杜方川,王 芬,神應(yīng)強(qiáng),陳燦玉,王安明
(1. 杭州師范大學(xué)生物醫(yī)藥與健康研究中心,浙江 杭州 311121;2. 杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院, 浙江 杭州 310036;3. 杭州師范大學(xué)材料與化學(xué)化工學(xué)院, 浙江 杭州 310036)
非天然氨基酸修飾蛋白質(zhì)研究進(jìn)展
杜方川1,2,王 芬1,3,神應(yīng)強(qiáng)1,2,陳燦玉1,王安明1
(1. 杭州師范大學(xué)生物醫(yī)藥與健康研究中心,浙江 杭州 311121;2. 杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院, 浙江 杭州 310036;3. 杭州師范大學(xué)材料與化學(xué)化工學(xué)院, 浙江 杭州 310036)
蛋白質(zhì)修飾是改善其物理化學(xué)和生物學(xué)特性的一種重要方法,目前已成為生物技術(shù)、生物催化和生物醫(yī)學(xué)領(lǐng)域的研究熱點(diǎn).非天然氨基酸在蛋白質(zhì)修飾中表現(xiàn)突出.介紹了非天然氨基酸種類及修飾方法,概述了其應(yīng)用領(lǐng)域,以期為擴(kuò)大利用此方法者提供參考.
生物正交反應(yīng);蛋白質(zhì)修飾;非天然氨基酸;密碼子擴(kuò)展
蛋白質(zhì)僅僅用20種天然氨基酸執(zhí)行了一系列顯著功能,僅有的20種天然氨基酸攜有的功能基團(tuán)數(shù)量有限,無法滿足化學(xué)、生物科學(xué)研究和應(yīng)用中對蛋白質(zhì)結(jié)構(gòu)和功能的需求[1].目前,通過化學(xué)修飾、基因定點(diǎn)突變和計(jì)算機(jī)輔助蛋白質(zhì)設(shè)計(jì),雖然對蛋白質(zhì)的結(jié)構(gòu)改造賦予了天然蛋白質(zhì)新的功能[2],但這些方法都依賴于20種天然氨基酸本身[3];其用于修飾改造的功能基團(tuán)僅有巰基、羥基、羧基、氨基等幾種有限基團(tuán),功能化方式十分有限[4].與此相反,可人為賦予多樣性功能基團(tuán)的非天然氨基酸(Unnatural Amino Acids,UAAs)在蛋白質(zhì)修飾中表現(xiàn)突出[5],這些UAAs含有酮基、醛基、疊氮、炔基、烯基、酰胺基、硝基、磷酸根、磺酸根等多樣性功能基團(tuán),可進(jìn)行多種修飾反應(yīng),如:點(diǎn)擊化學(xué)、光化學(xué)、糖基化、熒光顯色等反應(yīng)[6].通過UAAs對蛋白質(zhì)進(jìn)行修飾給其結(jié)構(gòu)和功能的理論研究與應(yīng)用帶來了新的契機(jī).本文回顧了UAAs修飾蛋白質(zhì)研究的最新進(jìn)展,并對密碼子擴(kuò)展法進(jìn)行詳細(xì)介紹.
一系列UAAs已經(jīng)被用在細(xì)菌、酵母和哺乳動(dòng)物細(xì)胞中進(jìn)行蛋白質(zhì)修飾,其精確性和效率非常高;它們大多都是20種天然氨基酸的衍生物,現(xiàn)今報(bào)道的UAA衍生物有苯丙氨酸衍生物、酪氨酸衍生物、谷氨酰胺衍生物、丙氨酸衍生物、半胱氨酸衍生物、絲氨酸衍生物、賴氨酸衍生物等[7].部分UAAs結(jié)構(gòu)如圖1所示.
