods and observations,Biogeochemistry,2000,48,115-146.

      [30] Subke J A,Inglima I,Cotrufo M F.Trends and methodological impacts in soil CO2efflux partitioning:A meta-analytical review.Global Change Biology,2006,12:1-23.

      [31] Bond-Lamberty B,Bronson D,Bladyka E,Gower S T.A comparison of trenched plot techniques for partitioning soil respiration.Soil Biology and Biochemistry,2011,43:2108-2114.

      [32] Cheng S Y,Zhang X Z.A review on differential methods for root and soil microbial contributions to total soil respiration.Advance in Earth Sciences,2003,18(4):597-602.

      [33] Tang L Z.A review on method of separating root contribution to soil respiration.Journal of Nanjing Forestry Unversity(Natural Sciences Editions),2008,32(2):97-102.

      [34] Werth M,Kuzyakov Y.13C fractionation at the root-microorganisms-soil interface:A review and outlook for partitioning studies.Soil Biology and Biochemistry,2010,42:1372-1384.

      [35] Suleau M,Moureaux C,Dufranne D,Buysse P,Bodson B,Destain J P,Heinesch B,Debacq A,Aubinet M.Respiration of three Belgian crops:Partitioning of total ecosystem respiration in its heterotrophic,above-and below-ground autotrophic components.Agricultural and Forest Meteorology,2011,151:633-643.

      [36] Werth M,Subbotina I,Kuzyakov Y.Three-source partitioning of CO2efflux from soil planted with maize by13C natural abundance fails due to inactive microbial biomass.Soil Biology and Biochemistry,2006,38:2772-2781.

      [37] Sayer E J,Tanner E V J.A new approach to trenching experiments for measuring root-rhizoshpere respiration in a lowland tropical forest.Soil Biology and Biochemistry,2010,42:347-352.

      [38] Rochette P,F(xiàn)lsnagan L B.Quantifying rhizosphere respiration in a corn crop under field condition.Soil Science Society of American Journal,1997,61:466-474.

      [39] Warembourg F R,Estelrich H D.Towards a better understanding of carbon flow in the rhizosphere:a time-dependent approach using carbon-14.Biology and Fertility of Soils,2000,30:528-534.

      [40] Moyano F E,Kutsch W L,Schulze E-D.Response of mycorrhizal,rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field.Soil Biology and Biochemistry,2007,39:843-853.

      [41] Bowling D R,Pataki D E,Randerson J T.Carbon isotopes in terrestrial ecosystem pools and CO2fluxes.New Phytology,2008,178:24-40.

      [42] Trumbore S.Radiocarbon and soil carbon dynamics.Annual Review on Earth Planet Science,2009,37:47-66.

      [43] Braig E,Tupek B.Separating soil respiration components with stable isotopes:natural abundance and labelling approaches.iForest,2010,3:92-94.doi:10.3832/ifor0541-003.

      [44] Zobitz J M,Moore D J P,Sacks W J,Monson R K,Bowling D R,Schimel D S.Integration of process-based soil respiration models with wholeecosystem CO2measurements.Ecosystem,2008,11:250-269.

      [45] Herbst M,Hellebrand H J,Bauer J,Huisman J A,Simunek J,Weihermuller L,Graf A,Vanderborght J,Vereecken H.Multiyear heterotrophic soil respiration:Evaluation of a coupled CO2transport and carbon turnover model.Ecological Modelling,2008,214:271-283.

      [46] Koerber G R,Hill P W,Edwards-Jones G,Jones D L.Estimating the component of soil respiration not dependent on living plant roots:Comparison of the indirect y-intercept regression approach and direct bare plot approach.Soil Biology and Biochemistry,2010,42:1835-1841.

      [47] Jassal R S,Black T A.Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique:Theory and practice.Agricultural and Forest Meteorology,2006,140:193-202.

      [48] Xu X L,Kuzyakov Y,Wanek W,Richter A.Root-derived respiration and non-structural carbon of rice seedling.European Journal of Soil Biology,2008,44:22-29.

      [49] Lar R.Soil carbon sequestration impact on global climate change and food security.Science,2004,304:1623-1627.

      [50] Smith P.Carbon sequestration in croplands:the potential in Europe and the global context.European Journal of Agronomy,2004,20:229-236.

      [51] Smith P.Agricultural greenhouse gas mitigation potential globally,in Europe and in the UK:What have we learnt in the last 20 years?.Global Change Biology,2012,18:35-43.

      [52] Rodeghiero M,Cescatti A.Indirect partitioning of soil respiration in a series of evergreen forest ecosystem.Plant and Soil,2006,284:7-22

      [53] Werth M,Kuzyakov Y.Root-derived carbon in soil respiration and microbial biomass determined by14C and13C.Soil Biology and Biochemistry,2008,40:625-637.

