• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Ras-MAPK通路在食管癌中的研究進(jìn)展*

      2013-10-25 03:06:53昌毓穗劉季春傅華群喻本桐徐建軍王一明魏益平鄒書兵
      中國(guó)病理生理雜志 2013年2期
      關(guān)鍵詞:磷酸化活化食管癌

      昌毓穗, 劉季春△, 傅華群, 喻本桐, 徐建軍, 王一明, 魏益平, 鄒書兵

      (南昌大學(xué) 1第一附屬醫(yī)院胸心血管外科, 2第二附屬醫(yī)院普外科,3第二附屬醫(yī)院胸心血管外科,江西 南昌 330006)

      Ras-MAPK通路在食管癌中的研究進(jìn)展*

      昌毓穗1, 劉季春1△, 傅華群2△, 喻本桐1, 徐建軍3, 王一明3, 魏益平3, 鄒書兵2

      (南昌大學(xué)1第一附屬醫(yī)院胸心血管外科,2第二附屬醫(yī)院普外科,3第二附屬醫(yī)院胸心血管外科,江西 南昌 330006)

      Ras蛋白是調(diào)節(jié)細(xì)胞生長(zhǎng)和增殖信號(hào)通路的重要元件。當(dāng)Ras變異時(shí),將信號(hào)轉(zhuǎn)導(dǎo)到下游信號(hào)元件可能引起細(xì)胞的異常增殖, 導(dǎo)致腫瘤發(fā)生。抑制Ras及其下游信號(hào)可抑制細(xì)胞增殖[1]和促進(jìn)腫瘤細(xì)胞凋亡[2],研究表明Ras信號(hào)通路在食管腫瘤的發(fā)病過程中起著重要作用[3]。絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號(hào)通路是Ras下游的一個(gè)主要通路,其主導(dǎo)的促有絲分裂和抗凋亡信號(hào)在人惡性腫瘤細(xì)胞的生長(zhǎng)和預(yù)后中扮演重要角色。近年來研究發(fā)現(xiàn)MAPK信號(hào)轉(zhuǎn)導(dǎo)通路在食管癌中表達(dá)失調(diào)[4]。本文就Ras-MAPK通路在食管癌中的研究進(jìn)展作一綜述。

      1 ras基因定位及Ras蛋白的結(jié)構(gòu)和生物學(xué)功能

      1.1ras基因定位ras基因包括3個(gè)主要類型:N-ras、H-ras和K-ras, 它們分別定位于1、11和12 號(hào)染色體。ras基因都含有4個(gè)編碼的外顯子和1個(gè)5’末端非編碼外顯子, 能編碼出4種Ras蛋白:即H-Ras、N-Ras、K-RasA 和K-RasB。

      1.2Ras蛋白的結(jié)構(gòu)和生物學(xué)功能 K-RasB含188個(gè)氨基酸, 其它Ras蛋白均含有189個(gè)氨基酸。Ras蛋白的氨基酸序列高度保守, 同源性達(dá)85%。這些高度保守的結(jié)構(gòu)域包含鳥苷三磷酸(guanosine triphosphate,GTP)及效應(yīng)因子的結(jié)合域,對(duì)于蛋白功能的發(fā)揮起著極為重要的作用。Ras蛋白有一個(gè)特殊的氨基酸結(jié)構(gòu)域, 即羧基末端的CAAX模塊(C為半胱氨酸, A為脂肪族氨基酸, X為任意氨基酸),見圖1。

      Figure 1. Amino acid sequences of partial regions in Ras proteins.Ⅰis the region where the guanylic acid connected to; Ⅱ is the region where the effectors/GAP act on; Ⅲ is the region where GEF act on. The black area is a highly variable region; the pink region is CAAX tetrapeptide motif where C is cysteine, A is aliphatic amino acid and X is terminal amino acid. All the Ras proteins have 189 amino acids except the K-RasB which is composed of 188 amino acids.