圖1 非天然氨基酸結(jié)構(gòu)Fig. 1 The structure of unnatural amino acids
2.1 化學(xué)合成法
固相肽合成方法和半合成方法相結(jié)合能合成出含UAAs的大片段蛋白質(zhì)[8].例如,在化學(xué)連接中,一個(gè)C端含α-硫脂的多肽將和一個(gè)N端含半胱氨酸的多肽反應(yīng),在經(jīng)歷一個(gè)?;嘏藕螅蛑I形成一個(gè)肽鍵將這兩個(gè)片段連接在一起[9].固相肽合成和連接技術(shù)已經(jīng)用于修飾蛋白質(zhì)骨架、紅細(xì)胞生成素同系物、熒光探針、信號蛋白、離子通道、組蛋白等.然而這項(xiàng)技術(shù)的應(yīng)用受所需要保護(hù)基團(tuán)的化學(xué)性質(zhì)、連接位點(diǎn)、蛋白質(zhì)折疊等限制[1].
2.2 體外生物合成法
體外生物合成方法已經(jīng)合成了含UAA的蛋白質(zhì).在這個(gè)技術(shù)中,縮短了的tRNAs被酶法連接到化學(xué)氨?;暮塑账嵘?,這些目的tRNA從連接的天然氨基酸上去耦掉,同時(shí)與非天然氨基酸結(jié)合;隨后細(xì)胞翻譯系統(tǒng)在相應(yīng)的空白密碼子或者編碼密碼子下,使用這些帶有非天然氨基酸的氨酰化的tRNAs合成蛋白質(zhì),但含有非天然氨基酸的氨?;痶RNA加合物穩(wěn)定性很差[10].
2.3 顯微注射法
在體內(nèi),通過顯微注射技術(shù)對蛋白質(zhì)進(jìn)行位點(diǎn)特異性修飾來自于體外生物合成方法的拓展.如非洲爪蟾蜍卵母細(xì)胞被顯微注射進(jìn)2種RNA:一種是編碼蛋白質(zhì)的mRNA,其目標(biāo)位點(diǎn)含有UAG終止密碼子;一種是合成的氨酰化較正tRNA(suppressor tRNA),它能裝載相應(yīng)的UAA.在體內(nèi),通過UAG終止密碼子對蛋白質(zhì)進(jìn)行位點(diǎn)特異性修飾,其中UAAs有酪氨酸同系物、α-羥基氨基酸等.但它繼承了體外生物合成方法的缺點(diǎn),即校正tRNA必須在體外化學(xué)氨?;瘞蟄AA,氨?;膖RNA不能被重復(fù)利用,只能應(yīng)用于能進(jìn)行顯微注射的細(xì)胞[11].
2.4 營養(yǎng)缺陷型法
50年以前,研究者發(fā)現(xiàn)許多天然氨基酸的同系物能抑制細(xì)菌的生長,分析發(fā)現(xiàn)在這些氨基酸同系物存在下合成的蛋白質(zhì),其天然氨基酸已被同系物替換[10],這是因?yàn)榘滨?tRNA合成酶(aminoacyl-tRNA synthetase, aaRS)不能明顯地把天然氨基酸和其同系物嚴(yán)格區(qū)分開來,例如,正亮氨酸(norleucine)能被甲硫氨酰-tRNA合成酶識別,氟苯丙氨酸(p-fluorophenylalanine)能被苯丙氨酰-tRNA合成酶識別[12].Merkel等[13]同時(shí)用4(S)-氟脯氨酸(4(S)-fluoroproline, (4(S)-F)Pro),4-氟苯丙氨酸(4-fluorophenylalanine, (4-F)Phe)和6-氟色氨酸(6-fluorotryptophan, (6-F)Trp)3種UAAs對脂肪酶進(jìn)行修飾,其脂肪酶的結(jié)構(gòu)和活性均未被破壞.DNA聚合酶是一種高的動(dòng)力學(xué)酶,Holzberger等[14]用大腸桿菌營養(yǎng)缺陷型菌株對DNA聚合酶中32個(gè)脯氨酸替換成4(R)-氟脯氨酸(4(R)-fluoroproline, (4(R)-F)Pro),完成了(4(R)-F)Pro對DNA聚合酶的修飾,而DNA聚合酶在其保真度、活性和敏感方面均未發(fā)生變化.但運(yùn)用營養(yǎng)缺陷性菌株來進(jìn)行UAAs對蛋白質(zhì)的修飾,沒有位點(diǎn)特異性、細(xì)胞不能持續(xù)生長,且UAAs僅是天然氨基酸的同系物[15].
