羅萬團(tuán),方旭明,程夢,周祥娟,3
(1.西南交通大學(xué) 信息編碼與傳輸四川省重點(diǎn)實(shí)驗(yàn)室,四川 成都 610031;2.廣西民族大學(xué) 物理與電子工程學(xué)院,廣西 南寧 530006;3. 南京中興新軟件有限責(zé)任公司,江蘇 南京 210012)
由于世界各國高鐵速度的不斷提升,高鐵通信面臨著巨大的挑戰(zhàn)。超高速列車的無線通信關(guān)系著列車的可靠運(yùn)行和乘客的行車體驗(yàn)。由于理論和技術(shù)限制,現(xiàn)有的移動(dòng)通信技術(shù)在高速移動(dòng)情況下面臨通信性能的急劇下降。高鐵沿線的地形多種多樣,如開闊平原、高架橋、山區(qū)、城區(qū)、隧道等,對于快速運(yùn)動(dòng)的列車來說,不同的地形下的無線信道差別很大。不管是何種地形,速度越高,對無線通信的影響越大,解決難度也越大,對技術(shù)要求也越高。
隨著LTE-R和智能交通系統(tǒng)的發(fā)展,使得車載多天線技術(shù)在交通運(yùn)輸場景(如車對車通信、高速鐵路車地通信)的應(yīng)用成為一個(gè)熱點(diǎn)。高速鐵路無線通信要求更可靠的通信鏈路和更高的數(shù)據(jù)率,以保障行車安全,滿足車內(nèi)旅客各種各樣的通信業(yè)務(wù)。因此,在高鐵場景下揭示多天線技術(shù)應(yīng)用的有效性、挖掘多天線技術(shù)的應(yīng)用潛力成為高鐵無線通信系統(tǒng)的主要研究問題之一。在下一代移動(dòng)通信系統(tǒng)中,MIMO(multiple input multiple output)是一項(xiàng)重要的技術(shù)[1],MIMO的空間復(fù)用(SM)和發(fā)送分集(TD)可以提高頻譜效率和信號質(zhì)量[2,3];在移動(dòng)通信系統(tǒng)中使用不同的多天線陣列配置可以提高系統(tǒng)性能[4]。文獻(xiàn)[5]研究了地鐵隧道中,當(dāng)發(fā)射陣列垂直或與軌道成 30°夾角時(shí)可以得到最佳的容量性能;文獻(xiàn)[6]使用EM (electro magnetic) 仿真了鐵路隧道內(nèi)的MIMO傳輸矩陣,討論了接收陣列各天線在一定間距下的容量性能。鐵路的隧道環(huán)境中,多徑成分確實(shí)非常豐富,但是高鐵線路大多情況下以高架橋或開闊環(huán)境為主,反射體有限,幾乎沒有多徑成分,此時(shí)只有端到端的視距接收,不能高效利用常規(guī)多天線分集技術(shù)來提高信號接收質(zhì)量。另一方面,在視距接收時(shí),車載臺(tái)的接收角度在高速情況下變化劇烈,使得與接收角度相關(guān)的性能發(fā)生劇烈變化。本文據(jù)此展開了多天線技術(shù)在高鐵環(huán)境下的高效應(yīng)用研究。
高鐵中的鐵路無線通信網(wǎng)絡(luò)沿鐵路采用線性覆蓋。同時(shí),為了避免列車車體對無線信號的巨大衰減,車內(nèi)用戶與地面基站之間一般采用兩跳鏈路傳輸,即“車載中繼站—地面基站”鏈路與“車內(nèi)”鏈路。如果車載中繼站采用多天線陣列,在高架橋和開闊地時(shí),列車周圍幾乎沒有反射體和散射體,可以認(rèn)為基站和車載中繼站視距(LOS, line-of- sight)傳輸,而且此應(yīng)用場景來源于工程實(shí)際測試結(jié)果[7]。在LOS傳輸下,無線信道不存在多徑效應(yīng),那么,此時(shí)速度對無線信道的影響是多普勒頻偏[8],而不是多普勒擴(kuò)展。考慮到目前車地通信系統(tǒng)的技術(shù)現(xiàn)狀,并不失一般性,假設(shè)基站端采用單根天線,車載接收機(jī)采用均勻間隔放置的直線多天線陣列。假設(shè) LOS視距徑的多普勒頻偏可以得到補(bǔ)償[9~11],對于下行車載多天線接收,視距SIMO信道場景如圖1所示。