      圖1Ras蛋白部分區(qū)域氨基酸序列圖

      Ras蛋白的晶體結(jié)構(gòu)表明它以鳥苷二磷酸(guanosine diphosphate,GDP)結(jié)合(Ras-GDP)和GTP結(jié)合(Ras-GTP)2種形式存在。當(dāng)Ras蛋白與GDP結(jié)合,為失活狀態(tài);與GTP結(jié)合,為活化狀態(tài),見圖2。

      Ras蛋白是調(diào)節(jié)細(xì)胞生長(zhǎng)和增殖的信號(hào)通路的重要元件。當(dāng)Ras變異時(shí),Ras持續(xù)處于活化狀態(tài), 可與下游的效應(yīng)蛋白結(jié)合, 將信號(hào)轉(zhuǎn)導(dǎo)到下游信號(hào)元件, 可能引起細(xì)胞的異常增殖, 導(dǎo)致腫瘤的發(fā)生。盡管點(diǎn)突變影響Ras的閱讀框可導(dǎo)致各種與野生型不一樣的致瘤等位基因,但氨基酸替換常發(fā)生在第12位殘基,同時(shí)也相對(duì)較少地見于第13和第61位殘基[5]。

      2 MAPK通路

      MAPK通過使各種轉(zhuǎn)錄因子的絲氨酸/蘇氨酸磷酸化從而活化各種轉(zhuǎn)錄因子。MAPK通路分為3種,它們分別是:(1)胞外信號(hào)調(diào)控激酶(extracellular signal-regulated kinase,ERK)通路;(2)p38 MAPK通路;(3)JNK/SAPK通路,即c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)通路,又被稱為應(yīng)激活化蛋白激酶(stress-activated protein kinase,SAPK)通路。

      MAPK通路是Ras下游的一個(gè)主要通路,近年來研究發(fā)現(xiàn)MAPK信號(hào)轉(zhuǎn)導(dǎo)通路在包括食管癌在內(nèi)的多種人類腫瘤中表達(dá)失調(diào)[6- 7]。

      3 Ras-MAPK信號(hào)通路與食管癌

      有人通過對(duì)食管癌組織及食管正常組織的對(duì)比實(shí)驗(yàn)發(fā)現(xiàn)食管癌中存在Ras變異,而正常組織中未發(fā)現(xiàn)此現(xiàn)象,吸煙和酗酒可使Ras 第12位密碼子變異而致癌[3]。Ras變異在食管腺癌中為21%,而在高高級(jí)別瘤變中只有11%;在低級(jí)別瘤變中及正常食道黏膜中未檢測(cè)到Ras突變[8]。這說明在癌變的不同階段,Ras變異表達(dá)程度亦不同。并且,當(dāng)Ras異常時(shí)常伴有MAPK的異常。針對(duì)該信號(hào)通路中不同靶位點(diǎn)的研究,可為食管癌發(fā)病機(jī)制的闡明及治療提供有益的理論基礎(chǔ)。

      Figure 2. The activation and inactivation switch of Ras protein.GEF: guanine nucleotide exchange factor; GAP: GTPase-activating protein; E: effector; P: phosphate; A: activation; I: inactivation.

      圖2Ras蛋白活化與失活轉(zhuǎn)變圖

      3.1Ras/Raf/MEK/ERK 這條信號(hào)通路是目前研究得最多和最詳細(xì)的一條通路,也是最經(jīng)典的一條信號(hào)通路。在這條通路中,由于Ras的異?;罨?,從而激活其下游靶標(biāo)Raf,而活化的Raf使下游的絲裂原細(xì)胞外激酶(mitogen extracellular kinase,MEK)磷酸化而被激活,最終激活ERK。