2.5 翻譯后修飾法
蛋白質(zhì)翻譯后修飾在生命體中具有十分重要的作用,它使蛋白質(zhì)的結(jié)構(gòu)更為復(fù)雜,功能更為完善,調(diào)節(jié)更為精細(xì),作用更為專一.常見的蛋白質(zhì)翻譯后修飾過程有泛素化、磷酸化、糖基化、脂基化、甲基化和乙酰化等.
Carrico等[16]通過在麥芽糖結(jié)合蛋白、人類生長激素和分枝桿菌磺基轉(zhuǎn)移酶蛋白中,引入一個(gè)含6個(gè)氨基酸的共有序列(LCTPSR),它能被甲酰甘氨酸生成酶識別并修飾,從而生成醛基基團(tuán),新生成的醛基基團(tuán)能進(jìn)一步引入生物物理探針和抗原表位標(biāo)簽到蛋白質(zhì)中.Ohno等[17]用疊氮基酪氨酸(3-azidotyrosine)對鈣調(diào)蛋白進(jìn)行修飾,再用三芳膦同系物對其進(jìn)行選擇性的生物?;揎?,從而開創(chuàng)了一種新的蛋白質(zhì)位點(diǎn)選擇性翻譯后修飾方法.
1.宿主細(xì)胞;2.校正基因載體;3.校正MjTyrRS基因載體;4.目標(biāo)基因載體;5.特異非天然氨基酸;6.含非天然氨基酸蛋白質(zhì).
3.1 校正tRNA/aaRS對
在過去的20年中,正交tRNA/aaRS對(Orthogonal tRNA/aaRS pair)已在大腸桿菌、釀酒酵母和哺乳動(dòng)物中相繼報(bào)道,其種類已超過20種(表1).
表1 正交tRNA/aaRS對
3.1.1 校正tRNA
圖3 校正tRNA篩選Fig. 3 Screening suppressor tRNA
圖4 校正aaRS篩選Fig. 4 Screening suppressor aaRS
3.1.2 校正aaRS
為篩選出識別特異非天然氨基酸的校正aaRS(suppressor aaRS),對正交aaRS (orthogon-Al, aaRS)的活性中心殘基進(jìn)行隨機(jī)突變產(chǎn)生一個(gè)aaRSs突變體文庫(>109個(gè)),再通過陽性和陰性組合篩選出僅能識別某一非天然氨基酸的正交aaRS[43].陽性篩選——在非天然氨基酸存在下,正交aaRSs能氨?;翘烊话被峄蛱烊话被嵫b載到校正tRNA上,氨?;痶RNA通讀含特異堿基位點(diǎn)的氯霉素乙酰轉(zhuǎn)移酶(chloramphenicol acetyl transferase, CAT)基因,使宿主細(xì)胞存活在氯霉素(chloramphenicol, Cm)下,從而排除非正交aaRSs;陰性篩選——非校正aaRSs氨?;烊话被嵫b載到校正tRNA上,含特異堿基位點(diǎn)的核酸酶基因被翻譯,導(dǎo)致宿主細(xì)胞死亡,最終篩選出校正aaRS(圖4).
如O-甲基酪氨酸(O-Methyl-L-tyrosine)校正MjTyrRS篩選,通過MjTyrRS的X射線晶體結(jié)構(gòu)分析,其識別酪氨酸的活性位點(diǎn)殘基為32位酪氨酸、107位谷氨酸、 158位天冬氨酸、 159位異亮氨酸和162位亮氨酸[44];通過對MjTyrRS識別氨基酸的活性位點(diǎn)進(jìn)行隨機(jī)突變產(chǎn)生aaRSs文庫,再通過上述陽性和陰性篩選,產(chǎn)生了識別O-甲基酪氨酸的校正MjTyrRS,其識別位點(diǎn)為32位谷氨酸、107位蘇氨酸、158位丙氨酸、159位異亮氨酸和 162位脯氨酸[22].
