• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Outdoor position estimation based on a combination system of GPS-INS by using UPF

    2013-11-01 01:26:22YunkiKimJaehyunParkJangmyungLee

    Yunki Kim, Jaehyun Park, Jangmyung Lee

    (Dept. of Electrical Engineering, Pusan National University, Pusan 609-735, Korea)

    Outdoor position estimation based on a combination system of GPS-INS by using UPF

    Yunki Kim, Jaehyun Park, Jangmyung Lee

    (Dept. of Electrical Engineering, Pusan National University, Pusan 609-735, Korea)

    This paper proposes a technique that global positioning system (GPS) combines inertial navigation system (INS) by using unscented particle filter (UPF) to estimate the exact outdoor position. This system can make up for the weak point on position estimation by the merits of GPS and INS. In general, extended Kalman filter (EKF) has been widely used in order to combine GPS with INS. However, UPF can get the position more accurately and correctly than EKF when it is applied to real-system included non-linear, irregular distribution errors. In this paper, the accuracy of UPF is proved through the simulation experiment, using the virtual-data needed for the test.

    global positioning system (GPS); unscented particle filter (UPF); navigation; inertial navigation system (INS); strapdown inertial navigation system (SDINS)

    The position estimation of the moving objects is of great interest to be studied, especially for global positioning system(GPS) and inertial navigation system (INS), a lot of researches are in progress[1].

    INS is navigation system that assumes position, posture and the direction by calculating according to the initial location and direction of the acceleration of the fuselage with inertial measurement unit(IMU)[2]. IMU consists of inertial sensors gyroscope, accelerometer, etc, and it can provide small and accurate information with the development of micro electro mechanical systems (MEMS). Especially, it has been used in aviation and marine fields. IMU can provide precise location information during short time. However, if it is used for a long time, due to errors and disturbances, the final estimated value is very different from the original value. To compensate for this kind of absolute value, the sensor fusion is used[3,4]. GPS is used mainly outdoors. which can provide accurate and absolute position based on satellite radio navigation system.

    Extended Kalman filter (EKF) is mainly used to amalgamate both INS and GPS data. EKF transfers nonlinear system to linear system by using Taylor series expansion. Therefore, there is disadvantage that according to change of time, tolerance can be greater. To solve these limitations, unscented Kalman filter (UKF) or Hybrid type filter, toting both particle filter (PF) and other filters[5], are used.

    This paper introduces unscented particle filter (UPF), which consists of particle filter and UKF for combination of INS and GPS, into outdoor location estimation system.

    The paper is organized as follows: Section 1 introduces INS; Section 2 describes the characteristics of various probability-based filters; Section 3 gives the simulation experiments to verify the validity of UPF; and finally, a conclusion is drawn.

    1 INS

    1.1 Strapdown INS (SDINS)

    SDINS is the system in which inertial sensors are directly attached to an antibody. Here, sensor’s output angular velocity and acceleration value are expressed as variations on body frame.

    So, the process changing measurement value to navigation frame is needed[6]. First, measured angular velocity is cumulative to estimate position. transformation matrix is calculated to change from body frame to navigation frame, which transfers the measured value from body frame’s acceleration to navigation frame. Then, gravity included in acceleration is removed and a value is got. By accumulating acceleration to the initial values of velocity, current speed and position can be obtained.

    Fig.1 shows strapdown inertial navigation algorithm. What primarily used in strapdown system for coordinate transformation are direction cosine, Euler angle and a way of quaternions. Comparison of features, advantages and disadvantages of each method is shown in Table 1[7].

    Fig.1 Strapdown inertial navigation algorithm

    Table 1 Pros and cons of the various coordinate transformation method

    This paper is oriented for fast and accurate system. Thus, 3-D position of the antibody is determined using the quaternion method.

    1.2 Aided inertial navigation

    Aided INS amalgamated sensor with the absolute value in order to overcome the shortcomings that cumulate errors of the inertial sensor to get the value of the position by INS[8]. Fig.2 shows a block diagram of aided SDINS which corrects position and location using information obtained from the inertial sensors and GPS[2,9].