      [54] Kuzyakov Y,Cheng W.Photosynthesis controls of rhizosphere respiration and organic matter decompostion.Soil Biology and Biochemistry,2001,33:1915-1925.

      [55] Larionova A A,Sapronov D V,Lopes de Gerenyu V O,Kuznetsova L G,Kudeyarov V N.Contribution of plant root respiration to the CO2emission from soil.Eurasian Soil Science,2006,39(10):1248-1257.

      [56] Aubinet M,Moureaux C,Bodson B,Dufranne D,Heinesch B,Suleau M,Vancutsem F,Vilret A.Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle.Agricultural and Forest Meteorology,2009,149:407-418.

      [57] Jans W W P,Jacobs C M J,Kruijt B,Elbers J A,Barendse S,Moors E J.Carbon exchange of a maize(Zea mays L.)crop:Influence of phenology.Agriculture,Ecosystems and Environment,2010,139:316-324.

      [58] Cui Y T,Han C R,Lu J D.Dynamics of organic material decomposition and soil respiration in intensive and high-yield agroecosystem.Chinese Journal of Applied Ecology,1997,8(1):59-64.

      [59] Li H,Qiu J J,Wang L G.Characterization of farmland soil respiration and modeling analysis of contribution of root respiration.Transactions of the CSAE,2008,24(4):14-20.

      [60] Han G X,Zhu B,Zhang Z J,Gao M R,Jiang C S,Zheng X H.CO2emission from soil-wheat system in a paddy-dryland rotation area in purple soil and its influence factors.Ecology and Environment,2004,13(2):182-185.

      [61] Liu Q H,Huang Y,Zheng X H.Determination of upland soil respiration and its components with BaPS system.Acta Scientiae Circumstantiae,2005,25(8):1105-1111.

      [62] Zhang Y H,Zhu H X,Li Y X,Huang B B,Peng X D,Zuo X R,Yu Y W.Effect of nitrogen fertilization on temperature sensitivity of rhizosphere respiration during maize growing stages.Journal of Agro-Environment Science,2011,30(10):2033-2039.

      [63] Kou T J,Xu X F,Zhu J G,Xie Z B,Guo D Y,Miao Y F.Contribution of wheat rhizosphere respiration to soil respiration under elevated atmospheric CO2and nitrogen application.Chinese Journal of Applied Ecology,2011,22(10):2533-2538.

      [64] Han G X,Zhou G S,Xu Z Z,Yang Y,Liu J L,Shi K Q.Spatial heterogeneity of soil respiration and contribution of root respiration in a maize agricultural field.Acta Ecologica Sinica,2007,27(12):5254-5261.

      [65] Han G X,Zhou G S,Xu Z Z.Seasonal dynamics of soil respiration and carbon budget of maize(Zea mays L.)farmland ecosystem.Chinese Journal of Eco-Agriculture,2009,17(5):874-879.

      [66] Zhang Y,Zhang H L,Chen J K,Chen F.Tillage effects on soil respiration and contribution of its components in winter wheat field.Scientia Agricultura Sinica,2009,42(9):3354-3360.

      [67] Zhang X S,Shen S H,Xie T S,Deng A J.Contribution of root respiration to total soil respiration in winter wheat field in North China Plain.Chinese Journal of Agrometeorology,2009,30(3):289-296.

      [68] Cai Y,Ding W X,Cai Z C.Soil respiration in a maize-soil ecosystem and contribution of rhizosphere respiration.Acta Ecologica Sinica,2006,26(12):4273-4280.

      [69] Li J M,Ding W X,Cai Z C.Effects of nitrogen fertilization on soil respiration during maize growth season,2010,21(8):2025-2030.

      [70] Meng L,Ding W X,He Q X,Cai Z C.Effect of long-term fertilization on soil respiration flux and its components under winter wheat/summer maize rotation.Soils,2008,40(5):725-731.

      [71] Liu H S,Li F M.Root respiration,photosynthesis and grain yield of two spring wheat in response to soil drying.Plant Growth Regulation,2005,46:233-240.

      [72] Li X D,F(xiàn)u H,Guo D,Li X D,Wan C G.Partitioning soil respiration and assessing the carbon balance in a Setaria italic(L.)Beauv.Cropland on the Loess Plateau,Northern China.Soil Biology and Biochemistry,2010,42:337-346.

      [73] Yang J Y,Wang C K.Partitioning soil respiration of temperate forest ecosystem in Northeastern China.Acta Ecologica Sinica,2006,26(6):1640-1647.

