• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    煙酰胺腺嘌呤二核苷酸磷酸與納米氧化鋁和勃姆石的作用

    2013-10-17 03:02:54湯勇錚李卉卉楊緒杰陸天虹楊小弟
    關(guān)鍵詞:生物化工天虹煙酰胺

    李 麗 湯勇錚 李卉卉 楊緒杰 陸天虹 楊小弟*,,

    (1教育部軟化學(xué)與功能材料重點(diǎn)實(shí)驗(yàn)室,南京理工大學(xué)化工學(xué)院,南京 210094)

    (2江蘇省新型動(dòng)力電池重點(diǎn)實(shí)驗(yàn)室,南京師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,南京 210097)

    (3南京曉莊學(xué)院生物化工與環(huán)境工程學(xué)院,南京 211171)

    0 Introduction

    With the development of science and technology,nanoparticles have been widely used in many fields.Due to the unique properties and small size,the engineered aluminum(hydr)oxides have a wide range of applications,such as coatings and abrasives and additives in the fields of composites and heat transferenhancing nanofuluids[1].However,researches on the potential health risks of exposure to nanoparticles lag behind the rapid development of nanotechnology.Now we have been facing an increasing incidence of neurodegenerative diseases, such as Alzheimers disease,Huntingtons disease and Parkinsons disease.Although the exact etiology is uncertain,environmental pollutants,including aluminum and nanoparticles,may be the important risk factors for these diseases[2-6].In the past years,it has been recognized that Al3+has strong toxicity,meanwhile it may forms Al2O3and AlOOH under weak alkaline and alkaline conditions.Moreover,various speciation of aluminum have also been confirmed to have different toxicities[7-9].Recently,it has been found that the toxicity of nanosized corundum is more than that of micron-sized corundum to organisms[10-11].Pakrashi et al.[12]reported that Al2O3demonstrated a mortality rate of 57%to Bacillus subtilis,36%to Escherichia coli,and 70%to Pseudomonas fluorescents at low concentration(20 μg·mL-1)level using 1 g·L-1NaCl as the medium.And it has been confirmed that nano-sized boehmite is regarded as having the pulmonary toxicity.[12]

    NADP+(Scheme1)isa coenzymeformany important anaerobic dehydrogenases in vivo[13].It may affect the metabolic pathway through participating in the basal metabolism with various zymoproteins.On the other hand,it is important that NADP+can be considered as the local feature of DNA structure.Interestingly, almost in all cases, unfolded conformation is required when NADP+combing with the dehydrogenase.In the decades,many researchers have investigated the interaction of low molecular weight (LMW)organic acid molecules with mineral surfaces[14-16].And they found that the adsorptions could usually be classified as inner-sphere mode or outer-sphere mode mechanisms[17-20].In addition,a number of related reports show that the nano species aluminum could affect the activity of various dehydrogenases,such asglutamate dehydrogenas,lactic dehydrogenase,lactate dehydrogenase and malate dehydrogenase.Because these dehydrogenases are NADP+-dependent enzymes,we can presume reasonably that nano species aluminum oxides may play an important role in the activity of NADP+,and it might have significance to study the interaction of nano-sized aluminum(hydr)oxides with NADP+under the simulated physiological conditions to further reveal the detailed molecular-level information about the coordination of the surface complexes.To the best of our knowledge,the adsorption of NADP+on mineral surface has not been reported.Accordingly,this work studies the adsorption of NADP+on the boehmite(γ-AlOOH)and corundum (γ-Al2O3)surfaces under a wide range of reaction conditions.

    1 Experimental

    1.1 Materials

    Nano-corundum and nano-boehmite(purchased from Dekedaojin,China)were characterized by transmission electron microscopy(TEM)(JEM-200CX,JEOL,Japan),operating at 200 kV.Sample holders were 200 mesh copper grids.NADP+was obtained from Sigma(St.Louis.MO,USA).All other chemicals were of analytical regent grade.All solutions were made from deionized water(resistivity=18.2 MΩ·cm at 25℃),and the background electrolyte used for all experiments was NaCl solution.The pH values of solution and suspension were measured using a 215 pH meter(Denver,USA).The electrode was regularly calibrated using standard pH buffer solutions.

    1.2 Batch adsorption experiments

    Stock suspensions consisted of 10 g·L-1boehmite or corundum prepared using 0.01 mol·L-1NaCl were tumbled end-over-end for approximately 12 h prior to use.Allsamplesforadsorption and dissolution experiments were prepared by diluting stock suspensions with appropriate quantities and concentrations of NADP+in polypropylene centrifuge tubes.Generally,the NADP+concentration ranged from 0 to 6.25 mmol·L-1.The pH value of the suspension sample in each tube was adjusted to the desired value using 1 mol·L-1HCl or KOH.Then the tube was tumbled for 24 h at room temperature to explore the adsorption isotherms of NADP+on the particles and the effect of pH value on the adsorption.During this time,the pH value of the suspension was periodically measured and,if necessary,readjusted to the target value.Upon completion of equilibration,the suspension samples were centrifuged at 10 000 r·min-1for 20 min (H-1650,Xiangyi,China).The total concentration of NADP+in the supernatant was determined at 259 nm with a UV-Visible spectrophotometer(Cary 5000,Varian,USA)[21].

    The effect of pH value on the adsorption of NADP+wasevaluated with an initialNADP+concentration of 2.5 mmol·L-1at pH value ranging from 3 to 11.

    In order to investigate the ionic strength dependence on NADP+adsorption,an additional series of batch experiments were performed.A number of samples with different amounts of NaCl were added to give certain ionic strength.Then the samples were kept by stirring,and after equilibration the amount of NADP+adsorbed was finally determined as described above.In all experiments,the adsorption data were the average of three parallel experiments.

    1.3 Adsorption isotherm fit

    The adsorption isotherm of NADP+was examined by setting the concentration of boehmite and corundum at 10 g·L-1,but varying the initial concentration of NADP+from 0~6.25 mmol·L-1.The experimental data are fitted with Langmuir (1)and Freundlich(2)isotherm models[22]as follows:

    where Qeis the concentration of adsorbed NADP+per unit weight of adsorbent,g·g-1;Ceis the concentration of NADP+in the aqueous phase,g·L-1;Qmis the maximum adsorption capacity per unit weight of adsorbent,g·g-1;and KL(L·g-1)and KF(g·g-1)are the corresponding constants of the system for Langmuir and Freundlich models,respectively.

    The standard Gibbs energy of adsorption ΔGads?was calculated from theLangmuirfitusingthe equation:

    where R is the gas constant(J·mol-1·K)-1;T is the temperature(K);and KLis the equilibrium constant.