    Fig.2 Block diagram of aided inertial navigation

    The attitude expressed with quaternion can obtain transformation matrix by converting antibodies in the coordinate system to coordinate navigation

    δxk=fk(δxk-1)+ωk,

    where fkis state wave function (system equation), hkis measurement equation (measurement Eq.), ωkis the system error, vkis the measurement error and δykis the measured value.

    -p≡[x y z]T,

    -v≡[vxvyvz]T,

    where -εNand εEare tilt errors; -εDis heading error.

    2 Probability based filters

    Various fields have tried actively to solve the problem about the estimation of the state variables for dynamic systems. Of them, methods based on stochastic constitute probability space consisting of state variables. Using system’s dynamic characteristics and measurement, when the initial probability density (p(x0)), the state transition density (p(xk|xk-1)), and likelihood in the measurement model (p(yk|xk)) are given, the optimal current state value which is based on input and measures, and essentially posterior probabilities (p(xk|y0∶k) or p(x0∶k|y0∶k)) are estimated. This method is generally based on Bayesian estimation. In the field of localization, EKF, which is the extended one of Kalman filter, UKF and the particle filter are notably being studied[3]. Filters are applied differently depending on how to define the system model and the characteristics of the noise distribution. Table 2 summarizes the characteristics of typical filters.

    In the case of KF, it can be only used for linear systems, and it leads the result that many fields can not apply to using it. For this reason, EKF was developed right after KF had been developed. EKF is the probability-based filter which is largely used in various fields. For every estimation, the nonlinear system is estimated as the value of the state, and develops Taylor series for linearization[11]. This method has an advantage that it is fast and simply. On the other hand, it is a disadvantage that the error may become bigger when nonlinear is severe or the noise strays from the normal distribution a lot. Thus, the proposed method is UKF. The filter, like EKF, can be used in nonlinear and models having normal distribution noise. However, unlike EKF which linearizes, UKF generates expected value of sample points (sigma points) by calculating dispersion. It is the method that obtains more correct state of the expected value and dispersion[12,13].

    Table 2 Mean of the error of attitude and position

    Fig.3(a) is got by actual mean and variance through passing all sampling points to f, nonlinear system. Fig.3(b) is got by unscented transform (UT) of UKF, and Fig.3(c) predicts the following conditions and variance through EKF’s linearization method.

    As you can see in Fig.3, UPF than EKF in nonlinear systems can predict the next state more accurately.

    Therefore, UKF is more suitable than EKF in nonlinear systems[14]. However, the UKF also assumes that the errors follow a normal distribution, and thus there are some differences from the actual system model. PF repeatedly performs the Monte Carlo integration, unlike the other filters to minimize non-linear system assumption, irregular distribution of the error model takes advantage of high accuracy can be estimation. For outdoor mobile robot, because of environmental factors, disturbance and tolerance, using PF increases the accuracy. PF algorithm, as shown in Fig.3, using the state transition function, can predict the following state and the weight, and using measurement value, particle weight update and normalize is the weighted effective bias reduction in the number of particles to prevent the re-sampling of particles will be sequenced[15,16].

    Fig.3 Estimation comparison of UKF and EKF

    At this point in the EKF or UKF prediction step of the way, the more accurate the next state and the weight of the particle can be predicted[5,17]. In this paper, using UPF, combining PF and UKF, more precise positioning estimation can be got.

    3 Experiment

    This paper compares performance according to the kind of filter for system estimating outdoor location using UPF. To compare performance of filter, driving information of arbitrary circle path is generated. The generated driving information (posture, position) are compared. To prove excellence of UPF, comparison is made in case applying no filter, applying EKF and UPK, respectirely. Particle number of UPF is experimented by setting 250.

    Fig.4 Estimated position (particle number=250)

    Fig.4 is the estimated position of antibodies. The actual path starts at (0,0) →3 m straight to the right →2 m radius semicircle path rotation →6 m straight →→2 m radius semicircle path rotation →3 m straight(Initial position). Non filtering is in case if do not apply, and GPS is local information got from GPS.

