湯 宇,許曉婕,趙 虹
(1. 吉林工商學(xué)院 基礎(chǔ)部,長春 130062;2. 中國石油大學(xué)(華東) 理學(xué)院,山東 青島 266555;3. 長春師范學(xué)院 數(shù)學(xué)學(xué)院, 長春 130032)
分數(shù)階微分方程在流體力學(xué)、 流變學(xué)、 黏彈性力學(xué)、 分數(shù)控制系統(tǒng)和分數(shù)控制器、 各種電子回路、 電分析化學(xué)、 生物系統(tǒng)的電傳導(dǎo)、 神經(jīng)的分數(shù)模型及回歸模型,特別是與分形維數(shù)有關(guān)的物理與工程問題上應(yīng)用廣泛[1-8]. 文獻[9-15]研究偏序度量空間上壓縮映像不動點的存在性,分別給出了該不動點定理在度量空間、 常微分方程和積分方程中的一些應(yīng)用. 文獻[16]給出了分數(shù)階微分方程邊值問題:
(1)
顯然,在給定距離
d(x,y)=sup{|x(t)-y(t)|:t∈[0,1],x,y∈C[0,1]}
條件下,空間C[0,1]是一個完備度量空間.C[0,1]中的偏序定義為:x,y∈C[0,1],x?y?x(t)≤y(t),t∈[0,1].
令A(yù)表示滿足下列條件的函數(shù)集φ: [0,∞) → [0,∞):
1)φ為單調(diào)增函數(shù);
2) 對任意的x>0,φ(x) 3)β(x)=φ(x)/x∈B,其中B表示滿足條件“當β(tn) → 1時,則有tn→ 0”的函數(shù)β: [0,∞) →[0,1)構(gòu)成的集合. 證明: ?t0∈[0,1],需要證明H(t)在t0上連續(xù). 情形1) 假設(shè)t0=0. 因為tσF(t)是[0,1]上的連續(xù)函數(shù),故存在常數(shù)M>0,使得|tσF(t)|≤M,t∈[0,1]. 又因為(s-t)+(α-2)(1-t)s≤(α-1)s,所以有 情形2) 假設(shè)0 其中: I2=(tn-s)α-1-(t0-s)α-1. 顯然 易證當tn→t0時,I1→0,I2→0. 進一步,有 令tn→t0,由上述表達式,有|H(tn)-H(t0)| → 0,n→ ∞. 0≤tσ[f(t,y)-f(t,x)]≤λφ(y-x), 其中φ∈A. 則方程(1)存在唯一解. 下面證明偏序集上壓縮映像原理的條件均成立. 先證明映射T是單調(diào)增的. 由假設(shè),對u≥v,有tσf(t,u)≥tσf(t,v),t∈[0,1]. 應(yīng)用G(t,s)>0,t,s∈(0,1),有 此外,對u≥v及u≠v,有 顯然,當u=v時,最后一個不等式成立. 由偏序集上的弱壓縮映像不動點定理可知T存在唯一不動點,即方程(1)存在唯一非負解u(t)∈C[0,1]. 事實上,方程(1)存在唯一正解. 反證法. 若存在0 則由G(t,s)≥0和f(t,y)≥0,有G(t*,s)f(s,u(s))=0 a.e.(s),且當G(t,s)>0,t∈(0,1)時,有f(s,u(s))=0 a.e.(s). [1] XU Xiao-jie,JIANG Da-qing,YUAN Cheng-jun. Multiple Positive Solutions for the Boundary Value Problem of a Nonlinear Fractional Differential Equation [J]. Nonlinear Analysis: Theory,Methods &Applications,2009,71(10): 4676-4688. [2] Kilbas A A,Srivastava H M,Trujillo J J. Theory and Applications of Fractional Differential Equations [M]. North-Holland Mathematics Studies,Vol.204. Amsterdam: Elsevier Science,2006. [3] Oldham K B,Spanier J. The Fractional Calculus [M]. New York: Academic Press,1974. [4] Ross B. The Fractional Calculus and Its Applications [M]. Lecture Notes in Mathematics 475. Berlin: Springer-Verlag,1975. [5] Nonnenmacher T F,Metzler R. On the Riemann-Liouvile Fractional Calculus and Some Recent Applications [J]. Fractals,1995,3(3): 557-566. [6] Tatom F B. The Relationship between Fractional Calculus and Fractals [J]. Fractals,1995,3(1): 217-229. [7] Podlubny I. Fractional Differential Equations [M]. Mathematics in Science and Engineering. Vol.198. New York: Academic Press,1999. [8] Samko S G,Kilbas A A,Marichev O I. Fractional Integrals and Derivatives: Theory and Applications [M]. Boca Raton: CRC Press,1993. [9] WANG Li-ying,XU Xiao-jie. Application of Schauder’s Fixed Point Theorem to Three-Point Boundary Value Problem of Fractional Differential Equations [J]. Journal of Jilin University: Science Edition,2012,50(2): 195-200. (王麗穎,許曉婕. Schauder不動點定理在分數(shù)階三點邊值問題中的應(yīng)用 [J]. 吉林大學(xué)學(xué)報: 理學(xué)版,2012,50(2): 195-200.) [10] Harandi A A,Emami H. A Fixed Point Theorem for Contraction Type Maps in Partially Ordered Metric Spaces and Application to Ordinary Differential Equations [J]. Nonlinear Analysis: Theory,Methods &Applications,2010,72(5): 2238-2242. [11] Agarwal R P,El-Gebeily M A,O’Regan D. Generalized Contractions in Partially Ordered Metric Spaces [J]. Appl Anal,2008,87(1): 109-116. [12] Bhaskar T G,Lakshmikantham V. Fixed Point Theorems in Partially Ordered Metric Spaces and Applications [J]. Nonlinear Analysis: Theory,Methods &Applications,2006,65(7): 1379-1393. [13] Harjani J,Sadarangani K. Fixed Point Theorems for Weakly Contractive Mappings in Partially Ordered Sets [J]. Nonlinear Analysis: Theory,Methods &Applications,2009,71(7/8): 3403-3410. [14] Nieto J J,Rodríguez-López R. Existence and Uniqueness of Fixed Point in Partially Ordered Sets and Applications to Ordinary Differential Equations [J]. Acta Math Sin: English Series,2007,23(12): 2205-2212. [15] O’Regan D,Petrusel A. Fixed Point Theorems for Generalized Contractions in Ordered Metric Spaces [J]. J Math Anal Appl,2008,341(2): 1241-1252. [16] Ran A C M,Reurings M C B. A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations [J]. Proc Amer Math Soc,2004,132: 1435-1443.