圖1中天線陣元總數(shù)為rn。任何多天線陣列的遠(yuǎn)場場強(qiáng)總可以分解為天線陣元因子和天線陣因子的乘積[12];本文只關(guān)心天線陣因子,而不涉及具體的天線陣元因子,即天線類型。假設(shè)所采用的天線陣元是全向天線。圖1中車載天線陣列為示意圖,在實(shí)際工程應(yīng)用中,天線陣列外形及高度有嚴(yán)格規(guī)定。將多天線陣列放置在x軸上,第一個(gè)陣元與三維坐標(biāo)系的原點(diǎn)O重合,發(fā)射天線與陣元1之間的距離為d,發(fā)射天線與陣元i之間的距離為 di。天線之間的距離為Δrλ,λ為載波波長,則天線間距關(guān)于載波波長的歸一化距離為Δr,多天線陣列歸一化長度為 nrΔr。在實(shí)際場景中,發(fā)射天線與接收多天線陣列之間的距離遠(yuǎn)遠(yuǎn)大于陣列長度,即滿足d>>nrΔrλ。多天線陣列的入射角為(φ, θ),φ是視距接收方向上與z軸正向夾角,θ是視距接收方向在xy平面上的投影與y軸正向夾角,陣列法線在xy平面上,并且與y軸平行,因此θ也是視距接收方向在xy平面上的投影與陣列法線的夾角。A A''是基站高度, A' A''是車載天線陣列高度,則d的投影d'與 di的投影 di'和車載多天線陣列在同一個(gè)水平面上。 d ' = d ?si n φ, di' = di?si n φ,d'與 di'之間的關(guān)系如式(1)所示。
圖1 視距多天線接收關(guān)系
則發(fā)射天線到各接收天線陣元的距離為
假設(shè)各個(gè)接收天線陣元初始相位相同,都為 0(在實(shí)際系統(tǒng)中,這是易于實(shí)現(xiàn)的[13]),則第i個(gè)陣元的信道增益為
其中,fc是載波頻率,c是電磁波在真空中的光速,ai和τi分別是第i根天線的衰減和延遲。在實(shí)際場景中,發(fā)射天線與接收多天線陣列之間的距離遠(yuǎn)遠(yuǎn)大于陣列長度,因此可以認(rèn)為路徑衰減對所有的天線陣元都相同,則
將式(2)代入式(4),得
則多天線信道增益矢量h為
其中,TA是A的轉(zhuǎn)置。若發(fā)送碼元是x,則接收信號為
在式(7)中,y為接收矢量, n ~ C Ν ( 0,N0I),即符合零均值空間白(ZMSW, zero-mean spatially white)分布的噪聲信號,令
則式(8)中的Ζ(φ, θ)為歸一化天線陣向量。
若使用N組相同配置的多天線陣列進(jìn)行接收合并,則信道矩陣為H是大小為nr×N的矩陣。H*H和 H H*的特征值為則H的非零奇異值為在數(shù)值分析中,η=μmaxμmin定義為矩陣H的條件數(shù)η[14,15],如果η趨于 1,則成該矩陣是良態(tài)的。而良態(tài)信道矩陣有利于高信噪比下的通信。則此時(shí)的信道容量為[16]
式(9)中,C為信道容量,B為信道帶寬,SNR是信噪比。
在高鐵視距情況下,將一組多天線陣列作為一個(gè)整體接收基站信號, H = [ Z1],此時(shí)只有一個(gè)非零奇異值,由于天線陣向量是歸一化的,即因此改變多天線陣列的參數(shù)(Δ和rnr)不會(huì)產(chǎn)生容量增益,此時(shí)的容量即為香農(nóng)容量,如圖2所示。
圖2 SNR=10dB時(shí)不同天線陣列參數(shù)時(shí)的容量
由圖2可知,此時(shí)增加天線數(shù)量rn或改變天線間距離rΔ都不會(huì)產(chǎn)生容量增益。原因是在高鐵視距情況下,沒有多徑效應(yīng),此時(shí)只有一條獨(dú)立支路(可以認(rèn)為無數(shù)條相關(guān)性很強(qiáng)的支路,匯聚成一條支路),將陣列增益歸一化之后,沒有多天線陣列可以得到空—時(shí)分集增益。
不失一般性,考慮車載兩組(N=2)多天線陣列,如圖3所示。
車載兩組多天線陣列之間的距離為S,兩組多天線陣列的入射角分別為,基站到多天線陣列的距離分別為 d1和 d2,假設(shè)兩組多天線陣列的數(shù)量nr和天線間距離Δr相同,而且可以將兩組多天線陣列的接收信號進(jìn)行合并。那么,此時(shí)的信道矩陣為 H =[Z1Z2],即
圖3 車載兩組多天線陣列
則H的2個(gè)奇異值 λ1, λ2和條件數(shù)η分別為
由式(9)得兩組多天線陣列合并后的信道容量為
列車行駛在不同的位置時(shí),( φ1, θ1)和(φ2, θ2)是不同的,而且不同的nr和Δr,信道矩陣H是變化的,但是只有η接近 1,才可以提高信道容量。列車行駛時(shí),使用車載兩組多天線陣列接收時(shí)的容量如圖4所示(SNR=10dB)。