    To quantitatively compare performance of each filter, appear average value of posture error and local error are got through 10 times experiment. Table 3 shows posture error and local error.

    Table 3 Mean of the error of attitude and position

    4 Conclusion

    EKF is the quick and simple method to estimate indoor local error by combining GPS and INS, which has been used recently and will be used for a long time and be verified. But it is difficulty to use in non-linear system. To apply model in close actual system, another method is needed. The UPF is kind of PF, being non-linear and using the model similar to the actual system. And it is the filters that has more enhanced estimation accuracy by using method of UPF. The usefulness of UPF is proved through experiments. From now, leave fusion methods that be used in real time position estimation through combining various filters more quickly estimated as a next project.

    [2] Park J Y, Lee J H, Nam D K, et al. Investigations on GPS/INS integration for land vehicle navigation. In: Proceedings of KIIS fall conference, 2009, 19(2): 3-360.

    [3] Lee J K. The estimation methods for an integrated INS/GPS UXO geolocation system. The Ohio State University Report, No. 493, 2009.

    [4] Aggarwal P, Syed Z, Noureldin A, et al. MEMS-based integrated navigation. Artech House, 2010.

    [5] Aggarwal P, Syed Z, El-sheimy N. Hybrid extended particle filter(HEPF) for integrated inertial navigation and global positioning system. Measurement Science and Technology, 2009, 20(5): 1-9.

    [6] Woodman O J. An introduction to inertial navigation. University of Cambridge Technical Report, No.696, 2007.

    [7] Siouris G M. Aerospace avionics systems a modern synthesis. Academic Press Inc., 1993: 67.

    [8] Skog I, Handel P. Time synchronization errors in GPS-aided inertial navigation system. IEEE Transactions on Intelligent Transportation Systems, 2011.

    [9] Hwang S Y, Lee and J M. Estimation of attitude and position of moving objects using multi-filtered inertial navigation system. The Transactions of KIEE, 2011, 60(12): 2183-2396.

    [10] Farrell J A. Aided navigation. McGrawHill, 2008.

    [11] de Melo L F, Mangili J F Jr. Trajectory planning for nonholonomic mobile robot using extended Kalman filter. Mathematical Problems in Engineering, 2010: 1-22.

    [12] Wan E A, van der Merwe R. The unscented Kalman filter for nonlinear estimation. In: Proceedings of IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium. IEEE, 2000: 153-158.

    [13] Hartikainen J, Sarkka S. Optimal filtering with Kalman filters and smoothers-a manual for matlab toolbox EKF / UKF. Biomedical Engineering, 2008: 1-57.

    [14] Haykin S, Kalman filtering and neural networks, John Wiley & Sons, New York, 2001.

    [15] Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation, and tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 425-437.

    [16] YANG Ning, TIAN Wei-Feng, JIN Zhi-hua, et al. Particle filter for sensor fusion in a land vehicle navigation system. Measurement Science and Technology, 2005, 16: 677-681.

    [17] CHEN Zhe. Bayesian filtering: from Kalman filters to particld filters, and beyound. Citeseer, 2003: 1-69.

    date: 2012-09-26

    The MKE(the Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006)

    Jangmyung Lee (jmlee@pusan.ac.kr)

