• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微波誘導(dǎo)燃燒法合成類花狀ZnO納米材料及其晶體結(jié)構(gòu)、熒光性質(zhì)研究

    2013-10-17 03:02:58劉柏林徐彥芹王亞濤
    關(guān)鍵詞:花狀重慶大學(xué)化工學(xué)院

    曹 淵 文 毅 劉柏林 徐彥芹 王亞濤

    (重慶大學(xué)化學(xué)化工學(xué)院,重慶 400030)

    Zinc oxide(ZnO)is an important direct semiconductor with wide bandgap of 3.37 eV and large exciton bind energy of 60 meV at room temperature.Its unique optical,electronic,chemical,and thermal properties have made ZnO a promising material in various fields,such as room-temperature ultraviolet lasers[1],fieldeffect transistors[2],photodetectors[3],gas sensors[4],photocatalysts[5],and solar cells[6].To meet increasing demand for ZnO in these applications,efforts have been devoted to obtaining ZnO nanocrystals with controlled sizes and architectures because the optical,physicochemical,and electric propertiesofZnO crystals are intimately dependent on their size and shape.Over the pastdecade,many interesting nanostructures of ZnO,such as nanorods[6],nanowires[7],nanorings[8],nanobelts[8],whisker[9],tetrapods[10],flowers[11],and nanospheres[12]have been fabricated.The latest investigations also indicate that a series of specific morphologies and structures of ZnO could possess even more novel properties.Huang et al.[1]observed room-temperature UV lasing in ZnO nanowire arrays and discovered that the nanostructure had a lowerlasing threshold compared with disordered particles or films.Cao et al.[13]found that the energy conversion efficiency of dye-sensitized solar cells could be significantly enhanced using hierarchically structured nanosphere ZnO photoanodes.Through vertically aligned zinc oxide nanowire arrays,Wang et al.fabricated an ultrasonic wave-driven nanogenerator that produces continuous direct-current output[14].

    To date,various synthetic methods,including hydrothermal synthesis[15],pyrolysis[16],the sol-gel technique[17],and chemical vapor deposition[18],have been developed to fabricate ZnO nanocrystals with controlled morphologies.However,most of the synthetic procedures available require expensive equipment and need to be operated under very strict conditions.Moreover,the synthesis of inorganic materials is timeconsuming.

    Compared with various techniques,the combustion synthesis method has many potential advantages,such as low-processing cost,energy efficiency,and timesaving features[19].The microwave-induced combustion technique (MICT)isan economicalmethod for preparing metal oxide materials.Metal nitrates and an organic compound,usually glycine(NH2CH2COOH)or urea [CO(NH2)2],are used as reactants.When igniting the aqueous solution of the reactants using microwave radiation,a combustion reaction takes place and transforms the reactants into a loose product composed of nanocrystalline particles.Y2O3[20],CeO2[21],and TiO2[22]have been successfully synthesized through MICT.

    MICT induces the reactants to reach the reaction temperature fast through heating,and then the reaction takes place.During the process,including the dissolution of nitrate and fuel in a trace of water,the heated solution in the microwave oven decomposes a great deal of flammable gas,plenty of heat as well,reactants burn after reaching the self-ignition temperature.The whole reaction lasts for a few minutes,during which the nitrate plays the role of oxidant,urea and its cleavage product act as the reducing agents,and microwave induces the redox reaction.Nowadays there are relevant reports on Synthesizing inorganic materials based on MICT method.Nanocomposite NiO/YSZ powders for high performance anodes of SOFCs have been synthesized via a microwave-assisted complex-gel auto-combustion approach by Cai et al.[23]Sertkol et al.[24]also synthesized Zn0.7Ni0.3Fe2O4nanoparticles via microwave assisted combustion route,and the product shows superparamagnetic behavior at around the room temperature and ferromagnetic behavior below the blocking temperature of 284 K.

    Microwaves can be used to heat materials.As with all electromagnetic radiation,microwave radiation can be divided into an electric field component and a magnetic field component.The former is responsible for dielectric heating,which is effected via two major mechanisms[25].One of the interactions of the electric field component with the matrix is called the dipolar polarization mechanism.And the other is the conduction mechanism.Microwave processing of materials is fundamentally different from conventional processing,such as the use of heating fluid,gas,steam,or electrical heating,due to its heating mechanism[26].In a microwave oven,heat is generated within the sample by the interaction of microwaves with the material.In conventional heating,the heat is generated by heating elements.The heat is then transferred to the samples surfaces.Based on these details,we speculate that the nanostructures or properties of as-synthesized ZnO would change after microwave radiation.

    In this study,the MICT method is developed for the flash synthesis of ZnO crystals.The development of the MICT method is described and the effects of several experimentalparameters on productquality are discussed.The morphologies necessary to form flowerlike ZnO with different lengths of time are observed.We also suggest a mechanism of formation of flower-like ZnO,and evaluate the photoluminescence properties of the ZnO nanostructures.