圖4 不同參數(shù)下兩組陣列合并接收時(shí)的容量
在圖4中,沿著 Δr= 1平面做切面,如圖5所示(SNR = 10dB)。
圖5 車載兩組多天線陣列合并接收的容量
從圖4和圖5可以看出,在不同的陣列參數(shù)( nr和Δr)組合下,車載兩組多天線陣列接收同一個(gè)基站的信號的容量曲線輪廓很相似:隨著與基站距離越來越遠(yuǎn)(約300m左右),容量最終逼近香農(nóng)容量限,也就是說,此時(shí)兩組多天線陣列合并接收并沒有獲得穩(wěn)定容量;同時(shí),列車在基站附近時(shí),容量會(huì)發(fā)生抖動(dòng),那是因?yàn)樵诨靖浇肷浣亲兓瘎×业脑?。由于高鐵列車長度有限, S < 4 00,改變S對曲線輪廓幾乎沒有影響。因?yàn)樵?00m的范圍內(nèi),S的改變對 (φ1, θ1)和(φ2,θ2)幾乎沒有影響。另一方面,即使改變多天線陣列的天線數(shù)量 nr和天線間隔Δr也不會(huì)改變?nèi)萘壳€,只是在逼近香農(nóng)容量時(shí)與基站的距離有些許差別而已。那是因?yàn)閮山M多天線陣列的入射角和幾乎相等,H的列向量相關(guān)性很大,則H不為零奇異值將會(huì)相差很大[17],即H的列向量相關(guān)性越大,其就越有可能是病態(tài)矩陣,不利于提高信道容量。因此,即使在列車上裝載N組多天線陣列,由于沒有改變接收矩陣H的列向量之間的相關(guān)性,也不會(huì)改變圖4和圖5中容量曲線的輪廓。
由以上分析可知,由于兩組多天線陣列之間的距離S不改變?nèi)萘壳€的輪廓,從工程實(shí)現(xiàn)的角度出發(fā),將兩組陣列合并成一組陣列,如圖6(a)所示,改變該陣列中的第 1組陣列和第 2組陣列的權(quán)重值,使得兩者權(quán)重差為Δω = s inβ,同樣可以實(shí)現(xiàn)容量的提升,而且由于是同一組天線陣列,實(shí)現(xiàn)信號合并及權(quán)重差的改變更方便。
圖6 S=0時(shí)多組多天線陣列合并方案
那么,車載 N組多天線陣列接收合并時(shí),H= [ Z1Z2???ZN],要得到容量提升,由詹森不等式[15],式(9)變?yōu)?/p>
又因?yàn)榫仃囆诺繦的總功率增益為
其中,*
()?表示對()?求共軛轉(zhuǎn)置,Tr()?是矩陣的跡。式(15)和式(16)表明,在總功率相等的所有信道中,容量最大的信道是全部奇異值都相等的信道。也就是說,條件數(shù)η越接近1,奇異值越不分散,容量就越大。
不失一般性,先
那么,
那么,兩組多天線陣列合并后的容量為
通過調(diào)整權(quán)重,得兩組 nr= 2 的多天線陣列在不同權(quán)重下的接收合并容量,如圖7所示(SNR為10dB)。
在圖7中,沿著 Δr= 1平面做切面,如圖8所示(SNR為10dB)。
從圖7和圖8可以看出,改變兩組多天線陣列的權(quán)重,可以使列車行駛過程中獲得穩(wěn)定的容量增益,這是因?yàn)楦淖儥?quán)重改變了接收矩陣 H =[Z1Z2]的列向量的相關(guān)性,H的條件數(shù)η≈1,提高了信道容量。將圖5和圖8進(jìn)行比較,改變一組多天線陣列內(nèi)前后兩部分的權(quán)重,不僅可以使列車行駛中獲得穩(wěn)定的增益,而且克服了列車在基站附近時(shí)產(chǎn)生的容量抖動(dòng)。
圖7 兩組 n r= 2 的多天線陣列在不同權(quán)重下的容量
圖8 兩組 Δ r=1、nr= 2 的多天線陣列在不同權(quán)重下的容量
如果有N組多天線陣列進(jìn)行合并接收,如圖6(b)所示(假設(shè)nr≤N)。信道矩陣H=[Z1Z2???ZN],矩陣H的每一列都經(jīng)過了歸一化處理,即不考慮陣列本身的陣列增益,那么又因?yàn)?/p>
調(diào)整整個(gè)天線陣的陣元數(shù) nr,N組天線陣之間的權(quán)重Δω,使得矩陣H的各個(gè)列向量線性無關(guān),那么,矩陣 H = [ Z1Z2???ZN]總的功率增益能平均分布到各組接收天線上,使得 μ1≈μ2≈???≈μN(yùn)≈1,由式(9)可知,此時(shí)車載N組多天線陣列的容量為
車載N組多天線陣列的容量如圖9所示。
圖9 車載N組多天線陣列的容量