      [74] Chang J G,Liu S R,Shi Z M,Chen B Y,Zhu X L.Soil respiration and its components partitioning in the typical forest ecosystems at the transitional area from the northern subtropics to warm temperate,China.Acta Ecologica Sinica,2007,27(5):1791-1802.

      [75] Zhang J C,Kong Y G,Wang Y H,Yang C Q,Hu D M.Componnets separation of soil respiration in two typical shelter forestlands in silting coastal area,Northern Jiangsu Province.Acta Ecologica Sinica,2010,30(12):3144-3154.

      [76] Han T F,Zhou G Y,Li Y L,Liu J X,Zhang D Q.Partitioning soil respiration in lower subtropical forests at different successinal stages in southern China.Chinese Journal of Plant Ecology,2011,35(9):946-954.

      [77] Li L H,Han X G,Wang Q B,Chen Q S,Zhang Y,Yang J,Bai W M,Song S H,Xing X R,Zhang S M.Separating root and soil microbial contributions to total soil respiration in a grazed grassland in the Xilin River Basin.Acta Phytoecologica Sinica,2002,26(1):29-32.

      [78] Liu L X,Dong Y S,Qi Y C,Zhou L X.Study of distinguish root respiration from total soil respiration by root exclusion method in the temperat semi-arid grassland in Inner Mongolia,China.Environmental Science,2007,28(4):689-694.

      參考文獻(xiàn):

      [12] 楊毅,黃玫,劉洪升,劉華杰.土壤呼吸的溫度敏感性和適應(yīng)性研究進(jìn)展.自然資源學(xué)報(bào),2011,26(10):1811-1820.

      [15] 潘根興,李戀卿,鄭聚峰,張旭輝,周萍.土壤碳循環(huán)研究及中國稻田土壤固碳研究的進(jìn)展與問題.土壤學(xué)報(bào),2008,45(5):901-914.

      [17] 王兵,姜艷,郭浩,趙廣東,白秀蘭.土壤呼吸及其三個(gè)生物學(xué)過程研究.土壤通報(bào),2011,42(2):483-490.

      [19] 金釗,董云社,齊玉春.綜述土壤呼吸各組分區(qū)分方法.地理科學(xué)進(jìn)展,2006,25(4):22-23.

      [20] 吳會(huì)軍,蔡典雄.土壤呼吸組分測定技術(shù)與農(nóng)田管理措施影響的研究進(jìn)展.中國土壤肥料,2010,6:10-15.

      [32] 程慎玉,張憲洲.土壤呼吸中根系與微生物呼吸的區(qū)分方法與應(yīng)用.地球科學(xué)進(jìn)展,2003,18(4):597-602.

      [33] 唐羅忠.土壤中根系呼吸通量的分離測定方法綜述.南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,32(2):97-102.

      [58] 崔玉亭,韓純?nèi)?,盧進(jìn)登.集約高產(chǎn)農(nóng)業(yè)生態(tài)系統(tǒng)有機(jī)物分解及土壤呼吸動(dòng)態(tài)研究.應(yīng)用生態(tài)學(xué)報(bào),1997,8(1):59-64.

      [59] 李虎,邱建軍,王立剛.農(nóng)田土壤呼吸特征及根呼吸貢獻(xiàn)的模擬分析.農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):14-20.

      [60] 韓廣軒,朱波,張中杰,高美榮,江長勝,鄭循華.水旱輪作土壤小麥系統(tǒng)CO2排放及其影響因素.生態(tài)環(huán)境,2004,13(2):182-185.

      [61] 劉巧輝,黃耀,鄭循華.基于BaPS系統(tǒng)的旱地土壤呼吸作用及其分量確定探討.環(huán)境科學(xué)學(xué)報(bào),2005,25(8):1105-1111.

      [62] 張耀鴻,朱紅霞,李映雪,黃賓賓,彭曉丹,左小瑞,余焰文.氮肥施用對(duì)玉米根際呼吸溫度敏感性的影響.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(10):2033-2039.

      [63] 寇太記,徐曉峰,朱建國,謝祖彬,郭大勇,苗艷芳.CO2濃度升高和施氮條件下小麥根際呼吸對(duì)土壤呼吸的貢獻(xiàn).應(yīng)用生態(tài)學(xué)報(bào),2011,22(10):2533-2538.

      [64] 韓廣軒,周廣勝,許振柱,楊揚(yáng),劉景利,史奎橋.玉米農(nóng)田土壤呼吸作用的空間異質(zhì)性及其根系呼吸作用的貢獻(xiàn).生態(tài)學(xué)報(bào),2007,27(12):5254-5261.