      在食管腺癌中有11%具有活化的變異型B-Raf,在高級(jí)別上皮瘤變的Barrett’s食管中只有4%具有活化的變異型B-Raf[8],說明在B-Raf的表達(dá)可能與食管癌的發(fā)生及惡性程度相關(guān)。食管腺癌和鱗癌中Raf激酶抑制蛋白(Raf kinase inhibitor protein,RKIP)的表達(dá)均明顯下降,有人通過檢測(cè)食管癌組織標(biāo)本發(fā)現(xiàn)RKIP的表達(dá)與組織學(xué)級(jí)別、病理T分期、淋巴侵襲、區(qū)域淋巴結(jié)轉(zhuǎn)移呈負(fù)相關(guān),并且RKIP表達(dá)下降的食管癌病人,其術(shù)后生存期也明顯縮短[9-11]。因此,通過對(duì)Raf這一靶位點(diǎn)的干預(yù),可能降低食管癌的發(fā)生或惡性程度。

      RKIP是Ras-MAPK激酶信號(hào)通路的內(nèi)源性抑制劑,主要調(diào)節(jié)機(jī)制是通過RKIP與Raf激酶區(qū)域相互作用從而抑制MAPK信號(hào)通路的活性。作為MEK磷酸化的競(jìng)爭(zhēng)性抑制劑,RKIP能有效分離RAF/MEK復(fù)合物。而索拉菲尼,一種口服的Raf抑制劑,能夠抑制ERK的活化,明顯抑制癌細(xì)胞的生長(zhǎng)[12]。

      Ras的活化與MEK磷酸化也是一致的,當(dāng)MEK被抑制劑抑制時(shí),ERK的活性也喪失。MEK磷酸化ERK,進(jìn)而活化下游因子[13]。ERK與食管癌侵襲性的表型有關(guān),有人通過單變量及多變量統(tǒng)計(jì)分析發(fā)現(xiàn)食管癌細(xì)胞核及胞漿中磷酸化ERK表達(dá)增多及染色增強(qiáng)與腫瘤級(jí)別呈顯著相關(guān)性[4]。

      人食管癌腫瘤微環(huán)境可誘導(dǎo)未成熟樹突細(xì)胞向內(nèi)皮細(xì)胞分化,成為內(nèi)皮樣細(xì)胞,但對(duì)成熟的樹突細(xì)胞無明顯影響。在未成熟的樹突細(xì)胞向內(nèi)皮樣細(xì)胞分化過程中,存在著ERK1/2的持續(xù)活化[14]。表明ERK1/2信號(hào)通道的活化能介導(dǎo)食管癌微環(huán)境中未成熟樹突細(xì)胞內(nèi)皮樣分化。實(shí)驗(yàn)還發(fā)現(xiàn),ERK對(duì)于c-Myc蛋白第62位的絲氨酸磷酸化起著重要的作用,從而增加c-Myc蛋白的穩(wěn)定性和細(xì)胞核內(nèi)的積聚[15]。而c-Myc是一種致瘤性轉(zhuǎn)錄因子,通常在惡性疾病中處于上調(diào)狀態(tài)。

      有實(shí)驗(yàn)表明ERK2在食管癌中比ERK1更重要[16]。食管癌細(xì)胞轉(zhuǎn)染shRNA-ERK2質(zhì)粒后,其生長(zhǎng)與對(duì)照組比較明顯受到抑制,ERK2的表達(dá)明顯下降,細(xì)胞周期停止在G1期[17]。表明ERK2在食管癌細(xì)胞的生長(zhǎng)中起了重要的促進(jìn)作用。

      此外,研究表明,Ras-MAPK通路的活化與食管癌產(chǎn)生抗腫瘤藥物的耐藥相關(guān)[18]。新的1型胰島素樣生長(zhǎng)因子受體抑制劑能強(qiáng)而有力地抑制Akt(即蛋白激酶B,protein kinase B,PKB)和胰島素樣生長(zhǎng)因子受體的活性,但不能抑制MEK和ERK的活性,從而導(dǎo)致食管癌對(duì)其不敏感。說明由于Ras-MAPK活性的維持使得食管癌對(duì)該抑制劑不敏感。

      3.2Ras/MKK/p38 Estrada等[19]報(bào)道N-Ras或B-Raf的變異能高度活化p38 MAPK。而p38 MAPK與腫瘤發(fā)生的關(guān)系目前觀點(diǎn)不一。