    1 Experimental

    1.1 Materials and methods

    All chemicals (analytical grade reagents)were commercially available and used withoutfurther purification.The MICT method involved the dissolution of zinc nitrate[Zn(NO3)2·6H2O]as an oxidizer,and fuel(urea [CO(NH2)2])as a reducer in water.The resulting solution was heated in a microwave oven.Experimental details are as follows.Approximately 6 g of Zn(NO3)2·6H2O was dissolved in 2 mL distilled water in a porcelain crucible.Urea was assembled in an appropriate proportion to form into fuel compounds.The fuel compounds were mixed well with the stock zinc nitrate solution until a ropy paste(hereafter termed as the precursor)wasobtained.The precursorwas introduced into a microwave oven (Galanz D8023CSLK4),and a microwave field of 2.45 GHz was applied to it for decomposition to take place.After boiling,evaporating,and concentrating,the precursor foamed up,deflagrated,and released a certain amount of heat and gases.Microwave radiation was not stopped until the flame was extinguished.Combustion was completed within only a few minutes,and ZnO nanoparticles remained as residues.

    The relative chemical reaction equation can be written as:

    According to the concepts of propellant chemistry,in Eq.(1),1.5Φ-2.5=0 corresponds to the situation where “the reactant composition was set at the condition equivalent to the stoichiometric ratio”,which implies that the oxygen content of zinc nitrate could be completely reacted to oxidize fuels equivalently without demanding oxygen from any external source.Both the rates of reaction and the heat liberated per unit of time are at a maximum under this condition.Referring to Eq.(1),three representative reactant compositions were selected to synthesize ZnO products:(1)Φ=1 is defined as deficient fuel;(2)Φ=1.667 is defined as suitable fuel;and(3)Φ=3 is defined as excess fuel.These also represented the relations between Zn2+concentration and amount of fuel.

    1.2 Characterization

    The precursor powders were investigated using thermogravimetric analysis (TGA)and differential thermal analysis(DTA)between room temperature and 800 ℃ usingaShimadzuDTG-60H instrument.Analyses were performed under a nitrogen atmosphere at a temperature ramp of 10 ℃·min-1.The obtained samples were characterized by infrared spectroscopy(FTIR)(Shimadzu Affinity-1 FTIR spectrophotometer in the range of 2 000~400 cm-1using KBr pellets)and X-ray diffraction(XRD)(Shimadzu XRD-6000 with Cu Kα radiation,λ=0.154 18 nm;diffractograms were obtained under the following conditions:2θ=20°~80°,voltage of 40 kV,current of 40 mA,and scanning speed of 2°·min-1).The morphologies and size of the products were investigated by scanning electron microscopy(SEM)(JEOL JSM-6490LV),field emission scanning electron microscopy(FESEM)(FEI Nova-400),and transmission electron microcopy (TEM) (JEOL JEM-2000EX)combined with selected area electron diffraction(SAED).The room-temperature PL was measured with a fluorescence spectrophotometer(Shimadzu RF-5301PC using a Xe laser with a wavelength of 325 nm as the excitation light source).

    2 Results and discussion

    2.1 Phenomena analysis

    Fuels have an important effect on combustion reactions and the properties of the as-synthesized products because of the main energy released from the exothermic reaction between fuels and zinc nitrate,which could rapidly heatthe system to high temperatures and ensure that synthesis occurs.Therefore,depending on the amount of urea contained in the reactant compartment,three different kinds of reaction phenomena are observed.At low CO(NH2)2contents(Φ=1),heat release is relatively low because of fuel scarcity.Thus,the precursor cannot deflagrate and the product color is not uniform.In the middle of the porcelain crucible,some pink powders containing harder agglomerates are obtained,whereas the white unreacted precursor is left near the vessel wall.The low temperature of the vessel wall is not enough to trigger significant changes.In the case of CO(CH2)2(Φ=1.667 and Φ=3),liberation of the energy during the combustion reaction is enough to ignite the precursor.A stable flame is observed after smoke evolution.Pink powder agglomerates are obtained at Φ=1.667,whereas light yellow color powders in loose shapes are obtained at Φ=3.

    The response characteristic for the shortage of fuel is a slower reaction rate and lack of substantial flame.By contrast,the great response rate exists in the reaction of fuel abundance and the reaction is almost completed at the same time.Under this condition,all the oxygen comes from the precursor.Once NO3-creates oxygen,itimmediately reacts with urea.With increasing fuel content,the key reason for obtaining loose-shaped products is the liberation of a large amount of gases during combustion.The gases hamper the subsequent condensation of particles.When the fuel is in excess,the combustion reaction must be taken outside to increase oxygen.Therefore,the critical factor that limits reaction rates is the amount of oxygen in the system,which enters the reaction zone by diffusion.