      [65] 韓廣軒,周廣勝,許振柱.玉米農(nóng)田生態(tài)系統(tǒng)土壤呼吸作用季節(jié)凍土與碳收支初步估算.中國農(nóng)業(yè)生態(tài)學(xué)報(bào),2009,17(5):874-879.

      [66] 張宇,張海林,陳繼康,陳阜.耕作方式對(duì)冬小麥田土壤呼吸及各組分貢獻(xiàn)的影響.中國農(nóng)業(yè)科學(xué),2009,42(9):3354-3360.

      [67] 張雪松,申雙和,謝鐵嵩,鄧愛娟.華北平原冬麥田根呼吸對(duì)土壤總呼吸的貢獻(xiàn).中國農(nóng)業(yè)氣象,2009,30(3):289-296.

      [68] 蔡艷,丁維新,蔡祖聰.土壤-玉米系統(tǒng)中土壤呼吸強(qiáng)度及各組分貢獻(xiàn).生態(tài)學(xué)報(bào),2006,26(12):4273-4280.

      [69] 李建敏,丁維新,蔡祖聰.氮肥對(duì)玉米生長季土壤呼吸的影響.應(yīng)用生態(tài)學(xué)報(bào),2010,21(8):2025-2030.

      [70] 孟磊,丁維新,何秋香,蔡祖聰.長期施肥對(duì)冬小麥/夏玉米輪作下土壤呼吸及其組分的影響.土壤,2008,40(5):725-731.

      [73] 楊金艷,王傳寬.東北東部森林生態(tài)系統(tǒng)土壤呼吸組分的分離量化.生態(tài)學(xué)報(bào),2006,26(6):1640-1647.

      [74] 常建國,劉世榮,史作民,陳寶玉,朱學(xué)凌.北亞熱帶-南暖溫帶過渡區(qū)典型森林生態(tài)系統(tǒng)土壤呼吸及其組分分離.生態(tài)學(xué)報(bào),2007,27(5):1791-1802.

      [75] 韓天豐,周國逸,李躍林,劉菊秀,張德強(qiáng).中國南亞熱帶森林不同演替階段土壤呼吸的分離量化.植物生態(tài)學(xué)報(bào),2011,35(9):946-954.

      [76] 張金池,孔雨光,王因花,楊傳強(qiáng),胡丁猛.蘇北淤泥質(zhì)海岸典型防護(hù)林地土壤呼吸組分分離.生態(tài)學(xué)報(bào),2010,30(12):3144-3154.

      [77] 李凌浩,韓興國,王其兵,陳全勝,張焱,楊晶,白文明,宋世環(huán),邢雪榮,張淑敏.錫林河流域一個(gè)放牧草原群落中根系呼吸占土壤總呼吸比例的初步估計(jì).植物生態(tài)學(xué)報(bào),2002,26(1):29-32.

      [78] 劉立新,董云社,齊玉春,周凌西.應(yīng)用根去除法對(duì)內(nèi)蒙古溫帶半干旱草原根系呼吸與土壤總呼吸的區(qū)分研究.環(huán)境科學(xué),2007,28(4):689-694.

      猜你喜歡
      根際農(nóng)田組分
      達(dá)爾頓老伯的農(nóng)田
      組分分發(fā)管理系統(tǒng)在天然氣計(jì)量的應(yīng)用
      根際微生物對(duì)植物與土壤交互調(diào)控的研究進(jìn)展
      一種難溶難熔未知組分板材的定性分析
      黑順片不同組分對(duì)正常小鼠的急性毒性
      中成藥(2018年8期)2018-08-29 01:28:26
      金雀花中黃酮苷類組分鑒定及2種成分測定
      中成藥(2018年2期)2018-05-09 07:20:09
      黃花蒿葉水提物對(duì)三七根際尖孢鐮刀菌生長的抑制作用
      農(nóng)田創(chuàng)意秀
      促植物生長根際細(xì)菌HG28-5對(duì)黃瓜苗期生長及根際土壤微生態(tài)的影響
      中國蔬菜(2016年8期)2017-01-15 14:23:38
      農(nóng)田搞養(yǎng)殖需辦哪些證
      恭城| 西城区| 海林市| 云浮市| 红桥区| 景德镇市| 乌恰县| 大田县| 巧家县| 资溪县| 泊头市| 沽源县| 那坡县| 东乡| 梅州市| 灌云县| 全南县| 桑日县| 临泉县| 黄骅市| 四会市| 南郑县| 抚顺县| 正阳县| 门源| 安图县| 资溪县| 遂昌县| 莆田市| 宝清县| 金门县| 乌审旗| 新巴尔虎右旗| 鹤山市| 东海县| 伊吾县| 聂拉木县| 巴中市| 黄大仙区| 思茅市| 榆社县|