      有研究表明p38 MAPK抑制腫瘤形成。將細(xì)胞用p38的特異性阻斷劑預(yù)處理后,能抑制p38 MAPK的活化,從而減弱人胃癌細(xì)胞中桔梗皂甙D誘導(dǎo)的細(xì)胞凋亡,這表明p38 MAPK的活化是誘導(dǎo)細(xì)胞凋亡的主要原因[20]。同樣,在子宮內(nèi)膜癌細(xì)胞中,p38 MAPK的活化可導(dǎo)致癌細(xì)胞的凋亡從而抑制癌細(xì)胞的增殖[21]。在人早幼粒細(xì)胞白血病細(xì)胞HL-60中,p38 MAPK特異性抑制劑能抑制抗癌藥物降低Bcl-xL水平的作用,從而阻斷抗癌藥物誘導(dǎo)的細(xì)胞凋亡[22]。

      相反,有研究發(fā)現(xiàn)p38 MAPK促進(jìn)腫瘤增殖及通過調(diào)節(jié)血管形成促進(jìn)腫瘤轉(zhuǎn)移和細(xì)胞的侵襲。在胃癌細(xì)胞中,活化的p38 MAPK能介導(dǎo)誘生性血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)和環(huán)氧化酶2(cyclooxygenase-2,COX-2)的表達(dá);當(dāng)p38 MAPK被特異性抑制劑抑制時(shí),VEGF和COX-2的表達(dá)也被抑制[23]。在肝癌細(xì)胞中,過高表達(dá)的纖維蛋白原樣蛋白2(fibrinogen-like protein 2,F(xiàn)GL2)可誘導(dǎo)p38 MAPK的磷酸化而使蛋白酶活化受體激活,而敲除FGL2表達(dá)的肝癌細(xì)胞可導(dǎo)致移植腫瘤在42 d的觀察期中生長(zhǎng)延遲及血管生成下降[24]。這說明FGL2通過下游的p38 MAPK起著促瘤作用。有實(shí)驗(yàn)證實(shí),抑制p38 MAPK可保護(hù)腹膜腔腺癌模型鼠抗胃癌細(xì)胞擴(kuò)散。給予p38特異性抑制劑,可減弱經(jīng)腹膜腔接種胃癌細(xì)胞而誘導(dǎo)的腫瘤中心的形成;并且抑制p38 MAPK可增強(qiáng)腫瘤細(xì)胞對(duì)順鉑的敏感性及與多耐藥蛋白-1表達(dá)的下調(diào)相關(guān)[7]??傊琾38 MAPK通路在增加癌細(xì)胞的侵襲表型中發(fā)揮重要作用。

      伐地考昔通過活化p38 MAPK通路而上調(diào)Fas和FasL蛋白,進(jìn)而使食管癌細(xì)胞凋亡率增加;當(dāng)用p38 MAPK的特異性抑制劑SB203580阻斷時(shí),食管癌細(xì)胞的凋亡率下降[25]。硼替佐米活化p38 MAPK,誘導(dǎo)食管癌細(xì)胞G2/M周期時(shí)相的終止及與caspase裂解相關(guān)的依賴p38 MAPK的凋亡,不管是用小干擾RNA還是用藥物抑制劑阻斷p38 MAPK,都能阻斷硼替佐米誘導(dǎo)的凋亡[26]。在食管腺癌中也發(fā)現(xiàn),p38 MAPK通路的活化可引起細(xì)胞凋亡和細(xì)胞周期停止[27]。這表明不管是在食管磷癌還是腺癌中,p38 MAPK均可通過促進(jìn)癌細(xì)胞凋亡而發(fā)揮抑瘤作用。