    TGA and DTA curves of the ZnO precursor are shown in Fig.1.The major weight loss occurs at about 310℃,and the minor ones at temperatures between 420 and 500℃.The mass remains constant at higher temperatures,indicating oxide formation.A weight loss of about 70% is observed,corresponding to the evolution of absorbed moisture (water and other low molecular weight compounds),the burning out of carbon dioxide,and the presence of excess nitrate gases in the as-prepared precursor ZnO powder.The DTA curve shows the three steps in the decomposition behavior of exothermic peaks between room temperature and 1 000℃.First,a broad peak below 200℃corresponds to the desertion of moisture from the precursor powder and removal of water molecules from the hydroxyl group.The exothermic peaks in the 300~700℃range correspond to the volatile product(COx,N2, NOx, etc.) formation and organic material combustion.The broad peak at about 900 ℃ could be attributed to the crystal phase transition of ZnO.TGA and DTA data display the transformation of precursors in the microwave oven.

    2.2 Crystalstructureandfunctionalgroupanalysis

    The XRD patterns of zinc oxide nanopowders prepared by the MICT are shown in Fig.2.The sharp diffraction peaks match the pattern of the standard hexagonal structure of ZnO (PDF No.36-1451),with lattice constants a=0.324 9 nm and c=0.520 6 nm.The strongest peaks located at 31.72°,34.40°,and 36.18°can be clearly seen and correspond to the(100),(002),and(101)directions of ZnO,respectively.Besides the three most obvious peaks,other peaks representing(102),(110),(103),(200),(112),(201),(004),and (202)directions of ZnO can also be indexed from the ZnO (PDF No.36-1451).No secondary peaks are detected in Figs.2a and 2c,indicating the complete crystallization of single phase hexagonal ZnO.However,comparison of the curve of Fig.2b with those of Figs.2a and 2c show some weak peaks located at 21°~29° (inset,Fig.2b).These peaks indicate that a rapid reaction is not conducive to the formation of the single phase ZnO.

    The formation of ZnO nanostructures is further characterized by FTIR spectroscopy,as shown in Fig.3.The absorption at~1 383 cm-1for the synthesized samples corresponds to the bending vibration of C-N.This indicates the presence of nitrate ions,which are probably absorbed on the surface of ZnO particles.The intense band that rises at 400~500 cm-1in all the spectra is assigned to the stretching vibrations of Zn-O.A sharp Zn-O vibration peak at 449 cm-1appears with a urea/Zn2+molar ratio of 3∶1,and the single peak is attributed to a comparatively large amount of heat energy and the higher temperature.The peaks observed in the FTIR spectra of the powders are found to match well with those previously reported[27].

    2.3 ZnO nanostructures

    Fig.4 shows the SEM and FE-SEM images of the ZnO nanostructures prepared by the MICT at different molar ratios of urea/Zn2+.When the molar ratio of urea/Zn2+is equal to 1,nanostructure flowers can be obtained at all three microwave powers(170,340,and 680 W),as shown in Fig.4.However,the flowers are not fully formed when the microwave power is too low(Fig.4a),and the size of the flower clusters is inhomogeneous(Fig.4c).Moreover,the higher the microwave power,the shorter the time for the occurrence of deflagration.Since a short reaction time is not beneficial to crystal nucleation and growth,moderate microwave radiation power(340 W)is selected to investigate the effect of organic fuels on the nanostructures.Results show that uniform flower-like products are obtained with a 1∶1 molar ratio of urea/Zn2+,as shown in Fig.4b and 5a.The product consists of a large quantity of flower-like microstructures that are approximately 2~5 μm in size.The floral structures result from the accumulation of several hundreds of sharp-tipped ZnO nanorods,which originate from a single center.A urea/Zn2+molar ratio of 5:3 results in incomplete flower-shaped nanostructures.As well,flakes agglomerate around the flowers(Fig.5b).The overall floral morphology fully changes into a blocky structure with a urea/Zn2+molar ratio of 3∶1,as shown in Fig.5c.The lengths of these irregular blockshaped particles range from 100~300 nm.The results illustrate that urea,rather than microwave power,acts as a structure-directing agent,significantly affecting the anisotropic growth of ZnO from flowers to block-like structures.Different single-crystal ZnO nanostructures are obtained after only a few minutes of microwave radiation.

    Fig.6a shows a low-magnification TEM image of flower-shaped ZnO,which is consistent with SEM observations(Fig.5a).The corresponding SAED pattern(Fig.6b)indicates that the structure evolves from polycrystalline phases into single crystals.Characteristics of single-crystal diffraction spots and poly-crystalline diffusion rings can be seen from the SAED pattern.A high resolution TEM (HRTEM)image(Fig.6c)of the corresponding flowers clearly reveals that the lattice fringes between two adjacent planes are about 0.52 nm apart,which is equal to the lattice constant of ZnO,indicating that the obtained structures have wurtzite hexagonal phases and are preferentially grown along the(0001)direction.These findings are in accordance with the SAED pattern obtained.