增加車載多天線陣列的分組數(shù)N可以提高高鐵視距情況下的容量,在沒有考慮多天線陣列本身的陣列增益時(shí)(因?yàn)橐呀?jīng)將陣列增益歸一化),通過將多組車載多天線陣列的接收信號進(jìn)行合并,改變N組多天線陣列各組之間的權(quán)重差Δω,使得H= [ Z1Z2???ZN]各列之間線性無關(guān),H的奇異值都約等于1,那么H的條件數(shù)η≈1,此時(shí)的容量提升隨著組數(shù)N的增加而增加。但是,隨著N的增加,天線陣元數(shù)也要增加。同時(shí),在一定的天數(shù)陣元數(shù)的基礎(chǔ)上,調(diào)整N組多天線陣列之間合適的權(quán)重差更加困難。
在下一代高鐵車地通信系統(tǒng)采用多天線技術(shù)時(shí),在視距情況不考慮多徑時(shí),接收角度的劇烈變化成了N組多天線接收合并時(shí)提高容量性能的主要問題。本文對高鐵視距情景下的SIMO接收進(jìn)行了建模,并分析了車載N組多天線陣列接收的容量性能,發(fā)現(xiàn)信道容量在基站附近會(huì)得到提升,但是存在抖動(dòng),而且很快衰減到香農(nóng)容量,而且改變多天線陣列參數(shù)(天線陣元個(gè)數(shù)和天線間距離)或單純地增加接收天線陣列組數(shù)N并不能獲得平穩(wěn)容量增益。根據(jù)實(shí)際應(yīng)用情況(如表 1所示),通過改變N組陣列之間的權(quán)重差,使得接收矩陣的條件數(shù)接近于 1,從而提高了視距情況下的信道容量。對于均勻間隔排列的N直線多天線陣列,每組陣列的陣元個(gè)數(shù)對權(quán)重差影響不大,權(quán)重差的選取與鐵路無線通信網(wǎng)絡(luò)的實(shí)際拓?fù)溆嘘P(guān)(如基站高度、車載臺(tái)高度、基站與鐵軌的垂直距離、小區(qū)大小等)。在實(shí)際的網(wǎng)絡(luò)中,這個(gè)權(quán)重差是可以得到的。下一步的工作將針對高鐵視距MIMO進(jìn)行建模,討論其容量性能及最優(yōu)權(quán)重差的取值;也將研究其他幾何形狀的多天線陣列(如環(huán)形或非均勻間隔陣列等)對高鐵特殊應(yīng)用場景的容量性能以及在稀疏多徑效應(yīng)下如何使用多天線陣列提高性能。
附錄 仿真場景參數(shù)
仿真場景如表1所示。
表1 仿真場景參數(shù)[18]
在表 1的網(wǎng)絡(luò)拓?fù)湎?,?jì)算接收陣列入射角因子κ,如圖10所示。
圖10 角度因子κ的變化
圖10中,D是列車離基站的距離。當(dāng)列車在經(jīng)過基站(駛近或駛離)附近時(shí),κ的變化劇烈(從大到小,再從小到大變化),而且κ的斜率會(huì)發(fā)生正負(fù)的跳變,其余行駛過程中κ都是接近于1?;九c鐵軌的垂直距離越近,基站越高,變化抖動(dòng)越厲害。
[1] 3GPP Release 11 V0.0.6. Overview of 3GPP Release 11[S]. 2011.
[2] 3GPP TR 25.876 v7.0.0. Multiple Input Multiple Output(MIMO) in UTRA[S]. 2007.
[3] SIBILLE A, OESTGES C, ZANELLA A. MIMO: from Theory to Implementation[M]. Burlington: Academic Press, 2011.
[4] GODARA L C. Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations[J].Proceedings of the IEEE, 1997, 85(8):1195-1245.
[5] LIENARD M, DEGAUQUE P, BAUDET J. Investigation on MIMO channels in subway tunnels[J]. IEEE Journal on Selected Areas in Communications, 2003, 21(3): 332- 339.