    CLD number: TN967 Document code: A

    1674-8042(2013)01-0047-05

    10.3969/j.issn.1674-8042.2013.01.011

    日韩亚洲欧美综合| 亚洲国产最新在线播放| 国产片特级美女逼逼视频| 久久久色成人| 久久久久久久久久久丰满| 国产av一区二区精品久久 | 国产精品久久久久久精品古装| 亚洲精品456在线播放app| av视频免费观看在线观看| 内射极品少妇av片p| 一个人看的www免费观看视频| 亚洲熟女精品中文字幕| 欧美少妇被猛烈插入视频| 黑人猛操日本美女一级片| 久久国内精品自在自线图片| 少妇 在线观看| 最近的中文字幕免费完整| 国产视频内射| 精品一品国产午夜福利视频| 三级国产精品欧美在线观看| 日本午夜av视频| 亚洲欧美成人综合另类久久久| 日韩成人av中文字幕在线观看| 国精品久久久久久国模美| 18禁裸乳无遮挡免费网站照片| 国产精品国产三级国产专区5o| 99热全是精品| 午夜精品国产一区二区电影| 午夜激情福利司机影院| 一级爰片在线观看| 人妻一区二区av| 这个男人来自地球电影免费观看 | 另类亚洲欧美激情| 特大巨黑吊av在线直播| 国产精品.久久久| 免费看光身美女| 成年美女黄网站色视频大全免费 | 亚洲人与动物交配视频| 国产淫语在线视频| 网址你懂的国产日韩在线| 亚洲最大成人中文| 搡女人真爽免费视频火全软件| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产色婷婷电影| 亚洲四区av| 婷婷色综合www| 免费观看无遮挡的男女| 久久这里有精品视频免费| 国产无遮挡羞羞视频在线观看| 六月丁香七月| 国产高清有码在线观看视频| 美女内射精品一级片tv| 国精品久久久久久国模美| 91精品国产国语对白视频| 精品久久久精品久久久| 99久久精品国产国产毛片| 超碰97精品在线观看| 在线亚洲精品国产二区图片欧美 | 日本黄大片高清| 男人舔奶头视频| 亚洲一区二区三区欧美精品| 欧美亚洲 丝袜 人妻 在线| 边亲边吃奶的免费视频| 色网站视频免费| 久久鲁丝午夜福利片| 日本黄色日本黄色录像| 大话2 男鬼变身卡| 久久99精品国语久久久| 日韩大片免费观看网站| 欧美日本视频| 丝瓜视频免费看黄片| 国产精品国产三级国产专区5o| 国语对白做爰xxxⅹ性视频网站| 一二三四中文在线观看免费高清| 久久97久久精品| 啦啦啦视频在线资源免费观看| 嫩草影院入口| 少妇人妻精品综合一区二区| 国产亚洲精品久久久com| 午夜精品国产一区二区电影| 国产亚洲精品久久久com| 国产精品久久久久久精品古装| 麻豆精品久久久久久蜜桃| 丝袜脚勾引网站| 久久久久网色| 久久精品夜色国产| 日韩一区二区三区影片| 亚洲美女搞黄在线观看| 亚洲av综合色区一区| 国产亚洲一区二区精品| 欧美高清性xxxxhd video| 婷婷色av中文字幕| 嘟嘟电影网在线观看| 成年av动漫网址| 中文字幕免费在线视频6| 欧美高清性xxxxhd video| av线在线观看网站| 国产在线一区二区三区精| 99热全是精品| 国产69精品久久久久777片| 色视频www国产| 久久久久久人妻| 亚洲av不卡在线观看| 久久久久久人妻| av在线app专区| 联通29元200g的流量卡| 欧美人与善性xxx| 伊人久久精品亚洲午夜| 久久久久国产网址| av在线老鸭窝| 人妻 亚洲 视频| 人人妻人人爽人人添夜夜欢视频 | 国产精品国产三级国产av玫瑰| 精品久久国产蜜桃| 午夜免费鲁丝| 