    2.4 Morphology evolution

    In principle,the formation of 3D structures may be divided into two processes,i.e.,nucleation and growth.In the experiments,urea mediates the nucleation and growth of ZnO crystals by modifying the basicity of the precursor solutions.The following chemical reactions take place in the precursor solutions:

    Due to the hydrolysis of urea,the hydroxyl ion plays a crucial role in the nucleation process.At early stages of the reaction,ZnO nucleates from the Zn(OH)42-solution to form multi-nuclei aggregates.With constant stirring,the multi-nuclei aggregates serve as sites for ZnO nanostructure growth along the (001)direction.This direction has a high capability for inducing the nucleation of ZnO[28],according to the mechanism of polar crystal growth.In Fig.7a,the precursor solutions form the ZnO nanorods prior to microwave radiation.The similar phenomenon of ZnO crystal nucleus growth in solution has been reported in several studies[29].Due to molecular polarization in the reaction solution and the dipole moment formed in the dielectric,the level of excitation of Zn-O bonds is higher than normal under microwave radiation[30].Thus,the material coupled in the microwave field heats up more rapidly than in a convectional heating system.After microwave radiation for 5 min,the reaction solution boils and becomes concentrated before burning.ZnO columns/rods are formed,as illustrated in Fig.7b.When the solution burns with a stable flame,flower-like single-crystal ZnO nanostructures are formed with rapid growth rate in the combustion process after the combustion reaction(Figs.7c and 7d).The formation of flake-like ZnO and nanoparticles can be attributed to the liberation of large amounts of gases during combustion.A full description of these mechanisms would require more evidence from future work.

    2.5 Photoluminescence studies

    To investigate the effectofmorphology on photoluminescence characteristics, the room temperature photoluminescence (PL)spectra of(a)flower-like,(b)flake-like,and (c)block-like ZnO are shown in Fig.8.The resulting ZnO nanopowders display an ultraviolet emission at 366 nm and a relatively broad blue light emission in the range of 380~500 nm.

    The ultraviolet emission is attributed to the near band-edge emission ofthe wide band-gap ZnO,specifically,the recombination of free excitons through an exciton-exciton collision process[31].The emission at 366 nm is frequently observed in ZnO thin films deposited on gold substrates[32].Lin et al.found violet emissions at 390 nm (3.18 eV)during the DC reactive sputtering of ZnO films onto Si substrates[33].They believe that the violet emission originates from the electron transition from the conduction band to the valence band.We believe that the emission at 394 nm is due to the electron transition from the conduction band tail states to the valence band tail states.The 410 nm violet luminescence is thought to relate to interface traps at the grain boundaries and emissions from the radiative transition between this level and the valence band[34].Teng et al.[35]believe that this emission could be due to the transition from the top of the valence band to the Znilevel(interstitial zinc,2.9 eV).A weak blue emission at 442 nm (2.81 eV)was observed in the ZnO nanoflowers;this emission has also been found in ZnO films and whiskers[36].Previous studies on ZnO films prove that the blue emission is related to oxygen vacancies in the ZnO film[37].The 452 nm (2.74 eV)emission is assigned to rather shallow donor level of Zni recombined with VZn(vacancies zinc)by recent study[38-39].The 468 nm(2.64 eV)emission is not widely observed,although it is usually considered to be related to intrinsic defects generated during the preparation and post-treatment of nanostructures,such as single negatively charged zinc vacancies,the origins of which remain unclear.The hump at 485 nm in the PL spectra of ZnO can be attributed to the transition between the vacancies of oxygen and interstitial oxygen[40].Such an emission can also result from surface-deep traps,which are typical of porous ZnO nanostructures[41].The shoulder peak at 493 nm is related to singly ionized oxygen vacancies.This emission results from the recombination of a photogenerated hole with a singly ionized charge state of the specific defect[42].The green luminescence(500~550 nm)of ZnO nanostructures is not obvious.The peak intensity of the sample obtained at the urea/Zn2+molar ratio of 3∶1 is stronger than that at 1∶1.It is possible that the surface defects contribute to the emission because the block-like nanoparticles have smaller size and larger surface area.Zhang et al.[43]reported that surface states may play a more important role in visible emissions than previously thought.Hence,in our case,it may be reasonably inferred that both oxygen vacancies and surface states may respond to the yellow-green emission of the flower-like ZnO nanorods.

    The origins of different defect emissions are not completely understood,but we can speculate that differences in the optical properties of the present ZnO nanostructures originate from lattice defects related to either the oxygen interstitial spaces or Zn vacancies.

    3 Conclusions

    A rapid and simple method was developed for preparing flower-like ZnO nanocrystals through the MICT.Results reveal that the molar ratio of urea/Zn2+significantly influences the morphology of ZnO.The effect of ZnO morphologies is attributed to the induction of hydroxyl ions,which orients nucleation and promotes rapid growth under microwave radiation.Our results reveal that ZnO nanorods are created from ZnO nuclei,resulting in the formation of flower-like ZnO nanostructures.Photoluminescence spectra of ZnO flowers,flakes,and block-like nanostructures reveal several emission bands.The distinctive advantage of the proposed method is that the process requires no heat treatment or calcination at high temperature.