[6] IZQUIERDO B, CAPDEVILA S, JOFRE L. Evaluation of MIMO capacity in train tunnels[A]. IEEE Antennas and Propagation Society International Symposium[C]. Sheraton Waikiki, Honolulu, Hawai'i,USA, 2007. 1365-1368.
[7] HONG W, ZHONG Z D, GUAN K. Path loss models in viaduct and plain scenarios of the high-speed railway[A]. Communications and Networking in China (CHINACOM), 5th International ICST Conference on[C]. Boston, USA, 2010. 1-5, 25-27.
[8] LIU L, TAO CH, QIU J. Position-based modeling for wireless channel on high-speed railway under a viaduct at 2.35GHz[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4): 834-845.
[9] MORELLI M, KUO C C J, PUN M O. Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review[J]. Proceedings of the IEEE, 2007, 95(7):1394-1427.
[10] PIIRANINEN O. Adaptive Compensation of Doppler Shift in a mobile Communication system[P]. US Patent 6473594, 2002.
[11] KLOTSCHE R, WUNSTEL K, BANNIZA T. Doppler Commensation Control for Radio Transmission[P]. U S Patent 7653347, 2010.
[12] GROSS F B. Smart Antennas for Wireless Communications: with MATLAB[M]. New York: McGraw-Hill Professional, 1 Edition, 2005.
[13] 3G Americas, MIMO and smart antennas for 3G and 4G wireless systems: practical aspects and deployment considerations[EB/OL].http://www.4gamericas.org/, 2010.
[14] EDELMAN A. Eigenvalues and Condition Number of Random Matrices[D]. Dept Mathematics, MIT, Cambridge, MA, 1989.
[15] OESTGES C, CLERCKX B. MIMO Wireless Communications: From Real-World Propagation to Space-Time Code Design[M]. Burlington:Academic Press, 2007.
[16] TSE D, VISWANATH P. Fundamentals of Wireless Communication[M]. Cambridge, UK: Cambridge University Press, 2005.
[17] TULINO A M, VERDU S. Random Matrix Theory and Wireless Communications[M]. Boston: Now Publishers Inc, 2004.
[18] KYOSTI P, MEINILA J, HEBTUKA L. WINNER II channel models:part II radio channel measurement and analysis results[EB/OL].http://www.ist-winner.org/, 2007.