亚洲精品国产av成人精品| 国产亚洲精品久久久com| 妹子高潮喷水视频| 亚洲欧美一区二区三区国产| 国产深夜福利视频在线观看| 蜜桃久久精品国产亚洲av| 国产久久久一区二区三区| 在线精品无人区一区二区三 | 高清视频免费观看一区二区| av专区在线播放| 成人免费观看视频高清| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区四那| 亚洲精华国产精华液的使用体验| tube8黄色片| 人人妻人人看人人澡| 你懂的网址亚洲精品在线观看| 国产精品一区二区性色av| 国产精品国产三级专区第一集| 大码成人一级视频| 成人特级av手机在线观看| 丰满迷人的少妇在线观看| 国产女主播在线喷水免费视频网站| 舔av片在线| 在线看a的网站| 永久免费av网站大全| 亚洲丝袜综合中文字幕| 久久精品熟女亚洲av麻豆精品| 亚洲精品一二三| 国产成人一区二区在线| 亚洲精品视频女| 国产午夜精品久久久久久一区二区三区| 哪个播放器可以免费观看大片| 少妇人妻久久综合中文| 亚洲内射少妇av| 啦啦啦视频在线资源免费观看| 99久久综合免费| 少妇猛男粗大的猛烈进出视频| 亚洲国产av新网站| 亚洲国产精品专区欧美| 亚洲自偷自拍三级| 久久久国产一区二区| 欧美精品国产亚洲| av国产精品久久久久影院| 亚洲va在线va天堂va国产| 嘟嘟电影网在线观看| 亚洲精华国产精华液的使用体验| 亚洲欧美成人综合另类久久久| 99热网站在线观看| 又大又黄又爽视频免费| 免费av中文字幕在线| 综合色丁香网| 久久综合国产亚洲精品| 校园人妻丝袜中文字幕| 欧美bdsm另类| 性高湖久久久久久久久免费观看| 伦精品一区二区三区| www.av在线官网国产| 亚洲真实伦在线观看| 欧美日韩视频精品一区| 久久国产乱子免费精品| 又粗又硬又长又爽又黄的视频| 国产视频首页在线观看| av国产精品久久久久影院| 成人无遮挡网站| 日韩一区二区三区影片| 国产 一区 欧美 日韩| 亚洲无线观看免费| 成人免费观看视频高清| 日韩欧美 国产精品| 精品熟女少妇av免费看| 亚洲精品,欧美精品| 亚洲精品乱久久久久久| 伦理电影免费视频| 亚洲va在线va天堂va国产| 国产视频内射| 联通29元200g的流量卡| 国产成人freesex在线| 少妇高潮的动态图| 亚洲精品乱码久久久久久按摩| 色婷婷av一区二区三区视频| 一边亲一边摸免费视频| 亚洲国产欧美人成| 亚洲婷婷狠狠爱综合网| 卡戴珊不雅视频在线播放| 午夜福利影视在线免费观看| 99热这里只有是精品在线观看| 久久久久久久国产电影| h视频一区二区三区| 国产伦精品一区二区三区四那| 一级毛片黄色毛片免费观看视频| 欧美xxⅹ黑人| 日韩不卡一区二区三区视频在线| 成人影院久久| 嫩草影院入口| 美女cb高潮喷水在线观看| 男人和女人高潮做爰伦理| 香蕉精品网在线| 欧美高清成人免费视频www| 小蜜桃在线观看免费完整版高清| 五月开心婷婷网| 人妻夜夜爽99麻豆av| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩卡通动漫| 欧美xxxx性猛交bbbb| av在线app专区| 亚洲经典国产精华液单| 午夜福利在线观看免费完整高清在| 日本黄色日本黄色录像| www.av在线官网国产| 一区在线观看完整版| 亚州av有码| 青春草亚洲视频在线观看| 国产高清有码在线观看视频| 美女高潮的动态| 久久久久久久亚洲中文字幕| 亚洲激情五月婷婷啪啪| 日韩三级伦理在线观看| 久久人人爽av亚洲精品天堂 | 国产成人一区二区在线| 寂寞人妻少妇视频99o| 