    1.4 ATR-FTIR spectroscopy

    A Nicolet 5700 (Thermo, USA) infrared spectrometer was used to collect ATR-FTIR spectra.All samples were analyzed as liquid or wet paste.An empty cell spectrum collected prior to each sample was used as the background.Typically,512 scans with a spectral resolution of 4 cm-1were taken and averaged for each solution and wet paste sample.For each sample,the ATR-FTIR spectra of 0.01 mol·L-1NaCl solution with the same pH value were collected and subtracted from the sample spectra to remove the strong contribution from water bands.Data collection and spectral calculation were performed using OMNIC(version 7.2a,Nicolet Instrument Corp.)software.For each solution sample,this unwanted spectral response of water was removed by subtracting the ATR-FTIR spectrum ofNaClsolution.Foreach boehmite/corundum-NADP+-NaClwetpaste,the infrared absorbance of water was minimized by measuring and subtracting the ATR-FTIR spectrum of boehmite/corundum-NaCl suspension obtained at the same pH value,with the subtraction factor of 0.96~1.02[23].

    1.5 Dissolution measurements

    Concentrations of dissolved aluminum in the supernatants described in section 1.2 were measured by inductively coupled plasma (ICP)spectrometer(Optima DV2100,PerkinElmer)[24].Dissolution data presented are the average of results obtained at four distinct wavelengths(λ=308.2,309.2,394.4 and 396.1 nm).

    1.6 TG-DTA measurements

    TG-DTA measurements were performed by a thermogravimetry-differential thermal analyzer(Diamond TG/DTA, PerkinElmer, USA), with temperature ramp rate at 10 ℃·min-1in nitrogen atmosphere (100 mL·min-1).Compared with the samples after adsorption,the corresponding samples of pure NADP+,boehmite and corundum were measured at the same conditions.Before measurement,the samples after centrifugation described in batch experiment were freeze dried.

    1.7 XRD measurements

    The pastes after centrifugation obtained from section 1.2 and the free nanoparticles were analyzed by a X-ray diffractometer (XD-3,Beijing Purkinje General Instrument Co.,Ltd.)equipped with graphite monochromatized Cu Kα radiation (λ=0.154 18 nm),high voltage:35 kV,current:20 mA,at a scanning rate of 5°·min-1and in 2θ of 5°~80°.

    1.8 Fluorescence spectra

    The batch adsorption behavior was performed with nanoparticles concentration ranging from 2 to 65 g·L-1at pH value of 7 (the excitation wavelength of 275 nm and slit width of 5 nm).After centrifugation,fluorescence spectra of NADP+in the supernatant were collected by a Fluorophotometer (LS-50B,PerkinElmer,USA).

    2 Results and discussion

    2.1 Characterization of nanoparticles

    TEM imagesforNano-corundum and nanoboehmite with the average diameters approximately from 10~20 nm are shown in Fig.1.After the samples in vacuum at 150℃for 12 h,the BET surface areas are 127 m2·g-1and 114 m2·g-1,measured by a surface area and pore size analyzer(Micrometrics ASAP 2020,USA),respectively.

    2.2 Macroscopic adsorption studies

    2.2.1 Influence of pH value and ionic strength on adsorption

    The macroscopic adsorption properties of NADP+on boehmite and corundum surfaces are shown as a function of both pH values and NaCl concentrations in Fig.2.The adsorption process of NADP+is suppressed by alkaline pH value and increasing ionic strength.Furthermore,the extent of adsorption reaches the maximum at pH value of 5 and then systematically decreases under higher basic conditions,due to the strong dependence of boehmite and corundum surface charge on the pH value (Fig.3).Collected by an Electroacoustic spectrometer (Nano-ZS90,Malvern Instruments Ltd.England),the isoelectric points(pI)of the corundum and boehmite are 9.10±0.05 and 9.65±0.05 (n=5),respectively.For example,when pH value is lower than the pI,the surface is positively charged.In contrast,when the pH value is higher than the pI,the surface is negatively charged.Consequently,the amountofNADP+adsorbed decreases significantly at higher pH value condition because of a net repulsive electrostatic interaction between the negatively charged surface and NADP+anions.When pH value<5,however,the amount of adsorbed NADP+also falls below that predicted,due to the competition of solutionbased Alバ.It can also be interpreted as the reduction of the particle concentration and active surface sites caused by the dissolution of boehmite and corundum.

    In addition,the effect of salt added is obviously different at the range of pH values.This might be interpreted as the shielding effect of the salt.For instance,at pH value<pI,the salt added could hinder the electrostatic attraction between the surface and the NADP+,in contrast,at pH value>pI,the salt particles might effectively shield the electrostatic repulsion between them.Therefore,at low pH values,the amount of NADP+adsorbed decreases with increasing NaCl concentration,and on the contrary,it increases at higher pH values.

    According to the analogous results previously reported fortheadsorption oforganic acidson hydroxide minerals at low ligand concentrations[25-26],themain contribution ofelectrostaticbindingis indeed strongly supported by the observation that the application of salts leads to a concentration-dependent desorption of NADP+from the surface.

    The charging behavior of the surfaces using the following acid-base reactions is shown in equations(4)and(5):

    The surface species≡AlOH (including≡AlO-,≡AlOH0and≡AlOH2+,the surface site density of 1.7 sites per nm2for boehmite and 1.03 sites per nm2for corundum[27],respectively)represents the total surface sites capable of adsorbing/desorbing protons over the pH value range investigated.Eqs.4 and 5 are on the basis of that,they do not consider the behavior of multinuclear hydroxylspecies atthe corundum surface.For example,Al2OH species are prevalent on the hydrated 001 surface of corundum[28].However,Al2OH species are not proton active in the pH value range from 2 to10[29].Furthermore,Al2OH possessing a net neutral charge is not expected to contribute significantly to the interaction with NADP+in this study,in contrast,NADP+will be electrostatically attracted to AlOH2+.The high negative charge of the species may result in surface charge “saturation”ratherthan saturation ofsurface binding sites.Compared to the surface density ofcorundum,boehmite displays a larger proton exchange capacity,which implies that the average distance between the surface hydroxyls on the boehmite surface is shorter.And this is connected to an increase in the contribution from electrostatic forces.[27]

    2.2.2 Adsorption isotherm fit

    To assess more information of the mechanism of the adsorption on the surface,the experimental data are simulated with Langmuir and Freundlich models in Fig.4.Obviously,the single-site Langmuir isotherm can provide a good fitting to the experimental data,with a constant of the system KL=45.45 and 37.04 L·g-1,respectively.In all cases,the adsorption capacity eventually reaches a platform finally and the adsorption capacity of boehmite is greater than that of corundum.Moreover,the corresponding standard Gibbs energy of adsorption ΔGads?=-25.98 and-25.47 kJ·mol-1for boehmite and corundum,respectively.Both of ΔGads?are negative,suggesting that the reactions are spontaneous,and these values agree with the typicalstrength ofhydrogen bond surfacemolecule interaction[30].

