丁巍巍,陶元紅,李嫦娥
(延邊大學(xué) 理學(xué)院數(shù)學(xué)系,吉林 延吉 133002)
trλi=0; tr(λiλj)=2δij(i,j=1,2,…,R2-1).
由于任意量子系統(tǒng)的密度算子都是半正定的Hermite算子,所以密度算子可以由上述特殊酉群SU(R)的生成元和單位算子表示.
證明:設(shè)
對(duì)式(1)兩邊同時(shí)取跡得:0=tr(φ)=C0R1R2R3,故C0=0.因此,式(1)變?yōu)?/p>
于是,式(2)變?yōu)?/p>
于是,式(3)可變?yōu)?/p>
(4)
綜上可知,集合S是MR1R2R3()中的線性無(wú)關(guān)集,由于集合S中恰好有(R1R2R3)2個(gè)元素,所以它是線性空間MR1R2R3()的一個(gè)Hamel基.證畢.
證明過(guò)程完全類似定理1,故略.
根據(jù)線性空間MR1R2…Rn()的上述Hamel基,可以表示出n體量子系統(tǒng)的密度矩陣ρA1…An.易證:
定理3設(shè)n體量子系統(tǒng)A1A2…An的狀態(tài)由密度矩陣ρA1…An描述,則ρA1…An可以表示為
[1] Thew R T,Nemoto K,White A G,et al.Qudit Quantum-State Tomography [J].Phys Rev A,2002,66(1): 012303.
[2] LI Ming,FEI Shao-ming,WANG Zhi-xi.Separability and Entanglement of Quantum States Based on Covariance Matrices [J].J Phys A: Math Theor,2008,41: 202002.
[3] Werner R F.Quantum States with Einstein-Podolsk-Rosen Correlations Admitting a Hidden-Variable Model [J].Phys Rev A,1989,40(8): 4277-4281.
[4] Peres A.Separability Criterion for Density Matrices [J].Phys Rev Lett,1996,77(8): 1413-1415.
[5] ZHAO Hui,WANG Zhi-xi.Separability Criteria for Quantum Mixed States [J].Commun Theor Phys,2004,42(10): 529-532.
[6] ZHAO Hui.Separability Criteria for Quantum Mixed States in Terms of Trace Norm [J].Chin Phys Lett,2006,23(7): 1674-1675.
[7] Nielsen M A,Chuang I L.Quantum Computation and Quantum Information [M].London: Cambridge University Press,2000.
[8] WANG Wei-wei,BI Hong-mei.Separability Criterion of Two Body Quantum State [J].Journal of Xi’an Technological University,2008,28(5): 414-416.(汪威威,畢紅梅.兩體量子態(tài)可分離性判據(jù) [J].西安工業(yè)大學(xué)學(xué)報(bào),2008,28(5): 414-416.)
[9] WANG Wei-wei,CAO Huai-xin.A Note on the Separability of Quantum Mixed States [J].Journal of Xianyang Normal University,2008,23(2): 6-9.(汪威威,曹懷信.二元量子系統(tǒng)混態(tài)密度矩陣可分性研究 [J].咸陽(yáng)師范學(xué)院學(xué)報(bào),2008,23(2): 6-9.)