视频区图区小说| 搡女人真爽免费视频火全软件| 一区二区三区免费毛片| 午夜激情福利司机影院| videos熟女内射| 小蜜桃在线观看免费完整版高清| 亚洲av二区三区四区| 成人亚洲精品一区在线观看 | 韩国高清视频一区二区三区| 久久影院123| 激情五月婷婷亚洲| 啦啦啦中文免费视频观看日本| 久久久精品94久久精品| 草草在线视频免费看| 国产免费一级a男人的天堂| 熟女av电影| 观看免费一级毛片| 国产成人aa在线观看| 在线免费观看不下载黄p国产| 综合色丁香网| 日日摸夜夜添夜夜爱| 偷拍熟女少妇极品色| 超碰av人人做人人爽久久| 日本av手机在线免费观看| 日本猛色少妇xxxxx猛交久久| 国产视频首页在线观看| 2018国产大陆天天弄谢| 男女边吃奶边做爰视频| 国产黄片视频在线免费观看| 国内精品宾馆在线| av在线老鸭窝| 久久人妻熟女aⅴ| 免费久久久久久久精品成人欧美视频 | 精华霜和精华液先用哪个| 一边亲一边摸免费视频| 日本av手机在线免费观看| 亚洲精品日本国产第一区| a 毛片基地| 免费看日本二区| 成人午夜精彩视频在线观看| 精品熟女少妇av免费看| 亚洲综合色惰| 久久国内精品自在自线图片| 国产91av在线免费观看| 欧美丝袜亚洲另类| 欧美精品亚洲一区二区| 少妇精品久久久久久久| 欧美最新免费一区二区三区| 国产91av在线免费观看| freevideosex欧美| 卡戴珊不雅视频在线播放| 日本黄色片子视频| 亚洲激情五月婷婷啪啪| 视频中文字幕在线观看| 亚洲精品456在线播放app| 国产白丝娇喘喷水9色精品| 精品国产三级普通话版| 亚洲国产最新在线播放| 97超碰精品成人国产| 国产精品国产三级国产av玫瑰| 女性被躁到高潮视频| 午夜免费男女啪啪视频观看| 国产成人免费观看mmmm| 特大巨黑吊av在线直播| 两个人的视频大全免费| 久久99热这里只频精品6学生| h视频一区二区三区| 欧美日韩在线观看h| 在线观看三级黄色| 亚洲精品中文字幕在线视频 | 国产亚洲av片在线观看秒播厂| 亚洲av二区三区四区| 亚洲欧美精品专区久久| 日韩亚洲欧美综合| 亚洲欧美日韩东京热| 国产黄频视频在线观看| 在线免费观看不下载黄p国产| 国产在线视频一区二区| 国产高潮美女av| 少妇丰满av| 成人二区视频| 天天躁夜夜躁狠狠久久av| 丰满乱子伦码专区| 老女人水多毛片| 日日啪夜夜撸| av女优亚洲男人天堂| 女人久久www免费人成看片| 在线观看三级黄色| 国产乱人偷精品视频| 街头女战士在线观看网站| 亚洲精品国产av成人精品| 久久久久久久久久人人人人人人| 在线观看国产h片| 精品一品国产午夜福利视频| 七月丁香在线播放| 啦啦啦啦在线视频资源| 免费av不卡在线播放| 丰满乱子伦码专区| 一级爰片在线观看| 国产精品秋霞免费鲁丝片| 日韩 亚洲 欧美在线| 身体一侧抽搐| 久久国内精品自在自线图片| 亚洲中文av在线| 啦啦啦中文免费视频观看日本| 美女中出高潮动态图| av国产免费在线观看| 亚洲精品中文字幕在线视频 | 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 亚洲高清免费不卡视频| 狠狠精品人妻久久久久久综合| 亚洲真实伦在线观看| 我要看黄色一级片免费的| 久久国产精品大桥未久av | 亚洲色图综合在线观看| a级一级毛片免费在线观看| 亚洲av中文av极速乱| 在现免费观看毛片| av天堂中文字幕网| 午夜老司机福利剧场| 一个人看视频在线观看www免费| 欧美精品国产亚洲| 国产亚洲一区二区精品| 91午夜精品亚洲一区二区三区| 亚洲成人手机| 黄色一级大片看看| 人人妻人人添人人爽欧美一区卜 | 色婷婷久久久亚洲欧美| av.