      然而也有證據(jù)證明p38 MAPK在食管癌中具有促瘤作用。中心體相關(guān)蛋白A(Aurora-A)通過p38 MAPK通路使食管癌向惡性方向發(fā)展而增加腫瘤的侵襲力,當(dāng)Aurora-A過高表達(dá)時(shí)使p38 MAPK的磷酸化水平增加,而用反義RNA敲除Aurora-A則p38 MAPK的活性也下降[28]。這表明p38 MAPK促進(jìn)食管癌的發(fā)展。研究表明,低劑量阿斯匹林是通過阻止增殖和抗凋亡激酶p38 MAPK的活化而減輕食管返流誘發(fā)的食管組織學(xué)改變[29]。在食管腺癌細(xì)胞中,去氧膽酸通過活化p38 MAPK來介導(dǎo)抗凋亡蛋白的活化[30]。索匪拉尼能夠抑制酸和膽汁酸引起的磷酸化p38 MAPK的增加,從而抑制腺癌細(xì)胞的生長(zhǎng)[12]。上述研究表明,p38 MAPK不管是在食管磷癌還是腺癌中都促進(jìn)腫瘤增殖及細(xì)胞的侵襲。

      有趣的是,有人發(fā)現(xiàn)在食管癌細(xì)胞體外培養(yǎng)實(shí)驗(yàn)中,p38 MAPK的選擇性抑制劑可呈劑量和時(shí)間依賴性地抑制食管癌細(xì)胞生長(zhǎng),說明食管癌細(xì)胞的生長(zhǎng)和增殖與磷酸化p38 MAPK密切相關(guān);而通過外科手術(shù)切除標(biāo)本的研究卻發(fā)現(xiàn),食管癌旁無瘤組織中磷酸化的p38 MAPK比癌組織明顯增高,但磷酸化p38 MAPK的表達(dá)與淋巴結(jié)轉(zhuǎn)移和癌分化程度無明顯相關(guān)性。據(jù)此認(rèn)為,磷酸化p38 MAPK在腫瘤的不同階段起著多面性作用,體外培養(yǎng)的癌細(xì)胞為成瘤后階段,磷酸化p38 MAPK的功能為促進(jìn)癌細(xì)胞生長(zhǎng);而癌旁組織是成瘤前階段,磷酸化p38 MAPK起著抑瘤基因的作用[31]。這表明p38 MAPK在腫瘤中的作用可能因細(xì)胞或組織類型及腫瘤特殊階段的不同而異。

      3.3Ras/JNK/SAPK JNK在不同的組織和細(xì)胞類型中作用不同。有人發(fā)現(xiàn),JNK通路的激活可通過增加caspase-3的表達(dá)而促進(jìn)大鼠腦缺血再灌注海馬神經(jīng)元凋亡[32]。在食管癌中,JNK的活化可使食管磷癌細(xì)胞凋亡[26]。通過體內(nèi)外對(duì)食管癌細(xì)胞不同的亞細(xì)胞結(jié)構(gòu)進(jìn)行靶向抑制發(fā)現(xiàn),腫瘤的生長(zhǎng)抑制與內(nèi)質(zhì)網(wǎng)上JNK的磷酸化呈正相關(guān),并且通過誘導(dǎo)細(xì)胞凋亡而使細(xì)胞死亡[33]。

      相反,有研究顯示,通過抑制缺氧誘導(dǎo)的JNK磷酸化,可抑制食管癌細(xì)胞增殖及下調(diào)VEGF在食管癌中的表達(dá)[34]。這表明JNK的磷酸化與食管癌細(xì)胞增殖及VEGF的表達(dá)可能存在正相關(guān)性,對(duì)于食管腫瘤的增長(zhǎng)和血管形成有促進(jìn)作用。此外,通過細(xì)胞遷移、侵襲及細(xì)胞劃痕實(shí)驗(yàn)表明,抑制JNK通路能明顯地抑制食管癌細(xì)胞侵襲性表型[35]。由此可見,JNK在食管癌中可能也存在著多面性作用,其具體的作用環(huán)節(jié)和機(jī)制還有待更多的研究來進(jìn)一步闡明。

      [1] 龍向淑,吳 強(qiáng),宋 方.干擾素誘導(dǎo)蛋白p204對(duì)大鼠血管平滑肌細(xì)胞增殖的影響及其機(jī)制[J].中國(guó)病理生理雜志,2012,28(6):1018-1022.