由于識別非天然氨基酸的aaRS篩選要產(chǎn)生一個(gè)>109的突變體酶庫,在通過3輪的陽性和陰性篩選,最后篩選出校正aaRS,其過程極其繁瑣和耗時(shí).目前Armen等[45]通過基于分子對接的動(dòng)力學(xué)和自由能計(jì)算,產(chǎn)生了一個(gè)能識別O-甲基酪氨酸的校正aaRS.
3.2 密碼子
3.2.1 三聯(lián)體密碼子
在蛋白質(zhì)翻譯中,UAG終止密碼子指導(dǎo)蛋白質(zhì)合成的終止,但大腸桿菌和釀酒酵母很少用其做終止密碼子[10].基于這一現(xiàn)象,將校正tRNA的反義密碼子突變?yōu)镃UA,再利用校正tRNA/aaRS對通讀UAG密碼子,完成UAA對蛋白質(zhì)的修飾[19].
3.2.2 四聯(lián)體密碼子
為了減少生活污水懸浮雜質(zhì)進(jìn)入處理系統(tǒng),避免水泵及管線堵塞,同時(shí)使中水系統(tǒng)運(yùn)行處理流量平穩(wěn),對沉淀池的出水口及厭氧池的轉(zhuǎn)水進(jìn)行了改造[4-5]。
3.2.3 五聯(lián)體密碼子
3.3 摻入非天然氨基酸的數(shù)目
3.3.1 單個(gè)UAA
利用上述方法進(jìn)行UAA對蛋白質(zhì)的修飾是十分方便的,且已報(bào)道的UAA多達(dá)70多種,如對硝基苯丙氨酸[31]、O-甲基酪氨酸[47]、diazirine-賴氨酸[48]等.
3.3.2 兩個(gè)UAA
3.3.3 多個(gè)UAA
Young等[50]發(fā)現(xiàn)了一個(gè)對氰基苯丙氨酸校正aaRS(p-cyanophenylalanine suppressor aaRS),它有高的底物通透性,在相同條件下可以結(jié)合18種UAAs,包括三氟醚酮(trifluoroketone-)、炔基(alkynyl-)和鹵素(halogen-)替代氨基酸.這給校正aaRSs的篩選提供了一條新的途徑,即篩選出識別某一系列的UAAs,而不是單個(gè)的UAA.
4.1 生物催化
4.1.1 提高酶催化活性
4.1.2 增強(qiáng)酶熱穩(wěn)定性
特氟龍能使阻燃和防火氟化高分子材料表面固化,受此啟發(fā),紐約大學(xué)金·蒙克萊爾研究小組開創(chuàng)了一種能增強(qiáng)蛋白質(zhì)界面的工藝過程.借助營養(yǎng)缺陷性菌株和在培養(yǎng)基中加入對氟苯丙氨酸,制備了對氟苯丙氨酸磷酸酯酶[52],性能測試顯示,這種酶蛋白具有類似于特氟龍的耐熱性能,在60 ℃的高溫下仍可保持結(jié)構(gòu)穩(wěn)定,同時(shí)活性和功能沒有絲毫減弱.在同樣溫度下,天然蛋白質(zhì)分子中的氫鍵會(huì)斷裂,導(dǎo)致結(jié)構(gòu)改變并發(fā)生蛋白質(zhì)變性.通過此氟化氨基酸對蛋白質(zhì)的修飾,給蛋白質(zhì)熱穩(wěn)定研究開辟了新的視野.