    In a word,the results of macroscopic adsorption experiments show that outer-sphere complexes are dominantly formed on the boehmite and corundum surfaces over the range of pH values.

    2.3 Microscopic adsorption studies

    2.3.1 XRD measurement

    According to the XRD characteristic peaks of free nanoparticles,the boehmite and corundum(Fig.5)show good crystallization and single crystalline phase.If NADP+diffuses into the particles,the inner layer structure of crystal would be destroyed.Compared with the XRD feature of pure nanoparticles,there is no obvious change for the crystal structure after reaction,which proves indirectly that the adsorption of NADP+by boehmite and corundum might occur on the surface of the particles rather than into the inner layer.

    2.3.2 ATR-FTIR spectra

    The ATR-FTIR spectra of NADP+in aqueous solution tabulated in this study(Table 1)are consistent with that previously reported by Iwaki et al[33].Ribose section does not absorb significantly in the 1 700~1 200 cm-1window of the ATR-FTIR spectra.Thus,all the major bands in the adenosine spectrum above 1 200 cm-1must arise from the nicotinamide and adenine ring system.For instance,the bands at 1 650,1 608~1 610,1 579~1 581,1 475~1 481,1 423~1 428,1 380,1 326~1 332 and 1 301~1 309 cm-1dominate in the spectra of aqueous NADP+,which could be assigned to the adenine moiety of the dinucleotides.The band at 1 650 cm-1is mainly due to NH2group(adenine)with a small contribution from dihydronicotinamide and the band at 1 608~1 610 cm-1arises from the stretch of C5-C6(adenine).And the band located at 1 579~1 581 cm-1is due to the stretching of the C-N bond within the carboxamide group.Moreover,both the nicotinamide and adenine moieties (C4-N9-C8-H)may have contributions to the bands centered at 1 421~1 423 cm-1and important bands of 1 330 cm-1is assigned to the stretching of C5-N7+C8=N7.The important peaks at 1 076~1 078 and 1 236~1 238 cm-1suggest that these bands correspond to the characteristic of the asymmetric and symmetric stretching vibrations ofpyrophosphate bridge linking the nicotinamide and adenosine moieties (O=P-O-)adsorption region.Other bands around 1 100 cm-1are dominated by P-O groups,supposed to be particularly strong in the NADP+spectra because of the additional 2-phosphate on the adenine ribose.However,they are observed weakly compared with the bands at 1 076 cm-1in solution in this study.The ribose OH bonds are masked by the phosphate at the same region[36-37,39].On the basis of the above peak assignments,ourfurtherATR-FTIR investigations are just limited to a study of the role of the most prevalent NADP+functional groups in the adsorption of NADP+on boehmite and corundum surfaces.

    Table 1 ATR-FTIR peak assignment for aqueous NADP+

    To assess the effects of initial concentration of NADP+and the suspension pH value on the adsorption at the boehmite and water interfaces,ATRFTIR spectra are illustrated in Fig.6. Because phosphate moieties are expected to be the functional groupsresponsible forthe complexation between NADP+and nanoparticle,the analysis of ATR-FTIR spectra of adsorbed NADP+focus on the stretching vibration of the P-O bond.In general,if the phosphate groups coordinate with the metal ion(s)on the surface by forming inner-sphere complexes, the bands corresponding to the vibration of phosphate groups will split into two or three bands or experience shifts.If outer-sphere complexes are formed,their vibrations should shift only slightly due to slight distortion in adsorbed phosphate groups via Van der Waals forces and the number of bands will not change[40-41].It is noted that the spectra(Fig.6)bear striking similarities to those feature of aqueous NADP+listed in Table 1.For example,the spectra show a strong peak around 1 066~1 081 cm-1,and another prominent peak at 1 236 ~1 238 cm-1.However,two important subtle differences are evident;namely,(1)the positions of the major peaks shift slightly;and(2)the peaks in the adsorbed spectrum are significantly broader than those in theaqueousspectra.Forexample,the peak centered at 1 076 cm-1in solution moves by 2~10 cm-1wavenumbers approximately,and the peak of 1 109~1 111 cm-1shifts to higher wavenumbers at around 1 112 ~1 124 cm-1.Similar results have been previously reported about the adsorption modes of LMW organic anions on mineral surface and generally indicate an outer-sphere mode of adsorption for the organic species[42-45].In addition,the phosphate groups in the NADP+molecule are negatively charged.So,at high pH values,if they are in a direct contact with the negatively charged surface,the phosphate groups would be repelled away from the surface due to the electrostatic repulsion.However,in the spectra demonstrated in Fig.6b,the intensity of the bands located at 1 236~1 238 cm-1does not change significantly with pH value,which indicates that the phosphate groups do not change their orientation when the solution pH valueschange.Meanwhile,the intensity of bands at 1 112~1 124 cm-1in the spectra after adsorption are enhanced compared to aqueous NADP+,due to the formation of outer-sphere complexes by the electrostatic attraction between the 2-phosphate and boehmite surfaces.

    ATR-FTIR spectra of adsorbed NADP+as a function of initial NADP+concentration and pH value on corundum surface are shown in Fig.7.An important subtle change is that the intensity of peaks around 1 112 cm-1are close to that of 1 079 cm-1after adsorption compared with that in aqueous solution.And this may be taken as additional evidences that NADP+is predominantly combined with corundum via the phosphate and the surface hydroxyl groups as outer-sphere adsorption complex(≡AlOH2+…NADP+)at all experimental conditions.The spectra are most notable for the overlapped band at 1 603~1 606 cm-1,which corresponds to a combination of NH2bending.And C5-C6stretchingobserved in theadsorption NADP+spectra is much weaker than that in aqueous NADP+spectra,which may be due to another outersphere adsorption mode by hydrogen bond formed via amino group and surface hydroxyl groups[34].Moreover,with low surface coverage,the centrifuged paste obtained contained a relatively low particle concentration,and therefore a reduced ATR-FTIR signal is observed,compared with the other NADP+concentrations investigated (Fig.7a).It is important that with the concentration increased,a new peak(1 143 cm-1~1 151 cm-1)gradually appears[24],probably owing to small quantities of inner-spherically complexes,in which a direct bond is formed between Al and NADP+phosphate[46-47].

    Considering the less effect of the inner-sphere complexes on the extent of adsorbed NADP+on the corundum displayed in the batch experiments,we conclude that the inner-sphere complexes are minor.So,it can be confirmed that NADP+is predominantly adsorbed at the boehmite/water interface as outersphere fashions by electrostatic interaction over the investigated pH conditions.In contrast,on the corundum surface,two outer-sphere fashions by electrostatic interaction and hydrogen bond interactions in all cases as well as another minor inner-sphere adsorption complex at low pH values are formed.Though the minor complexes are unlikely to contribute appreciably to the overall macroscopic adsorption characteristics of NADP+,it might have a significant effect on the corundum dissolution behavior[23].This is further discussed in this study.