在线天堂| 一区二区三区四区激情视频| 黄色配什么色好看| 日韩强制内射视频| 赤兔流量卡办理| 99久久中文字幕三级久久日本| 亚洲四区av| 你懂的网址亚洲精品在线观看| 女人十人毛片免费观看3o分钟| 十八禁网站网址无遮挡 | 天天躁日日操中文字幕| 久久久欧美国产精品| 国产精品偷伦视频观看了| 大香蕉97超碰在线| www.av在线官网国产| 91久久精品国产一区二区三区| a级一级毛片免费在线观看| 我的女老师完整版在线观看| 欧美成人精品欧美一级黄| 亚洲天堂av无毛| 狂野欧美白嫩少妇大欣赏| 一级毛片黄色毛片免费观看视频| 毛片女人毛片| 久久国产精品大桥未久av | 又大又黄又爽视频免费| 欧美成人午夜免费资源| 亚洲成人中文字幕在线播放| 18禁动态无遮挡网站| 亚洲精品自拍成人| 欧美xxxx黑人xx丫x性爽| 日韩成人伦理影院| 各种免费的搞黄视频| 妹子高潮喷水视频| 不卡视频在线观看欧美| 18禁在线播放成人免费| 国产午夜精品一二区理论片| 精品国产三级普通话版| 中文字幕免费在线视频6| av在线观看视频网站免费| 大片免费播放器 马上看| 国产高清不卡午夜福利| 能在线免费看毛片的网站| 亚洲国产精品999| 麻豆国产97在线/欧美| 在线观看人妻少妇| 菩萨蛮人人尽说江南好唐韦庄| 99久久综合免费| 高清在线视频一区二区三区| 日本色播在线视频| 亚洲不卡免费看| 午夜日本视频在线| 久久精品国产亚洲网站| 大香蕉久久网| 七月丁香在线播放| 国产精品伦人一区二区| 精品久久久久久电影网| 亚洲人成网站在线播| 国产成人91sexporn| 久久久久久久大尺度免费视频| 观看av在线不卡| 99热这里只有是精品在线观看| 91久久精品电影网| 最近的中文字幕免费完整| av在线蜜桃| 国产黄片视频在线免费观看| 一个人看的www免费观看视频| 久久人人爽av亚洲精品天堂 | 久久久国产一区二区| 国产在线一区二区三区精| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成a人片在线观看 | 蜜桃久久精品国产亚洲av| 亚洲精品,欧美精品| 中文字幕亚洲精品专区| 日本av免费视频播放| 在线亚洲精品国产二区图片欧美 | 亚洲色图av天堂| 国产精品女同一区二区软件| 久久毛片免费看一区二区三区| 偷拍熟女少妇极品色| 亚洲三级黄色毛片| 日产精品乱码卡一卡2卡三| 日本爱情动作片www.在线观看| 另类亚洲欧美激情| xxx大片免费视频| 老女人水多毛片| 日韩制服骚丝袜av| 高清毛片免费看| av在线蜜桃| 国产老妇伦熟女老妇高清| 亚洲国产高清在线一区二区三| 国模一区二区三区四区视频| 两个人的视频大全免费| 国产片特级美女逼逼视频| 亚洲一区二区三区欧美精品| 免费在线观看成人毛片| av天堂中文字幕网| 女人十人毛片免费观看3o分钟| 亚洲国产精品一区三区| 肉色欧美久久久久久久蜜桃| 成人国产麻豆网| 天堂俺去俺来也www色官网| 日本免费在线观看一区| 伦理电影免费视频| 在线观看免费视频网站a站| 日韩精品有码人妻一区| 简卡轻食公司| 你懂的网址亚洲精品在线观看| 日韩强制内射视频| tube8黄色片| 天堂中文最新版在线下载| 久久综合国产亚洲精品| 18+在线观看网站| 99久久中文字幕三级久久日本| 啦啦啦啦在线视频资源| 亚洲av二区三区四区| 亚洲精品国产成人久久av| 成人午夜精彩视频在线观看| 国产精品三级大全| 成人美女网站在线观看视频| 国产一区亚洲一区在线观看| 免费少妇av软件| 