    [1]Huang M H,Mao S,Feick H,et al.Science,2001,292:1897-1899

    [2]Yuan H,Shimotani H,Tsukazaki A,et al.Adv.Func.Mater.,2009,19:1046-1053

    [3]Al-Hardan N H,Abdullah M J,Ahmad H,et al.Sol.St.Electr.,2011,55:59-63

    [4]Anderson T,Ren F,Pearton S,et al.Sensors,2009,9:4669-4694

    [5]Yang J L,An S J,Park W I,et al.Adv.Mater.,2004,16:1661-1664

    [6]Zhang R,Kumar S,Zou S,et al.Cryst.Growth Des.,2008,8:381-383

    [7]Pung S Y,Choy K L,Hou X,et al.Nanotechnol.,2010,21:345-602

    [8]Pan Z W,Dai Z R,Wang Z L.Science,2001,291:1947-1949

    [9]Qiu Z,Wong K S,Wu M,et al.Appl.Phys.Lett.,2004,84:2739-2741

    [10]Wang Q,Yu K,Wang T H,et al.Appl.Phys.Lett.,2003,83:2253-2255

    [11]CaoY,LiuBL,HuangR,etal.Mater.Lett.,2011,65:160-163

    [12]Zhang Y,Liu Y,Wu L,et al.Appl.Surf.Sci.,2009,255:4801-4805

    [13]Chou T P,Zhang Q,Fryxell G E,et al.Adv.Mater.,2007,19:2588-2592

    [14]Wang X,Song J,Liu J,et al.Science,2007,316:102-105

    [15]Zhang H,Yang D,Ji Y,et al.J.Phys.Chem.B.,2004,108:3955-3958

    [16]Puspharajah P,Radhakrishna S.J.Mater.Sci.,1997,32:3001-3006

    [17]Shan G,Xiao X,Wang X,et al.J.Colloid Interface Sci.,2006,298:172-176

    [18]Wu J J,Liu S C.Adv.Mater.,2002,14:215-218

    [19]Mangalaraja R V,Mouzon J,Hedstrm P,et al.J.Mater.Process.Tech.,2008,208:415-422

    [20]Mangalaraja R V,Mouzon J,Hedstrm P,et al.Powder Technol.,2009,191:309-314

    [21]Fu Y P,Lin C H,Hsu C S.J.Alloys Compd.,2005,391:110-114

    [22]Gressel-Michel E,Chaumont D,Stuerga D.J Colloid Interface Sci.,2005,285:674-679

    [23]Sertkol M,K?seolu Y,Baykal A,et al.J.Magn.Magn.Mater.,2010,322:866-871

    [24]Cai T X,Zeng Y W,Zhang W,et al.J.Power Sources,2010,195:1308-1315

    [25]Lidstr?m P,Tierney J,Wathey B,et al.Tetrahedron,2001,579:225-283

    [26]Fu Y P,Su Y H,Lin C H.Solid State Ionics,2004,166:137-146

    [27]Fernandes D M,Silva R,Winkler Hechenleitner A A,et al.Mater.Chem.Phys.,2009,115:110-115