      [2] 李尊嶺,邵淑紅,焦 飛,等.K-ras反義核酸抑制肺腺癌細(xì)胞A549的生長(zhǎng)[J].中國(guó)病理生理雜志,2011,27(11):2096-2100.

      [3] Lyronis ID, Baritaki S, Bizakis I, et al. K-ras mutation, HPV infection and smoking or alcohol abuse positively correlate with esophageal squamous carcinoma[J]. Pathol Oncol Res, 2008, 14(3):267-273.

      [4] Tasioudi KE, Saetta AA, Sakellariou S, et al. pERK activation in esophageal carcinomas: clinicopathological associations[J]. Pathol Res Pract, 2012, 208(7): 398-404.

      [5] Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues[J]. Future Med Chem, 2011, 3(14):1787-1808.

      [6] 孫曉東,劉杏娥.姜黃素通過抑制Ras-ERK和Shh-GLI1信號(hào)誘導(dǎo)胰腺癌細(xì)胞凋亡[J].中國(guó)病理生理雜志,2012,28(6):996-1000.

      [7] Graziosi L, Mencarelli A, Santorelli C, et al. Mechanistic role of p38 MAPK in gastric cancer dissemination in a rodent model peritoneal metastasis[J]. Eur J Pharmacol, 2012, 674(2-3):143-152.

      [8] Sommerer F, Vieth M, Markwarth A, et al. Mutations of BRAF and KRAS2 in the development of Barrett’s adenocarcinoma[J]. Oncogene, 2004, 23(2):554- 558.

      [9] Birner P, Jesch B, Schultheis A, et al. RAF-kinase inhibitor protein (RKIP) downregulation in esophageal cancer and its metastases[J]. Clin Exp Metastasis, 2012, 29(6):551-559.

      [10] Gao C, Pang L, Ren C, et al. Prognostic value of raf kinase inhibitor protein in esophageal squamous cell carcinoma[J]. Pathol Oncol Res, 2012, 18(2):471- 477.

      [11] Kim HS, Won KY, Kim GY, et al. Reduced expression of Raf-1 kinase inhibitory protein predicts regional lymph node metastasis and shorter survival in esophageal squamous cell carcinoma[J]. Pathol Res Pract, 2012, 208(5):292- 299.

      [12] Keswani RN, Chumsangsri A, Mustafi R, et al. Sorafenib inhibits MAPK- mediated proliferation in a Barrett’s esophageal adenocarcinoma cell line[J]. Dis Esophagus, 2008, 21(6):514-521.

      [13] Gao SY, Li EM, Cui L, et al. Sp1 and AP-1 regulate expression of the human gene VIL2 in esophageal carcinoma cells[J]. J Biol Chem, 2009, 284(12):7995- 8004.

      [14] Lu J, Zhao J, Liu K, et al. MAPK/ERK1/2 signaling mediates endothelial-like differentiation of immature DCs in the microenvironment of esophageal squamous cell carcinoma[J]. Cell Mol Life Sci, 2010, 67(12):2091-2106.

      [15] Yu L, Wu WK, Li ZJ, et al. Prostaglandin E(2) promotes cell proliferation via protein kinase C/extracellular signal regulated kinase pathway-dependent induction of c-Myc expression in human esophageal squamous cell carcinoma cells[J]. Int J Cancer, 2009, 125(11):2540-2546.

      [16] Zheng ST, Huo Q, Tuerxun A, et al. The expression and activation of ERK/MAPK pathway in human esophageal cancer cell line EC9706[J]. Mol Biol Rep, 2011, 38(2):865-872.

      [17] Huo Q, Zheng ST, Tuersun A, et al. shRNA interference for extracellular signal-regulated kinase 2 can inhibit the growth of esophageal cancer cell line Eca109[J]. J Recept Signal Transduct Res, 2010, 30(3):170-177.