    2.3.3 TG-DTA measurement[48-49]

    TG curves (Fig.8a)exhibit the first weight loss step for free NADP+at 100~200 ℃ (peak temperature of169.2 ℃ ismarked).Itisfollowed bythe exothermic effect of the decomposition reaction at 194.6 ℃.For boehmite,the TG-DTA curve for the onsettemperature and endothermic temperatures occurs at 374.4 ℃ and 433.7 ℃,and shifts to 434.7℃ and 471.7 ℃ for the paste after adsorption,respectively.Although there is no more explicit peak in DTA curve for the paste on the boehmite surface,it confirms that the mass loss and endothermic temperature are marked at higher temperature than that of pure boehmite obviously.The results suggest that the paste after adsorption was the complex through weak interaction between NADP+and boehmite instead of the simple mixture of them.

    However,in the case of corundum powder,there is one mass loss step in TG curve at 201.4 ℃ and the DTA curve involves a single endothermic peak at 221.6 ℃ (Fig.8b).Both temperatures after adsorption are at higher temperature of 219 ℃ and 238.4 ℃,respectively,which shows that the stability of NADP+is improved after adsorption.It is interesting that the decomposition is changed from exothermic to endothermic peak forthe paste afteradsorption compared with free NADP+in DTA curve.As a consequence,the changes in TG-DTA curves reveal the possibility of stronger interaction between NADP+and corundum than thatbetween NADP+and boehmite.

    2.3.4 Impact of NADP+adsorption on the dissolution behavior

    The dissolution behavior of boehmite and corundum as a function of NADP+concentration and pH value is shown in Fig.9. Itdisplays low concentration for dissolved Alバin the intermediate pH value from 7 to 9 in the absence of NADP+,which agrees with the slow rate of dissolution typical of aluminum (hydro)oxides reported in this pH value range by Walther[50].The concentration of dissolved Alバ increases markedly under acidic (pH<7)conditions.Such increases in solubility as the pH value moves away from near-neutral conditions,which is consistentwith an increased attack on the nanoparticle surface by dissolution-enhancing proton and hydroxyl species,and this is typical of aluminum oxides minerals.In this study,the presence of NADP+inhibits the dissolution of boehmite and corundum,this may be due to NADP+anions adsorbed as outersphere complexes.Because outer-sphere complexes do nottransfersignificantelectron density into the coordination sphere of the surface cations,consequently,they have slightinfluence on the bridging metal-oxygen bonds in the mineral surface.Therefore,they have little directeffecton the dissolution kinetics.In this study,though adsorbed in outer-sphere modes,NADP+anions tightly bond to specific surface sites via electrostatic and hydrogen bonding interactions. Importantly, under this mechanism,NADP+does not have a significant polarizing effect on bridging Al-O bonds in the corundum and boehmite surface.As a result,the dissolved Alバ concentrationsofboehmite and corundum decrease in the presence of NADP+.It also shows that,as the concentration of NADP+increased,the concentrations of dissolved Alバprogressively decrease at pH<5.By contrast,at pH>9 (where the extent of NADP+adsorption is very low),the presence of NADP+has little effect on the extent of adsorbent dissolution.The results are similar to those previously obtained for the interaction of maleate with corundum by Johnson et al[51].

    In addition,the presence of inner-sphere complex mightbe expected to significantly enhance the dissolution of corundum.However,the effects are very small,compared with the surface site-blocking role displayed by outer-spherical mode,which may support indirectly that the inner-sphere complexes are minor.Therefore,the overalleffectofNADP+on the dissolution rate of corundum is inhibition.Moreover,it can be seen with the increase of initial NADP+concentration,the effect of suppress for boehmite is greater than that for corundum.These results further confirm that NADP+is predominantly adsorbed by outer-sphere mode on the boehmite and corundum,as well as some minor inner-sphere fashion at low pH values on the corundum.

    2.4 Biological effects

    As mentioned in the introduction,we also used an approach involving Fluorescence measurement to observe NADP+conformation affected by the adsorption.Fluorescence spectra of supernatants with increasing corundum concentration at pH value of 7 are shown in Fig.10.The NADP+concentration is 2.5 mmol·L-1in all cases.The efficient fluorescence spectra are only available for the folded conformation of NADP+,as demonstrated in previous works[12,52-54].

    The results of ICP measurement suggest that the amount of dissolved Alバis nearly zero at pH value of 7,so it indicates that the change of NADP+conformation should be due to the addition of nano-corundum.It is assumed that the fluorescence intensity of NADP+would increase or decrease correspondingly if the conversion between folded and unfolded conformation is present in the adsorption.Thus,the fluorescence spectra may indirectly monitor the conformational changes after adsorption.As demonstrated,the fluorescence intensity of NADP+gradually falls with increasing corundum concentration,which can be illustrated as the increase of folded conformation.However,at the boehmite/water interface,it presents an irregularchange with increasing amountof boehmite.It may be ascribed to the complexity of the heterogeneity of surface,and this can also prove partially that the transformation of conformation occurs on the boehmite surface.

    The unfolded conformation of NADP+in all cases is required to take part in all kinds of physiological reactions.Therefore,we presume reasonably that the exchange between folded and unfolded conformation by adsorption may influence the activity of NADP+-dependant dehydrogenase in the biological system.

    3 Conclusions

    In this paper,the adsorption behavior of NADP+on the nano-boehmite(γ-AlOOH)and nano-corundum(γ-Al2O3)surfaces was investigated over the range of pH values,ionic strengths and initial NADP+concentrations.The appropriate combination of techniques can give very accurate pictures of the interactions of small biomolecules with nanoparticles.The results suggest that the adsorption displayed strong ionicstrength dependence and it is consistent with NADP+adsorbed predominantly in the form of outer-sphere complexes via electrostatic interactions on boehmite and corundum surfaces.Meanwhile,there are two additional species on corundum:an outer-sphere complex by hydrogen bond and small inner-sphere species(≡AlNADP+),and this is confirmed partially by the dissolution rate of the adsorbents.In addition,the adsorption behavior can be described by the Langmuir adsorption isotherm and are both highly spontaneous.According to the changes of NADP+conformation,we assume that the adsorption may influence the activity of dehydrogenase depending on NADP+in the biological system.

    Acknowledgements:The project is supported by the National Natural Science Foundations of China (Grant Nos.20875047),Ministry of Water Resources(201201018)and Priority Academic Program Development of Jiangsu Higher Education Institutions.