4.2 蛋白質(zhì)結(jié)構(gòu)和功能探針
光誘導(dǎo)化學(xué)反應(yīng)存在自然界中,它能調(diào)節(jié)許多細(xì)胞和生物功能,Wang等[53]用光反應(yīng)非天然氨基酸對-(2-四唑)苯丙氨酸(p-(2-tetrazole)phenylalanine, (p-Tpa))對肌紅蛋白進(jìn)行修飾,這給用光來調(diào)節(jié)蛋白質(zhì)功能提供了可能.Lampe等[54]用[13C]對甲氧基苯丙氨酸([13C]p-methoxyphenylalanine)對P450進(jìn)行修飾,修飾后P450和其它原子結(jié)合,可以用來闡明P450在配體位點(diǎn)的構(gòu)象改變,同時(shí)也可以解釋哺乳動(dòng)物P450的復(fù)雜動(dòng)力學(xué)現(xiàn)象.
4.3 藥物蛋白
4.4 蛋白質(zhì)交聯(lián)反應(yīng)
蛋白質(zhì)交聯(lián)在疫苗開發(fā)、藥物傳遞、功能型水合膠方面發(fā)揮著重要作用.這些交聯(lián)雖然發(fā)生在自然界中,但實(shí)驗(yàn)室很難應(yīng)用這個(gè)方法.Ayyadurai等[58]通過3,4-二羥-L-苯丙氨酸(3,4-dihydroxy-L-phenylalanine)對GFP蛋白進(jìn)行修飾,從而實(shí)現(xiàn)了蛋白質(zhì)與多聚糖的生物交聯(lián),這給蛋白質(zhì)交聯(lián)和合成生物學(xué)的發(fā)展帶來了新的希望.Bundy等[59]用對炔丙基氧苯丙氨酸(p-propargyloxyphenylalanine, (pPa))完成了二氫葉酸還原酶和超折疊綠色熒光蛋白的修飾,由于pPa含有酮基,它能在一價(jià)銅離子介導(dǎo)下使炔基與疊氮基發(fā)生交聯(lián)反應(yīng),同時(shí)pPa對UV不敏感,這使異源蛋白質(zhì)間的交聯(lián)也成為了可能.
遺傳編碼UAAs能整合新的化學(xué)性質(zhì)到蛋白質(zhì)中,比其它蛋白質(zhì)修飾方法更有優(yōu)勢,因?yàn)槔眠z傳工程方法可以在肽鏈中選擇任意位置摻入非天然氨基酸,避免了普通化學(xué)修飾中修飾位點(diǎn)選擇的被動(dòng)性;同時(shí)修飾中采用的非天然氨基酸與天然氨基酸結(jié)構(gòu)類似,最大限度地保證了酶蛋白的結(jié)構(gòu)穩(wěn)定和活性保留;20多種正交tRNA/ aaRS對,使70多種UAAs在無義密碼子和四聯(lián)體密碼子下完成了對蛋白質(zhì)的修飾,其宿主涵蓋了大腸桿菌、酵母、哺乳動(dòng)物細(xì)胞.為了進(jìn)一步滿足蛋白質(zhì)新化學(xué)性質(zhì)需要,還需進(jìn)行如下探索:1)開發(fā)新的tRNA/aaRS對用于識別新的UAA;2)創(chuàng)造新的獨(dú)特密碼子允許蛋白質(zhì)含多個(gè)UAAs;3)進(jìn)一步優(yōu)化轉(zhuǎn)移機(jī)制,使UAA修飾的蛋白更有效地表達(dá).
[1] Liu C C, Schultz P G. Adding new chemistries to the genetic code[J]. Annu Rev Biochem,2010,79(1):413-444.
[2] Brustad E M, Arnold F H. Optimizing non-natural protein function with directed evolution[J]. Curr Opin Chem Biol,2010,15(2):201-210.
[3] Sletten E M, Bertozzi C R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality[J]. Angew Chem Int Edit,2009,48(38):6974-6998.
[4] Baslé E, Joubert N, Pucheault M. Protein chemical modification on endogenous amino acids[J]. Chem Biol,2010,17(3):213-227.