      [18] Bao XH, Takaoka M, Hao HF, et al. Esophageal cancer exhibits resistance to a novel IGF-1R inhibitor NVP-AEW541 with maintained RAS-MAPK activity[J]. Anticancer Res, 2012, 32(7):2827-2834.

      [19] Estrada Y, Dong J, Ossowski L. Positive crosstalk between ERK and p38 in melanoma stimulates migration andinvivoproliferation[J]. Pigment Cell Melanoma Res, 2009, 22(1):66-76.

      [20] Chun J, Joo EJ, Kang M, et al. Platycodin D induces anoikis and caspase-mediated apoptosis via p38 MAPK in AGS human gastric cancer cells[J]. J Cell Biochem, 2013, 114(2): 456- 470.

      [21] Manohar M, Fatima I, Saxena R, et al. (-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation[J]. J Nutr Biochem, 2012, Sep 5. [Epub ahead of print]

      [22] Kim KN, Ham YM, Moon JY, et al. Acanthoic acid induces cell apoptosis through activation of the p38 MAPK pathway in HL-60 human promyelocytic leukaemia[J]. Food Chem, 2012, 135(3):2112-2117.

      [23] Zhang C, Gao GR, Lv CG, et al. Protease-activated receptor-2 induces expression of vascular endothelial growth factor and cyclooxygenase-2 via the mitogen-activated protein kinase pathway in gastric cancer cells[J]. Oncol Rep, 2012, 28(5):1917-1923.

      [24] Liu Y, Xu L, Zeng Q, et al. Downregulation of FGL2/prothrombinase delays HCCLM6 xenograft tumour growth and decreases tumour angiogenesis[J]. Liver Int, 2012, 32(10):1585-1595.

      [25] Liu SX, Zhang YJ, Guo HF, et al. The regulatory effect of the p38 signaling pathway on valdecoxib-induced apoptosis of the Eca109 cell line[J]. Oncol Rep, 2009, 22(2):313-319.

      [26] Lioni M, Noma K, Snyder A, et al. Bortezomib induces apoptosis in esophageal squamous cell carcinoma cells through activation of the p38 mitogen-activated protein kinase pathway[J]. Mol Cancer Ther, 2008, 7(9):2866-2875.

      [27] Sutter AP, Maaser K, Barthel B, et al. Ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in oesophageal cancer cells: involvement of the p38MAPK signalling pathway[J]. Br J Cancer, 2003, 89(3): 564-572.

      [28] Wang X, Lu N, Niu B, et al. Overexpression of Aurora-A enhances invasion and matrix metalloproteinase-2 expression in esophageal squamous cell carcinoma cells[J]. Mol Cancer Res, 2012, 10(5):588-596.

      [29] Selvan B, Ramachandran A, Korula A, et al. Low dose aspirin prevents duodenoesophageal reflux induced mucosal changes in Wistar rat esophagus by MAP kinase mediated pathways[J]. Int J Surg, 2012, 10(2):73-79.

      [30] Looby E, Abdel-Latif MM, Athie-Morales V, et al. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells[J]. BMC Cancer, 2009, 9:190.

      [31] Zheng ST, Zhang CS, Qin X, et al. The status of phosphorylated p38 in esophageal squamous cell carcinoma[J]. Mol Biol Rep, 2012, 39(5):5315-5321.

      [32] 張 霞,錢 濤,高維娟,等.JNK通路促進(jìn)大鼠腦缺血再灌注海馬神經(jīng)元凋亡[J].中國(guó)病理生理雜志,2012,28(8):1431-1435.

      [33] Pataer A, Hu W, Lu X, et al. Adenoviral endoplasmic reticulum-targeted mda-7/interleukin-24 vector enhances human cancer cell killing[J]. Mol Cancer Ther, 2008, 7(8):2528-2535.

      [34] Chen QJ, Zhang MZ, Wang LX. Gensenoside Rg3 inhibits hypoxia-induced VEGF expression in human cancer cells[J]. Cell Physiol Biochem, 2010, 26(6): 849-858.