    [1]Service R F.Science,2008,321(5892):1036-1037

    [2]Win-Shwe T T,Fujimaki H.Int.J.Mol.Sci.,2011,12(9):6267-6280

    [3]Ganguly P,Poole W J.Mater.Sci.Eng.,A,2003,352(1):46-54

    [4]Gilbert N.Nature,2009,460(7258):937-937

    [5]Sharma H S,Sharma A.Prog.Brain Res.,2007,162:245-273

    [6]Orringer D A,Koo Y E,Chen T,et al.Clin.Pharmacol.Ther.,2009,85(5):531-534

    [7]Ralph L,Twiss M R.Bull.Environ.Contam.Toxicol.,2002,68(2):261-268

    [8]Yang L,Watts D J.Toxicol.Lett.,2005,158(2):122-132

    [9]Cai L,Xie Y F,Li L,et al.Colloids Surf.,B,2010,81(1):123-129

    [10]Pakrashi S,Dalai S,Sabat D,et al.Chem.Res.Toxicol.,2011,24(11):1899-1904

    [11]Coleman J G,Johnson D R,Stanley J K,et al.Environ.Toxicol.Chem.,2010,29(7):1575-1580

    [12]Pauluhn J.Toxicology,2009,259(3):140-148

    [13]Aliverti A,Pandini V,Pennati A,et al.Arch.Biochem.Biophys.,2008,474(2):283-291

    [14]YUAN Xiao-Wei(袁曉衛(wèi)),YANG Qian(楊騫),LIU Qi(劉琦),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2010,26(2):285-292

    [15]Johnson S B,Brown G E,Healy T W.Langmuir,2005,21(14):6356-6365

    [16]Silverio F,dos Reis M J,Tronto J,et al.J.Mater.Sci.,2008,43(2):434-439

    [17]Ha J Y,Yoon T H,Wang Y G,et al.Langmuir,2008,24(13):6683-6692

    [18]Purgel M,Takacs Z,Josson C M,et al.J.Inorg.Biochem.,2009,103(11):1426-1438

    [19]Sheals J,Sj?berg S,Persson P.Environ.Sci.Technol.,2002,36(14):3090-3095

    [20]Jonsson C M,Persson P,Sj?berg S,et al.Environ.Sci.Technol.,2008,42(7):2464-2469

    [21]Nordin J,Persson P,Laiti E,et al.Langmuir,1997,13(15):4085-4093

    [22]Dubey A,Shiwani S.Int.J.Environ.Sci.Technol.,2012,9(1):15-20

    [23]Johnson S B,Yoon T H,Brown G E.Langmuir,2005,21(7):2811-2821

    [24]Johnson S B,Yoon T H,Slowey A J,et al.Langmuir,2004,20(26):11480-11492

    [25]Filius J D,Hiemstra T,Van Riemsdijk W H.J.Colloid Interface Sci.,1997,195(2):368-380

    [26]Yoon T H,Johnson S B,Brown G E,et al.Langmuir,2004,20(14):5655-5658

    [27]Laiti E,Ohman L O.J.Colloid Interface Sci.,1996,183(2):441-452

    [28]Eng P J,Trainor T P,Brown G E,et al.Science,2000,288(5468):1029-1033

    [29]Hiemstra T,Yong H,Van Riemsdijk W H.Langmuir,1999,15(18):5942-5955

    [30]Von oepen B,Kordel W,Klein W.Chemosphere,1991,22(3/4):285-304

    [31]Yue K T,Martin C L,Chen D,et al.Biochemistry,1986,25(17):4941-4947

    [32]Savoie R,Jutier J J,Prizant L,et al.Spectrochim.Acta:Part A,1982,38(5):561-568

    [33]Iwaki M,Cotton N P J,Quirk P G,et al.J.Am.Chem.Soc.,2006,128(8):2621-2629

    [34]Damian A,Omanovic S.Langmuir.2007,23(6):3162-3171

    [35]Bin X M;Zawisza L;Goddard J D,et al.Langmuir.2005,21(1):330-347

    [36]Brewer S H,Anthireya S J,Lappi S E,et al.Langmuir,2002,18(11):4460-4464

    [37]Takeuchi H,Murata H,Harada I.J.Am.Chem.Soc.1988,110(2):392-397

    [38]Benedetti E,Bramanti E,Papineschi F,et al.Appl.Spectrosc.,1997,51(6):792-797

    [39]Barth A,Mantele W.Biophys.J.,1998,75(1):538-544

    [40]Arai Y,Sparks D L.J.Colloid Interface Sci.,2001,241(2):317-326

    [41]ConnorPA,McQuillanAJ.Langmuir,1999,15(8):2916-2921

    [42]Johnson B B,Sj?berg S,Persson P.Langmuir,2004,20(3):823-828

    [43]Persson P,Nordin J,Rosenqvist J,et al.J.Colloid Interface Sci.,1998,206(1):252-266

    [44]Boily J F,Persson P,Sj?berg S.Geochim.Cosmochim.Acta,2000,64(20):3453-3470

    [45]Rosenqvist J,Axe K,Sj?berg S,et al.Colloids Surf.,A,2003,220(1/2/3):91-104

    [46]Guan X H,Shang C,Zhu J,et al.J.Colloid Interface Sci.,2006,293(2):296-302

    [47]Guan X H,Liu Q,Chen G H,et al.J.Colloid Interface Sci.,2005,289(2):319-327

    [48]Kandori K,Oda S,Fukusumi M,et al.Colloids Surf.,B,2009,73(1):140-145

    [49]Larsericsdotter H,Oscarsson S,Buijs J.J.Colloid Interface Sci.,2004,276(2):261-268