    [28]Sun Y,Riley D J,Ashfold M N R.J.Phys.Chem.B,2006,110:15186-15192

    [29]Feng L,Liu J,She J J.et al.Cryst.Growth,2009,311:1435-1440

    [30]Tompsett G A,Conner W C,Yngvesson K S.Chem.Phys.Chem.,2006,7:296-319

    [31]Kong Y C,Yu D P,Zhang B,et al.Appl.Phys.Lett.,2001,78:407-409

    [32]Laurent K,Wang B Q,Yu D P,et al.Thin Sol.Films,2008,517:617-621

    [33]Lin B,Fu Z,Jia Y.Appl.Phys.Lett.,2001,79:943-945

    [34]Wang Y,Chu B.Superlattice Microst.,2008,44:54-61

    [35]Teng X M,Fan H T,Pan S S,et al.J.Phys.D:Appl.Phys.,2006,39:471-476

    [36]Dai L,Chen X L,Wang W J,et al.J.Phys.:Condens.Mat.,2003,15:2221-2226

    [37]Bachari E M,Baud G,Amor S B,et al.Thin Sol.Films,1999,348:165-172

    [38]Patra M K,Manzoor K,Manoth M,et al.J.Lumin.,2008,128:267-272

    [39]Chawla S,Karar N,Chander H.Phys.B(Amsterdam,Neth.),2010,405:198-203

    [40]Mahamuni S,Borgohain K,Bendre B S,et al.J.Appl.Phys.,1999,85:2861-2865

    [41]Song R Q,Xu A W,Deng B,et al.Adv.Funct.Mater.,2007,17:296-306

    [42]Tian Y,Lu H B,Wu Y,et al.Mater.Sci.Tech-Lond.,2010,26:1248-1252

    [43]Zhang H,Shen L,Guo S W.J.Phys.Chem.C,2007,111:12939-12943

    猜你喜歡
    花狀重慶大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    重慶大學(xué)學(xué)報(bào)征稿簡(jiǎn)則
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    Who Is The Master?
    大東方(2018年9期)2018-10-21 15:29:02
    一種制備空心花狀氫氧化鋅的方法及利用空心花狀氫氧化鋅制備空心花狀氧化鋅的方法
    《化工學(xué)報(bào)》贊助單位
    “精益管理五原則”在高校圖書(shū)館社區(qū)服務(wù)中的應(yīng)用——以重慶大學(xué)城為例
    三維花狀BiOBr/CNTs復(fù)合光催化劑降解羅丹明廢水研究
    毛片一级片免费看久久久久 | 国产精品久久久久久精品电影| АⅤ资源中文在线天堂| 午夜福利在线观看吧| 欧美色欧美亚洲另类二区| 久久久精品大字幕| 亚洲中文字幕一区二区三区有码在线看| 3wmmmm亚洲av在线观看| a级毛片免费高清观看在线播放| 亚洲最大成人手机在线| 国产aⅴ精品一区二区三区波| 国产伦一二天堂av在线观看| 国产精品影院久久| 美女xxoo啪啪120秒动态图 | 男女做爰动态图高潮gif福利片| 欧美一区二区亚洲| 亚洲欧美激情综合另类| 亚洲中文日韩欧美视频| 亚洲精品在线观看二区| 午夜福利免费观看在线| 亚洲成a人片在线一区二区| 成人欧美大片| 麻豆久久精品国产亚洲av| 美女黄网站色视频| 97热精品久久久久久| 中出人妻视频一区二区| 看十八女毛片水多多多| 他把我摸到了高潮在线观看| 美女cb高潮喷水在线观看| 亚洲美女搞黄在线观看 | 免费av观看视频| 国产免费一级a男人的天堂| 精品乱码久久久久久99久播| 男人和女人高潮做爰伦理| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | a级毛片a级免费在线| 简卡轻食公司| 99久久精品一区二区三区| 99久久久亚洲精品蜜臀av| 欧美黑人欧美精品刺激| 一进一出抽搐动态| 欧美日本视频| 村上凉子中文字幕在线| 亚洲av熟女| 极品教师在线视频| 网址你懂的国产日韩在线| 少妇被粗大猛烈的视频| 久久亚洲真实| 日本一本二区三区精品| 日本免费一区二区三区高清不卡| 乱人视频在线观看| 国产日本99.