国产精品免费大片| 国产色爽女视频免费观看| 一区二区av电影网| 99热这里只有精品一区| 亚洲美女视频黄频| 国产久久久一区二区三区| 日本午夜av视频| 久久久久久久国产电影| 26uuu在线亚洲综合色| 免费看av在线观看网站| 街头女战士在线观看网站| 韩国av在线不卡| 国产乱人视频| 久久久久国产精品人妻一区二区| 中文天堂在线官网| 国产精品99久久99久久久不卡 | 欧美日韩精品成人综合77777| 人妻系列 视频| 亚洲精品亚洲一区二区| 99热这里只有是精品在线观看| 免费人妻精品一区二区三区视频| 久久99热6这里只有精品| 国产伦理片在线播放av一区| 黄片wwwwww| 黄色视频在线播放观看不卡| 免费av不卡在线播放| 国产亚洲最大av| 国产深夜福利视频在线观看| 美女脱内裤让男人舔精品视频| 超碰av人人做人人爽久久| av在线app专区| 婷婷色麻豆天堂久久| 最后的刺客免费高清国语| 99re6热这里在线精品视频| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类| 国产av码专区亚洲av| 超碰av人人做人人爽久久| 直男gayav资源| 国产黄频视频在线观看| 一级黄片播放器| 国产成人精品福利久久| 青春草亚洲视频在线观看| 99热这里只有是精品50| 777米奇影视久久| av黄色大香蕉| 亚洲欧美精品专区久久| videossex国产| 亚洲久久久国产精品| 一本色道久久久久久精品综合| 少妇熟女欧美另类| 伦精品一区二区三区| 欧美三级亚洲精品| 国模一区二区三区四区视频| 99视频精品全部免费 在线| 日韩免费高清中文字幕av| 久久亚洲国产成人精品v| 日日撸夜夜添| 又爽又黄a免费视频| 最黄视频免费看| 秋霞在线观看毛片| 免费av不卡在线播放| av卡一久久| 亚洲,欧美,日韩| 精品久久国产蜜桃| 内地一区二区视频在线| 五月玫瑰六月丁香| 大又大粗又爽又黄少妇毛片口| 日韩伦理黄色片| 精品亚洲乱码少妇综合久久| 国产精品偷伦视频观看了| 黄色视频在线播放观看不卡| 超碰97精品在线观看| 午夜免费观看性视频| 色吧在线观看| 中文字幕久久专区| 亚洲综合色惰| 国产在线一区二区三区精| 国产精品福利在线免费观看| 亚洲国产色片| 欧美最新免费一区二区三区| 亚洲高清免费不卡视频| 免费观看在线日韩| 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 成人影院久久| 伊人久久精品亚洲午夜| 色视频在线一区二区三区| 免费av不卡在线播放| 美女内射精品一级片tv| 欧美人与善性xxx| 免费久久久久久久精品成人欧美视频 | 日本午夜av视频| 亚洲四区av| 插逼视频在线观看| 大片免费播放器 马上看| 色5月婷婷丁香| 国产精品三级大全| 欧美高清成人免费视频www| 亚洲自偷自拍三级| 极品少妇高潮喷水抽搐| 这个男人来自地球电影免费观看 | 一级毛片 在线播放| 黄色欧美视频在线观看| 亚洲精品色激情综合| av在线app专区| 国产精品免费大片| 高清毛片免费看| 国产精品偷伦视频观看了| 性色avwww在线观看| 1000部很黄的大片| 春色校园在线视频观看| 亚洲色图av天堂| 一级二级三级毛片免费看| 中国美白少妇内射xxxbb| 国产精品三级大全| 国产成人a区在线观看| 国产精品福利在线免费观看| 三级国产精品片| 我的老师免费观看完整版| 天天躁日日操中文字幕| 久久久久久久久久成人| 夫妻午夜视频| av在线app专区| 一级片'在线观看视频| 国产色爽女视频免费观看| 亚洲av男天堂|