    [50]Carroll-Webb S A,Walther J V.Geochim.Cosmochim.Acta,1988,52(11):2609-2623

    [51]Johnson S B,Yoon T H,Kocar B D,et al.Langmuir,2004,20(12):4996-5006

    [52]Yang X D,Bi S P,Yang L,et al.Spectrochim.Acta:Part A,2003,59(11):2561-2569

    [53]Yang X D,Cai L,Peng Y,et al.Sensors,2011,11(6):5740-5753

    [54]Hull R V,Conger P S,Hoobler R J.Biophys.Chem.,2001,90(1):9-16

    猜你喜歡
    生物化工天虹煙酰胺
    WANG Xiaoping. Chinese Literature and Culture in the Age of Global Capitalism:Renaissance or Rehabilitation?
    山西惠澤生物化工有限公司
    蜜蜂雜志(2022年5期)2022-07-20 09:54:12
    高速公路工程中瀝青混凝土拌合站配置和管理
    科學(xué)家(2022年4期)2022-05-10 02:10:11
    山西惠澤生物化工有限公司
    蜜蜂雜志(2022年2期)2022-04-15 03:08:40
    山西惠澤生物化工有限公司
    蜜蜂雜志(2021年3期)2021-10-19 10:01:28
    南通德發(fā)生物化工有限公司
    塑料助劑(2019年3期)2019-07-24 08:51:24
    本刊特邀編委風(fēng)采
    給你一個(gè)島
    煙酰胺甲基化反應(yīng)機(jī)理的理論研究
    煙酰胺在皮膚科的應(yīng)用進(jìn)展
    内射极品少妇av片p| 久久久久性生活片| 亚洲精品美女久久久久99蜜臀| 搞女人的毛片| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播放欧美日韩| 三级毛片av免费| 露出奶头的视频| 日本与韩国留学比较| 亚洲国产欧美网| 无人区码免费观看不卡| 亚洲精品美女久久久久99蜜臀| 国产爱豆传媒在线观看| 久久伊人香网站| 久久久久久久午夜电影| 99久久99久久久精品蜜桃| 欧美黑人巨大hd| 少妇丰满av| 在线看三级毛片| 亚洲av成人av| 免费av观看视频| 亚洲不卡免费看| 亚洲最大成人手机在线| 琪琪午夜伦伦电影理论片6080| 国产高清视频在线播放一区| 国产亚洲精品av在线| 久久久久性生活片| 国产三级黄色录像| 国产免费一级a男人的天堂| 欧美最黄视频在线播放免费| 在线观看免费午夜福利视频| 免费高清视频大片| 又粗又爽又猛毛片免费看| 又黄又粗又硬又大视频| 久久国产精品人妻蜜桃| 禁无遮挡网站| 亚洲成人久久性| 精品久久久久久久人妻蜜臀av| 99热6这里只有精品| 欧美zozozo另类| 国产精品,欧美在线| 日韩人妻高清精品专区| 国产激情欧美一区二区| 校园春色视频在线观看| 欧美日韩福利视频一区二区| 极品教师在线免费播放| 国产蜜桃级精品一区二区三区| 好男人电影高清在线观看| 精品久久久久久久人妻蜜臀av| 美女高潮的动态| 最近最新免费中文字幕在线| 淫秽高清视频在线观看| 久久精品国产亚洲av香蕉五月| 日韩精品青青久久久久久| 国内精品一区二区在线观看| 男女那种视频在线观看| 国产视频内射| 午夜免费激情av| 制服丝袜大香蕉在线| 高清日韩中文字幕在线| 成人国产一区最新在线观看| 好看av亚洲va欧美ⅴa在| xxx96com| 尤物成人国产欧美一区二区三区| 国产精品 国内视频| 亚洲熟妇熟女久久| 亚洲中文字幕日韩| 免费观看精品视频网站| 99在线视频只有这里精品首页| 国产一区二区亚洲精品在线观看| 日本免费一区二区三区高清不卡| 手机成人av网站| 一级毛片女人18水好多| 久9热在线精品视频| 51午夜福利影视在线观看| avwww免费| 亚洲成人免费电影在线观看| 一区二区三区激情视频| 小蜜桃在线观看免费完整版高清| 在线免费观看不下载黄p国产 | 国内毛片毛片毛片毛片毛片| 最新中文字幕久久久久| 欧美又色又爽又黄视频| 黄色成人免费大全| 亚洲中文日韩欧美视频| 尤物成人国产欧美一区二区三区| 亚洲最大成人手机在线| 18美女黄网站色大片免费观看| 九九热线精品视视频播放| 免费电影在线观看免费观看| 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久久电影 | 国产国拍精品亚洲av在线观看 | 欧美黄色片欧美黄色片| 国产一区二区在线观看日韩 | 日本五十路高清| 国产视频一区二区在线看| 老熟妇乱子伦视频在线观看| 少妇的逼水好多| 九色国产91popny在线| 久久精品国产99精品国产亚洲性色| 欧美日韩一级在线毛片| 男人的好看免费观看在线视频| 性色av乱码一区二区三区2| 国产一区二区亚洲精品在线观看| 亚洲,欧美精品.| 精品久久久久久,| 成人国产一区最新在线观看| 1000部很黄的大片| 欧美不卡视频在线免费观看| 色综合婷婷激情| 午夜免费男女啪啪视频观看 | 别揉我奶头~嗯~啊~动态视频| 色播亚洲综合网| 国产精品女同一区二区软件 | 91麻豆av在线| 一级黄片播放器| 老司机福利观看| 三级毛片av免费| 国产成人av教育| 国产成人影院久久av| 欧美性感艳星| 国产精品日韩av在线免费观看| 亚洲片人在线观看| 村上凉子中文字幕在线| 日韩人妻高清精品专区| 三级国产精品欧美在线观看| 国产精品98久久久久久宅男小说| 日韩欧美在线乱码| 国产探花在线观看一区二区| 99久久成人亚洲精品观看| 可以在线观看的亚洲视频| 午夜福利视频1000在线观看| 午夜老司机福利剧场| 久久6这里有精品| 欧美一区二区亚洲| 国产精品一区二区三区四区久久| 欧美av亚洲av综合av国产av| 亚洲真实伦在线观看| 人人妻人人澡欧美一区二区| 午夜福利高清视频| 中文亚洲av片在线观看爽| 免费无遮挡裸体视频| 又黄又爽又免费观看的视频| 国产伦一二天堂av在线观看| 国产色婷婷99| 亚洲在线自拍视频| 亚洲男人的天堂狠狠| 亚洲av电影不卡..