      [35] Onwuegbusi BA, Rees JR, Lao-Sirieix P, et al. Selective loss of TGFβ Smad-dependent signalling prevents cell cycle arrest and promotes invasion in oesophageal adenocarcinoma cell lines[J]. PLoS One, 2007, 2(1):e177.

      RolesofRas-MAPKsignalingpathwaysinesophagealcarcinoma

      CHANG Yu-sui1, LIU Ji-chun1, FU Hua-qun2, YU Ben-tong1, XU Jian-jun3, WANG Yi-ming3, WEI Yi-ping3, ZOU Shu-bing2

      (1DepartmentofThoracicandCardiovascularSurgery,theFirstAffiliatedHospital,2DepartmentofGeneralSurgery,theSecondAffiliatedHospital,3DepartmentofThoracicandCardiovascularSurgery,theSecondAffiliatedHospitalNanchangUniversity,Nanchang330006,China.E-mail:cyscys2005@126.com;zgblslzz2005@126.com)

      Ras is best known for the ability of regulating cell growth, proliferation and differentiation. Mutations in Ras are associated with abnormal cell proliferation, resulting in the incidence of all human cancers. Mitogen-activated protein kinase (MAPK) signaling pathways are the most well described pathways in carcinogenesis, which has been identified as a key downstream effector in Ras signaling as well as playing important roles in prognosis of tumors. Recently, evidence has gradually accumulated to demonstrate that mutation in Ras or aberrant expression of MAPK has profound effects on the incidence of esophageal carcinoma, and applications of some chemotherapeutic drugs can not lead to the expectant function. Further understanding of the relevant molecular mechanisms of Ras-MAPK signaling pathways will be helpful for development of efficient targeting therapeutic approaches to the treatment of esophageal cancer. In this article, the advances of Ras-MAPK signaling pathways in esophageal carcinoma are reviewed.

      食管腫瘤; Ras蛋白; 有絲分裂原活化蛋白激酶類; 信號(hào)通路

      Esophageal neoplasms; Ras protein; Mitogen-activated protein kinases; Signaling pathway

      R363

      A

      10.3969/j.issn.1000- 4718.2013.02.034

      1000- 4718(2013)02- 0376- 05

      2012- 10- 16

      2012- 12- 13

      江西省衛(wèi)生廳科技計(jì)劃基金資助項(xiàng)目(No.20113055)

      △通訊作者 劉季春Tel: 0791-88692707; E-mail: cyscys2005@126.com; 傅華群Tel: 0791-86312380; E-mail:zgblslzz2005@126.com

      猜你喜歡
      磷酸化活化食管癌
      無Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
      小學(xué)生活化寫作教學(xué)思考
      ITSN1蛋白磷酸化的研究進(jìn)展
      miRNAs在食管癌中的研究進(jìn)展
      MCM7和P53在食管癌組織中的表達(dá)及臨床意義
      MAPK抑制因子對(duì)HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響
      食管癌術(shù)后遠(yuǎn)期大出血介入治療1例
      組蛋白磷酸化修飾與精子發(fā)生
      遺傳(2014年3期)2014-02-28 20:59:01
      基于B-H鍵的活化對(duì)含B-C、B-Cl、B-P鍵的碳硼烷硼端衍生物的合成與表征
      VEGF、COX-2 在食管癌中的研究進(jìn)展
      曲靖市| 即墨市| 沛县| 宜宾市| 密云县| 宣化县| 金乡县| 婺源县| 临湘市| 峨眉山市| 若羌县| 错那县| 旬阳县| 张掖市| 科尔| 精河县| 阿克陶县| 徐水县| 蛟河市| 凌海市| 壶关县| 达拉特旗| 高雄市| 正宁县| 平利县| 南平市| 遂昌县| 伊宁市| 汤阴县| 宜兴市| 孟连| 富源县| 中山市| 尼玛县| 白山市| 定州市| 邳州市| 隆子县| 惠东县| 九江市| 美姑县|