免费观看| 国产精品不卡视频一区二区 | 亚洲男人的天堂狠狠| 国内精品一区二区在线观看| 国产精品久久久久久精品电影| 午夜福利在线观看吧| 国产精品永久免费网站| 日韩中文字幕欧美一区二区| 床上黄色一级片| 99精品久久久久人妻精品| 高潮久久久久久久久久久不卡| 日韩中文字幕欧美一区二区| 国产精品日韩av在线免费观看| 18禁黄网站禁片午夜丰满| 天堂av国产一区二区熟女人妻| 1000部很黄的大片| 黄色视频,在线免费观看| 夜夜夜夜夜久久久久| 国产精品亚洲美女久久久| 色在线成人网| 一个人观看的视频www高清免费观看| 成人亚洲精品av一区二区| 伦理电影大哥的女人| 国产一区二区在线观看日韩| 一区二区三区免费毛片| 99久久成人亚洲精品观看| 熟女电影av网| 国产亚洲欧美在线一区二区| 日本黄色片子视频| 白带黄色成豆腐渣| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片午夜丰满| 国产伦精品一区二区三区四那| 亚洲专区中文字幕在线| 国产黄色小视频在线观看| 免费看日本二区| 成人高潮视频无遮挡免费网站| 午夜a级毛片| 97热精品久久久久久| 亚洲人成网站高清观看| 我的老师免费观看完整版| 少妇的逼好多水| 亚洲人成电影免费在线| 熟妇人妻久久中文字幕3abv| avwww免费| 久久久久国内视频| 欧美潮喷喷水| 日韩人妻高清精品专区| av视频在线观看入口| 欧美高清性xxxxhd video| 看十八女毛片水多多多| 91麻豆精品激情在线观看国产| 亚洲最大成人手机在线| 91狼人影院| 亚洲成人中文字幕在线播放| 亚洲成av人片免费观看| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| av视频在线观看入口| 日本在线视频免费播放| 99久久久亚洲精品蜜臀av| a级毛片a级免费在线| 欧美3d第一页| 757午夜福利合集在线观看| 久久婷婷人人爽人人干人人爱| 性色avwww在线观看| 人妻丰满熟妇av一区二区三区| 亚洲专区中文字幕在线| 亚洲av熟女| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线观看免费完整高清在 | 国产三级黄色录像| 特大巨黑吊av在线直播| 不卡一级毛片| 久久久久久大精品| 高清在线国产一区| 好男人电影高清在线观看| 一个人免费在线观看的高清视频| 别揉我奶头 嗯啊视频| 在线a可以看的网站| 高清日韩中文字幕在线| 三级毛片av免费| 久久久久久久久久成人| 久久久久久久久久黄片| 欧美黄色淫秽网站| 精品一区二区三区视频在线观看免费| 亚洲av电影在线进入| 又爽又黄无遮挡网站| 人妻制服诱惑在线中文字幕| 亚洲18禁久久av| 美女 人体艺术 gogo| 国产精品亚洲美女久久久| 国产精品av视频在线免费观看| 在线观看午夜福利视频| 亚洲三级黄色毛片| 国产一区二区在线观看日韩| 日韩有码中文字幕| 亚洲av二区三区四区| 97超视频在线观看视频| 99热这里只有是精品在线观看 | 久9热在线精品视频| 午夜免费男女啪啪视频观看 | 人人妻人人澡欧美一区二区| 啪啪无遮挡十八禁网站| a级一级毛片免费在线观看| 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 99热这里只有是精品50| av在线观看视频网站免费| 九色成人免费人妻av| 欧美最黄视频在线播放免费| 91av网一区二区| 俄罗斯特黄特色一大片| 观看美女的网站| 国产精品久久久久久久久免 | 久久人人爽人人爽人人片va | 变态另类成人亚洲欧美熟女| 美女高潮喷水抽搐中文字幕| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| a级毛片a级免费在线| 亚洲人与动物交配视频| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 午夜精品在线福利| 中文字幕高清在线视频| 国产蜜桃级精品一区二区三区| 真人一进一出gif抽搐免费| 中文字幕av在线有码专区| 精品人妻视频免费看| 啪啪无遮挡十八禁网站| 少妇的逼水好多| 深夜a级毛片| 亚洲国产精品成人综合色| 欧洲精品卡2卡3卡4卡5卡区| 又粗又爽又猛毛片免费看| 性色av乱码一区二区三区2| 午夜福利成人在线免费观看| 久久热精品热| 欧美成人a在线观看| 天堂网av新在线| 久久人人精品亚洲av| 久久6这里有精品| 久久国产精品人妻蜜桃| 91av网一区二区| 美女cb高潮喷水在线观看| 午夜免费男女啪啪视频观看 | 国产男靠女视频免费网站| 色播亚洲综合网| 成人美女网站在线观看视频| 五月伊人婷婷丁香| 国产真实乱freesex| 99热精品在线国产| 永久网站在线| 国产精品爽爽va在线观看网站| 麻豆国产av国片精品| 人妻丰满熟妇av一区二区三区| 久久久久亚洲av毛片大全| 日韩av在线大香蕉| 中文字幕高清在线视频| 97超视频在线观看视频| 亚洲第一欧美日韩一区二区三区| 一进一出抽搐gif免费好疼| 观看美女的网站| av在线老鸭窝| 少妇被粗大猛烈的视频| 无人区码免费观看不卡| 一区二区三区激情视频| 岛国在线免费视频观看| 国产亚洲精品综合一区在线观看| 免费av毛片视频| 在线免费观看不下载黄p国产 | 久久这里只有精品中国| 99久久精品国产亚洲精品| 又紧又爽又黄一区二区| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清在线视频| 国产主播在线观看一区二区| 性欧美人与动物交配| 日韩中文字幕欧美一区二区| 女人十人毛片免费观看3o分钟| 中文字幕久久专区| 久久这里只有精品中国| 国产精品伦人一区二区| 欧美+亚洲+日韩+国产| 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜添av毛片 | 久久天躁狠狠躁夜夜2o2o| 午夜免费男女啪啪视频观看 | 色噜噜av男人的天堂激情| 精品欧美国产一区二区三| 国产免费男女视频| 色综合站精品国产| 成年女人毛片免费观看观看9| 男女那种视频在线观看| 午夜精品一区二区三区免费看| 国产精品1区2区在线观看.