在线观看| 色综合欧美亚洲国产小说| 国产97色在线日韩免费| 国产成人aa在线观看| av视频在线观看入口| 国产精品99久久久久久久久| 亚洲电影在线观看av| 深爱激情五月婷婷| 成人欧美大片| 欧美丝袜亚洲另类 | 成人欧美大片| 亚洲国产日韩欧美精品在线观看 | 国产一级毛片七仙女欲春2| 在线观看66精品国产| 熟女电影av网| 欧美日韩黄片免| 国产免费一级a男人的天堂| 伊人久久大香线蕉亚洲五| 中文字幕人成人乱码亚洲影| 午夜免费成人在线视频| 男人舔奶头视频| 每晚都被弄得嗷嗷叫到高潮| 日韩人妻高清精品专区| 在线观看av片永久免费下载| 国产av在哪里看| 男人舔女人下体高潮全视频| 精品乱码久久久久久99久播| 波多野结衣高清作品| 成年女人永久免费观看视频| 乱人视频在线观看| av视频在线观看入口| 中国美女看黄片| 免费观看的影片在线观看| 操出白浆在线播放| 色视频www国产| 亚洲男人的天堂狠狠| 日本在线视频免费播放| 日本一本二区三区精品| 小蜜桃在线观看免费完整版高清| 国产亚洲精品av在线| www日本在线高清视频| 久久精品国产亚洲av涩爱 | 女人十人毛片免费观看3o分钟| 一个人观看的视频www高清免费观看| 桃红色精品国产亚洲av| 女警被强在线播放| 亚洲av电影不卡..在线观看| 人妻丰满熟妇av一区二区三区| 在线国产一区二区在线| 婷婷亚洲欧美| 成人av一区二区三区在线看| 亚洲精品一区av在线观看| 男女下面进入的视频免费午夜| 香蕉av资源在线| 国产一区二区在线av高清观看| 国产精品精品国产色婷婷| 午夜亚洲福利在线播放| 日韩高清综合在线| 黄色片一级片一级黄色片| 中出人妻视频一区二区| 亚洲欧美日韩高清在线视频| 国产亚洲精品av在线| 亚洲一区二区三区色噜噜| 国产高清视频在线播放一区| 深夜精品福利| 桃红色精品国产亚洲av| 国产 一区 欧美 日韩| 亚洲成人免费电影在线观看| 国产私拍福利视频在线观看| 日韩高清综合在线| xxx96com| 精品一区二区三区人妻视频| 久久久久久国产a免费观看| 成人亚洲精品av一区二区| 亚洲一区二区三区色噜噜| 性色av乱码一区二区三区2| 亚洲在线观看片| 色在线成人网| 亚洲人与动物交配视频| 午夜两性在线视频| 91久久精品国产一区二区成人 | 色综合亚洲欧美另类图片| 中文字幕精品亚洲无线码一区| 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉国产精品| 日韩欧美国产在线观看| 18禁黄网站禁片免费观看直播| 久久性视频一级片| 黄色日韩在线| 极品教师在线免费播放| 日日摸夜夜添夜夜添小说| 国产高清激情床上av| 午夜激情福利司机影院| 亚洲精品在线美女| 日本 欧美在线| 在线播放无遮挡| 美女黄网站色视频| 法律面前人人平等表现在哪些方面| 大型黄色视频在线免费观看| 亚洲成av人片免费观看| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久毛片微露脸| 中文字幕人妻熟人妻熟丝袜美 | 尤物成人国产欧美一区二区三区| 一级a爱片免费观看的视频| 久久久国产成人免费| 岛国在线观看网站| 少妇裸体淫交视频免费看高清| 亚洲av成人精品一区久久| 亚洲精品成人久久久久久| 麻豆国产av国片精品| 久久久久国产精品人妻aⅴ院| 国产精品三级大全| 真实男女啪啪啪动态图| 黄色女人牲交| 国产成人欧美在线观看| 久久精品人妻少妇| 一本一本综合久久| 中文亚洲av片在线观看爽| 性色av乱码一区二区三区2| 窝窝影院91人妻| 亚洲美女视频黄频| 成人亚洲精品av一区二区| 国产三级中文精品| 久99久视频精品免费| 三级男女做爰猛烈吃奶摸视频| 超碰av人人做人人爽久久 | 国产精品一及| 精品99又大又爽又粗少妇毛片 | 国产极品精品免费视频能看的| 亚洲七黄色美女视频| 一区二区三区国产精品乱码| 亚洲内射少妇av| 国产久久久一区二区三区| 午夜影院日韩av| 亚洲人成电影免费在线| 国产毛片a区久久久久| 露出奶头的视频| 久久久精品大字幕| 国产精品,欧美在线| 精品午夜福利视频在线观看一区| 亚洲精品一区av在线观看| 麻豆国产av国片精品| av福利片在线观看| 女人十人毛片免费观看3o分钟| 色综合婷婷激情| 日本精品一区二区三区蜜桃| 黄色丝袜av网址大全| 一级a爱片免费观看的视频| 中文字幕精品亚洲无线码一区| 精品国产超薄肉色丝袜足j| 母亲3免费完整高清在线观看| 国产伦一二天堂av在线观看| 极品教师在线免费播放| 91在线观看av| 舔av片在线| 成人欧美大片| 国产成人福利小说| 免费人成在线观看视频色| 国产蜜桃级精品一区二区三区| 狂野欧美激情性xxxx| 国内少妇人妻偷人精品xxx网站| 嫁个100分男人电影在线观看| 天天一区二区日本电影三级| 亚洲av第一区精品v没综合| 亚洲国产欧美网| 亚洲内射少妇av| 黑人欧美特级aaaaaa片| 精品乱码久久久久久99久播| 尤物成人国产欧美一区二区三区| 久久婷婷人人爽人人干人人爱| 国产精品亚洲av一区麻豆| 亚洲精品亚洲一区二区| 久99久视频精品免费| 精品国产超薄肉色丝袜足j| 最近最新免费中文字幕在线| 国产精品98久久久久久宅男小说| 母亲3免费完整高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产伦人伦偷精品视频| 国产探花极品一区二区| 国内毛片毛片毛片毛片毛片| 国产熟女xx| 90打野战视频偷拍视频| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 波多野结衣巨乳人妻| 国产国拍精品亚洲av在线观看 | av欧美777| 亚洲精品456在线播放app | 欧美三级亚洲精品| 免费观看的影片在线观看| 小说图片视频综合网站| 国产成人影院久久av| 欧美最新免费一区二区三区 | 精品欧美国产一区二区三| 全区人妻精品视频| 欧美乱妇无乱码| 又紧又爽又黄一区二区| a在线观看视频网站| 99久久九九国产精品国产免费| 一夜夜www| 香蕉久久夜色| 精品免费久久久久久久清纯| 国产精品乱码一区二三区的特点| 国产黄色小视频在线观看| 欧美高清成人免费视频www| 亚洲内射少妇av| 国产探花在线观看一区二区| 国产精品三级大全| 中文字幕高清在线视频| 听说在线观看完整版免费高清| 波多野结衣巨乳人妻| 成年女人永久免费观看视频| 久久久久久久久中文| 丰满乱子伦码专区| 91九色精品人成在线观看| 亚洲av电影在线进入| 久久久久久久久中文| 欧美性猛交黑人性爽| 小蜜桃在线观看免费完整版高清| 亚洲狠狠婷婷综合久久图片| 一区二区三区国产精品乱码| 欧美性猛交╳xxx乱大交人| 成人精品一区二区免费| 综合色av麻豆| 欧美乱色亚洲激情| 亚洲欧美日韩卡通动漫| av福利片在线观看| 久久性视频一级片| 一进一出抽搐gif免费好疼| 国产色婷婷99| 国产亚洲欧美在线一区二区| 少妇的逼水好多| 淫秽高清视频在线观看| 国产伦一二天堂av在线观看| 91在线精品国自产拍蜜月 | 欧美成狂野欧美在线观看| 国产亚洲精品久久久久久毛片| 18禁裸乳无遮挡免费网站照片| 午夜两性在线视频| 麻豆国产av国片精品| 日韩欧美 国产精品| 欧美日韩福利视频一区二区| 大型黄色视频在线免费观看| 国产日本99.