[5] Voloshchuk N, Montclare J K. Incorporation of unnatural amino acids for synthetic biology[J]. MolBioSyst.,2009,6(1):65-80.
[6] 劉亞光,方正之,姚文兵.遺傳密碼擴(kuò)充技術(shù)在蛋白質(zhì)研究中的應(yīng)用進(jìn)展[J].中國生化藥物雜志,2011,32(4):328-331.
[7] Young T S, Schultz P G. Beyond the canonical 20 amino acids: expanding the genetic lexicon[J]. J Biol Chem,2010,285(15):11039-11044.
[8] Wang Lei, Xie Jianming, Schultz P G. Expanding the genetic code[J]. Annu Rev Biophys Biomol Struct,2006,35(10):225-249.
[9] 李劼,王杰,陳鵬.基于非天然氨基酸的蛋白質(zhì)生物正交標(biāo)記[J].化學(xué)學(xué)報(bào),2012,70(13):1439-1445.
[10] Wang Lei, Schultz P G. Expanding the genetic code[J]. Angew Chem Int Edit,2005,44(1):34-66.
[11] Hendrickson T L, Crécy-Lagard V D, Schimmel P. Incorporation of nonnatural amino acids into proteins[J]. Annu Rev Biochem,2004,73(1):147-176.
[12] Montclare J K, Son S, Clark G A,etal. Biosynthesis and stability of coiled coil peptides containing (2S, 4R) 5, 5, 5 trifluoroleucine and (2S, 4S) 5, 5, 5 trifluoroleucine[J]. ChemBioChem, 2009, 10(1): 84-86.
[13] Merkel L, Schauer M, Antranikian G,etal. Parallel Incorporation of different fluorinated amino acids: on the way to “teflon” proteins[J]. ChemBioChem, 2010, 11(11): 1505-1507.
[14] Holzberger B, Marx A. Replacing 32 proline residues by a noncanonical amino acid results in a highly active DNA polymerase[J]. J Am Chem Soc, 2010, 132(44): 15708-15713.
[15] de Graaf A J, Kooijman M, Hennink W E,etal. Nonnatural amino acids for site-specific protein conjugation[J]. Bioconjugate Chem, 2009, 20(7): 1281-1295.
[16] Carrico I S, Carlson B L, Bertozzi C R. Introducing genetically encoded aldehydes into proteins[J]. Nat Chem Biol, 2007, 3(6): 321-322.
[17] Ohno S, Matsui M, Yokogawa T,etal. Site-selective post-translational modification of proteins using an unnatural amino acid, 3-azidotyrosine[J]. J Biochem, 2007, 141(3): 335-343.
[18] Noren C J, Anthony-Cahill S J, Griffith M C,etal. A general method for site-specific incorporation of unnatural amino acids into proteins[J]. Science, 1989, 244(4901): 182-188.
[19] Wang Lei, Schultz P G. Expanding the genetic code[J]. Chem Commun, 2002 (1): 1-11.
[20] Furter R. Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli[J]. Protein Sci, 1998, 7(2): 419-426.
[21] Liu D R, Schultz P G. Progress toward the evolution of an organism with an expanded genetic code[J]. Proc Natl Acad Sci USA, 1999, 96(9): 4780-4785.
[22] Wang Lei, Brock A, Herberich B,etal. Expanding the genetic code of Escherichia coli[J]. Science, 2001, 292(5516): 498-500.
[23] Kowal A K, K hrer C, RajBhandary U L. Twenty-first aminoacyl-tRNA synthetase¨Csuppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria[J]. Proc Natl Acad Sci USA, 2001, 98(5): 2268-2273.
[24] Anderson J C, Schultz P G. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression[J]. Biochemistry, 2003, 42(32): 9598-9608.
[25] Neumann H, Peak-Chew S Y, Chin J W. Genetically encoding N(epsilon)-acetyllysine in recombinant proteins[J]. Nat Chem Biol, 2008, 4(4): 232-234.