免费观看| 2021天堂中文幕一二区在线观| 最新在线观看一区二区三区| 国产一区在线观看成人免费| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 亚洲第一电影网av| 免费电影在线观看免费观看| 天堂网av新在线| 美女高潮喷水抽搐中文字幕| 国产伦精品一区二区三区四那| 丰满乱子伦码专区| 国产精品99久久久久久久久| 免费搜索国产男女视频| 日韩中文字幕欧美一区二区| av女优亚洲男人天堂| 亚洲成人久久性| 国产精品美女特级片免费视频播放器| 日韩欧美国产一区二区入口| 狂野欧美激情性xxxx| 色噜噜av男人的天堂激情| 欧美成人免费av一区二区三区| 最新中文字幕久久久久| 高清在线国产一区| 国产欧美日韩精品亚洲av| a级一级毛片免费在线观看| 一个人免费在线观看的高清视频| 一个人看视频在线观看www免费 | 不卡一级毛片| 亚洲成人久久爱视频| 成人国产一区最新在线观看| 少妇的丰满在线观看| 国产真人三级小视频在线观看| 法律面前人人平等表现在哪些方面| 免费av毛片视频| 亚洲天堂国产精品一区在线| 变态另类丝袜制服| 亚洲无线在线观看| 波多野结衣巨乳人妻| 丰满乱子伦码专区| 亚洲欧美日韩东京热| 一个人观看的视频www高清免费观看| 又紧又爽又黄一区二区| 久9热在线精品视频| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美98| 国产一区二区在线观看日韩 | 国产男靠女视频免费网站| 久久草成人影院| 最新中文字幕久久久久| 亚洲人成网站高清观看| 露出奶头的视频| 99国产精品一区二区三区| 乱人视频在线观看| 老司机在亚洲福利影院| 男人和女人高潮做爰伦理| 亚洲 国产 在线| 97超级碰碰碰精品色视频在线观看| 美女免费视频网站| 国产aⅴ精品一区二区三区波| 长腿黑丝高跟| 亚洲成av人片在线播放无| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 亚洲人成电影免费在线| 美女大奶头视频| 蜜桃久久精品国产亚洲av| 97超视频在线观看视频| 午夜免费男女啪啪视频观看 | 成人特级黄色片久久久久久久| 别揉我奶头~嗯~啊~动态视频| 午夜免费成人在线视频| 国产成人啪精品午夜网站| 88av欧美| 欧美高清成人免费视频www| 日本a在线网址| 亚洲av五月六月丁香网| 午夜精品在线福利| 人人妻,人人澡人人爽秒播| 成年女人毛片免费观看观看9| 国产精品久久久人人做人人爽| 国产aⅴ精品一区二区三区波| 国产一区二区激情短视频| 在线播放无遮挡| 99久久无色码亚洲精品果冻| 国产免费一级a男人的天堂| 精品一区二区三区视频在线 | 欧美极品一区二区三区四区| 亚洲精品色激情综合| 欧美高清成人免费视频www| av视频在线观看入口| 日本黄色视频三级网站网址| 在线看三级毛片| 亚洲片人在线观看| 啦啦啦韩国在线观看视频| 听说在线观看完整版免费高清| 一个人看视频在线观看www免费 | 亚洲人成网站在线播放欧美日韩| 操出白浆在线播放| 久久精品国产自在天天线| 黑人欧美特级aaaaaa片| 18禁在线播放成人免费| 精品不卡国产一区二区三区| 国产成人av教育| 色噜噜av男人的天堂激情| 亚洲在线观看片| 偷拍熟女少妇极品色| 变态另类成人亚洲欧美熟女| 一进一出抽搐动态| 一区福利在线观看| 怎么达到女性高潮| 极品教师在线免费播放| 免费av不卡在线播放| 久99久视频精品免费| 精华霜和精华液先用哪个| 制服人妻中文乱码| 综合色av麻豆| 亚洲专区国产一区二区| 少妇人妻精品综合一区二区 | 天堂√8在线中文| 91九色精品人成在线观看| 一区二区三区免费毛片| 波多野结衣高清无吗| 成人亚洲精品av一区二区| 波多野结衣高清作品| 无限看片的www在线观看| 欧美xxxx黑人xx丫x性爽| 伊人久久大香线蕉亚洲五| 亚洲男人的天堂狠狠| 亚洲精品粉嫩美女一区| 少妇高潮的动态图| 日韩有码中文字幕| 啦啦啦免费观看视频1| 国内精品久久久久精免费| 搡老妇女老女人老熟妇| 亚洲一区二区三区色噜噜| 久久精品国产99精品国产亚洲性色| 国产精品免费一区二区三区在线| 免费av观看视频| 欧美成人一区二区免费高清观看| 国产三级中文精品| 高清在线国产一区| 嫩草影院精品99| 精品不卡国产一区二区三区| 在线看三级毛片| 国产精品一及| 欧美日韩国产亚洲二区| 高清毛片免费观看视频网站| 亚洲乱码一区二区免费版| 日韩欧美国产在线观看| 18禁在线播放成人免费| 成年女人看的毛片在线观看| 老司机午夜福利在线观看视频| 精品乱码久久久久久99久播| 久久精品亚洲精品国产色婷小说| 欧美乱妇无乱码| 亚洲精品日韩av片在线观看 | 国产精品久久久久久精品电影| 18+在线观看网站| 日本 欧美在线| 国产精品久久久久久亚洲av鲁大| 级片在线观看| 香蕉丝袜av| 日本黄大片高清| 精品日产1卡2卡| 国产一区二区激情短视频| h日本视频在线播放| 在线免费观看不下载黄p国产 | 国产真人三级小视频在线观看| 看免费av毛片| 国产精品久久久久久人妻精品电影| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产中文字幕在线视频| 午夜福利免费观看在线| 九九在线视频观看精品| 国产视频内射| 99精品欧美一区二区三区四区| 亚洲欧美日韩东京热| 成人性生交大片免费视频hd| 国产精品av视频在线免费观看| 午夜日韩欧美国产| 亚洲五月婷婷丁香| 少妇人妻一区二区三区视频| 亚洲欧美日韩高清在线视频| 免费人成视频x8x8入口观看| 成人国产一区最新在线观看| 欧美大码av| 一夜夜www| 91久久精品电影网| 亚洲第一电影网av| 超碰av人人做人人爽久久 | 欧美成人一区二区免费高清观看| 婷婷精品国产亚洲av在线| 中文字幕人妻熟人妻熟丝袜美 | 欧美三级亚洲精品| 老司机福利观看| 欧美性猛交黑人性爽| 国产亚洲精品久久久久久毛片| 久久精品国产99精品国产亚洲性色| 99在线人妻在线中文字幕| 黄色成人免费大全| 国产视频内射| 亚洲精品美女久久久久99蜜臀| 成年版毛片免费区| aaaaa片日本免费| 国产高清视频在线观看网站| 欧美不卡视频在线免费观看| 在线看三级毛片| www.999成人在线观看| 国产黄片美女视频| 最新在线观看一区二区三区| 亚洲内射少妇av| 女同久久另类99精品国产91| 久久草成人影院| 亚洲av日韩精品久久久久久密| 日本成人三级电影网站| 久久草成人影院| 成人特级av手机在线观看| 日本黄色视频三级网站网址| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区在线臀色熟女| 国产一级毛片七仙女欲春2|