[26] Wang Y S, Russell W K, Wang Zhiyong,etal. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of l-phenylalanine and its derivatives[J]. Mol BioSyst, 2011, 7(3): 714-717.
[27] Santoro S W, Anderson J C, Lakshman V,etal. An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli[J]. Nucleic Acids Res, 2003, 31(23): 6700-6709.
[28] Anderson J C, Wu N, Santoro S W,etal. An expanded genetic code with a functional quadruplet codon[J]. Proc Natl Acad Sci USA, 2004, 101(20): 7566-7571.
[29] Beene D L, Price K L, Lester H A,etal. Tyrosine residues that control binding and gating in the 5-hydroxytryptamine3 receptor revealed by unnatural amino acid mutagenesis[J]. J Neurosci, 2004, 24(41): 9097-9104.
[30] Pastrnak M, Magliery T J, Schultz P G. A new orthogonal suppressor tRNA/aminoacyl-tRNA synthetase pair for evolving an organism with an expanded genetic code[J]. Helv Chim Acta, 2000, 83(9): 2277-2286.
[31] Wang Feng, Robbins S, Guo Jiantao,etal. Genetic incorporation of unnatural amino acids into proteins in Mycobacterium tuberculosis[J]. PLoS ONE, 2010, 5(2): e9354.
[32] Chin J W, Cropp T A, Chu S,etal. Progress toward an expanded eukaryotic genetic code[J]. Chem Biol, 2003, 10(6): 511-519.
[33] Wu Ning, Deiters A, Cropp T A,etal. A genetically encoded photocaged amino acid[J]. J Am Chem Soc, 2004, 126(44): 14306-14307.
[34] Hancock S M, Uprety R, Deiters A,etal. Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair[J]. J Am Chem Soc, 2010, 132(42): 14819-14824.
[35] Wang Wenyuan, Takimoto J K, Louie G V,etal. Genetically encoding unnatural amino acids for cellular and neuronal studies[J]. Nat neurosci, 2007, 10(8): 1063-1072.
[36] Drabkin H J, Park H J, RajBhandary U L. Amber suppression in mammalian cells dependent upon expression of an Escherichia coli aminoacyl-tRNA synthetase gene[J]. Mol Cell Biol, 1996, 16(3): 907-913.
[37] Sakamoto K, Hayashi A, Sakamoto A,etal. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells[J]. Nucleic Acids Res, 2002, 30(21): 4692-4699.
[38] Zhang Ziwen, Alfonta L, Tian Feng,etal. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells[J]. Proc Natl Acad Sci USA, 2004, 101(24): 8882-8887.
[39] Chen P R, Groff D, Guo Jiantao,etal. A facile system for encoding unnatural amino acids in mammalian cells[J]. Angew Chem Int Edit, 2009, 48(22): 4052-4055.
[40] Hino N, Okazaki Y, Kobayashi T,etal. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid[J]. Nat methods 2005, 2(3): 201-206.
[41] 張春秋, 羅全, 劉俊秋, 等. 蛋白質(zhì)功能化新策略: 嵌入非天然氨基酸[J]. 化學(xué)進(jìn)展, 2012, 24(4): 576-588.
[42] Wang Lei, Schultz P G. A general approach for the generation of orthogonal tRNAs[J]. Chem Biol, 2001, 8(9): 883-890.
[43] Fang Zhengzhi, Liu Yaguang, Liu Jingxian,etal. Designing and Engineering of a Site-specific Incorporation of a Keto Group in Uricase[J]. Chem Biol Drug Des, 2011, 78(3): 353-360.
[44] Zhang Yan, Wang Lei, Schultz P G,etal. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine[J]. Protein Sci, 2005, 14(5): 1340-1349.
[45] Armen R S, Schiller S M, Brooks III C L. Steric and thermodynamic limits of design for the incorporation of large unnatural amino acids in aminoacyl tRNA synthetase enzymes[J]. Proteins, 2010, 78(8): 1926-1938.
[46] Hohsaka T, Ashizuka Y, Murakami H,etal. Five-base codons for incorporation of nonnatural amino acids into proteins[J]. Nucleic Acids Res, 2001, 29(17): 3646-3651.
[47] Kuhn S M, Rubini M, Fuhrmann M,etal. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting[J]. J Mol Biol, 2010, 404(1): 70-87.
[48] Chou C, Uprety R, Davis L,etal. Genetically encoding an aliphatic diazirine for protein photocrosslinking[J]. Chem Sci, 2011, 2(3): 480-483.
[49] Neumann H, Wang K, Davis L,etal. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome[J]. Nature, 2010, 464(7287): 441-444.
[50] Young D D, Young T S, Jahnz M,etal. An Evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity[J]. Biochemistry, 2011, 50(11): 1894-1900.
[51] Ugwumba I N, Ozawa K, Xu Z Q,etal. Improving a natural enzyme activity through incorporation of unnatural amino acids[J]. J Am Chem Soc, 2011, 133(2): 326-333.
[52] Baker P J, Montclare J K. Enhanced refoldability and thermoactivity of fluorinated phosphotriesterase[J]. ChemBioChem, 2011, 12(12): 1845-1848.
[53] Groff D, Wang F, Jockusch S,etal. A new strategy to photoactivate green fluorescent protein[J]. Angew Chem Int Edit, 2010, 49(42): 7677-7679.
[54] Lampe J N, Brandman R, Sivaramakrishnan S,etal. Two-dimensional NMR and all-atom molecular dynamics of cytochrome P450 CYP119 reveal hidden conformational substates[J]. J Biol Chem, 2010, 285(13): 9594-9603.
[55] 姚文兵, 方正之, 才蕾, 等. 一種定點(diǎn)引入非天然氨基酸的突變尿酸氧化酶及其制備方法:中國,101265467 [P].2008-09-17.
[56] Grünewald J, Hunt G S, Dong L,etal. Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids[J]. Proc Natl Acad Sci USA, 2009, 106(11): 4337-4342.
[57] Hutchins B M, Kazane S A, Staflin K,etal. Site-specific coupling and sterically controlled formation of multimeric antibody Fab fragments using unnatural amino acids[J]. J Mol Biol, 2011, 406(4): 595-603.
[58] Ayyadurai N, Prabhu N S, Deepankumar K,etal. Bioconjugation of L-3, 4-Dihydroxyphenylalanine Containing Protein with a Polysaccharide[J]. Bioconjugate Chem, 2011, 22 (4): 551-555.
[59] Bundy B C, Swartz J R. Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein- protein click conjugation[J]. Bioconjugate Chem, 2010, 21(2): 255-263.
OntheModificationofProteinsbyUnnaturalAminoAcids
DU Fangchuan1,2, WANG Feng1,3, SHENG Yingqiang1,2, CHEN Canyu1, WANG Anming1
(1.Research Center of Biomedicine and Health, Hangzhou Normal University, Hangzhou 311121, China;(2.College of Biological and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China;(3.College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China)
Protein modification is an important method for improving the physicochemical and biological characteristics of protein, which has become a hotspot of bio-technology and bio-catalytic and biomedical field. The unnatural amino acids have an outstanding performance in the protein modification. This paper introduced the type of unnatural amino acid and modification methods, and summarized its application fields to provide references for espending the use of this method.
bioorthogonal reactions; protein modification; unnatural amino acid; codon extension
2013-01-10
國家自然科學(xué)基金項(xiàng)目(20906016);浙江省自然科學(xué)基金項(xiàng)目 (LY13B060008).;博士后特別資助項(xiàng)目(2013T60606).
王安明(1975—),男,副研究員,博士, 主要從事生物化工研究.E-mail: waming@hznu.edu.cn
10.3969/j.issn.1674-232X.2013.05.011
O629.7;Q51
A
1674-232X(2013)05-0437-09