| 国产精品久久久久久精品电影| 少妇人妻精品综合一区二区 | 91在线精品国自产拍蜜月| 午夜精品一区二区三区免费看| 精品久久久久久久久亚洲 | 午夜精品一区二区三区免费看| 91av网一区二区| 国产真实乱freesex| 亚洲经典国产精华液单 | 少妇高潮的动态图| 亚洲性夜色夜夜综合| 日韩欧美国产在线观看| 欧美bdsm另类| 成年免费大片在线观看| 嫩草影视91久久| 一区二区三区免费毛片| 成人国产综合亚洲| 午夜亚洲福利在线播放| 精品久久久久久久人妻蜜臀av| 久久99热这里只有精品18| 老司机午夜十八禁免费视频| 两个人的视频大全免费| 俺也久久电影网| 老司机深夜福利视频在线观看| 91av网一区二区| 男女之事视频高清在线观看| 99久久精品国产亚洲精品| 9191精品国产免费久久| 亚洲精品日韩av片在线观看| 国产高清有码在线观看视频| 在现免费观看毛片| 在线观看舔阴道视频| 99热只有精品国产| 久久精品国产亚洲av天美| 国产乱人视频| 麻豆国产av国片精品| 看十八女毛片水多多多| 国产精品自产拍在线观看55亚洲| 淫妇啪啪啪对白视频| 久久人人精品亚洲av| 国产真实乱freesex| 精品不卡国产一区二区三区| 久久亚洲真实| 日韩精品中文字幕看吧| 亚洲av第一区精品v没综合| 久久国产精品人妻蜜桃| 国产精品久久久久久精品电影| 国产精品亚洲av一区麻豆| 国产白丝娇喘喷水9色精品| 国产免费av片在线观看野外av| 极品教师在线免费播放| 亚洲成人久久性| 久久久久久国产a免费观看| 亚洲欧美日韩高清专用| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 亚洲av电影在线进入| 亚洲精品456在线播放app | 亚洲成av人片在线播放无| 男女下面进入的视频免费午夜| 真人一进一出gif抽搐免费| 国产精品亚洲美女久久久| 五月伊人婷婷丁香| 久久九九热精品免费| 免费观看精品视频网站| 国产精品亚洲一级av第二区| 久久精品国产清高在天天线| www.www免费av| 九色国产91popny在线| 久久精品国产亚洲av涩爱 | 美女高潮喷水抽搐中文字幕| 中亚洲国语对白在线视频| 非洲黑人性xxxx精品又粗又长| 美女被艹到高潮喷水动态| 国产精品久久久久久亚洲av鲁大| 女同久久另类99精品国产91| 亚洲精品色激情综合| 欧美色视频一区免费| 天堂网av新在线| 久久热精品热| 日本精品一区二区三区蜜桃| 麻豆成人午夜福利视频| 天堂网av新在线| 午夜福利高清视频| 一个人免费在线观看的高清视频| 18美女黄网站色大片免费观看| 少妇的逼好多水| 最后的刺客免费高清国语| 校园春色视频在线观看| 在线观看舔阴道视频| 精华霜和精华液先用哪个| 欧美性猛交黑人性爽| 欧美中文日本在线观看视频| 99精品在免费线老司机午夜| 成年女人看的毛片在线观看| 亚洲内射少妇av| 麻豆av噜噜一区二区三区| 国产伦一二天堂av在线观看| 91字幕亚洲| 国产一区二区三区在线臀色熟女| 免费黄网站久久成人精品 | 亚洲狠狠婷婷综合久久图片| 亚洲自偷自拍三级| 欧美丝袜亚洲另类 | 好看av亚洲va欧美ⅴa在| 国产精品亚洲av一区麻豆| 国产老妇女一区| 国产主播在线观看一区二区| 欧美日韩乱码在线| 亚洲第一电影网av| 日韩中文字幕欧美一区二区| 天堂√8在线中文| 亚洲精品456在线播放app | 精品乱码久久久久久99久播| 男人狂女人下面高潮的视频| 一区二区三区高清视频在线| 午夜福利免费观看在线| 日本免费a在线| 亚洲不卡免费看| 日韩人妻高清精品专区| 日韩av在线大香蕉| 丁香六月欧美| 欧美午夜高清在线| 一级av片app| 身体一侧抽搐| 毛片一级片免费看久久久久 | a在线观看视频网站| 欧美+日韩+精品| 亚洲内射少妇av| 啦啦啦观看免费观看视频高清| 欧美黄色片欧美黄色片| 欧美一级a爱片免费观看看| 亚洲,欧美精品.| 亚洲在线自拍视频| 国产高清视频在线观看网站| 欧美成人免费av一区二区三区| 嫩草影视91久久| 国内毛片毛片毛片毛片毛片| 天美传媒精品一区二区| 国产av一区在线观看免费| 欧美激情久久久久久爽电影| 国产精品亚洲一级av第二区| 国产精品爽爽va在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 热99在线观看视频| 国产又黄又爽又无遮挡在线| 日本精品一区二区三区蜜桃| 成人欧美大片| 亚洲av日韩精品久久久久久密| 亚洲成av人片在线播放无| 深爱激情五月婷婷| 国产精品国产高清国产av| 久久久久久久精品吃奶| 久久香蕉精品热| 桃红色精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 18禁黄网站禁片午夜丰满| 波多野结衣高清无吗| 亚洲人成伊人成综合网2020| 精华霜和精华液先用哪个| 亚洲男人的天堂狠狠| 丰满的人妻完整版| 亚洲av成人精品一区久久| 亚洲内射少妇av| 中文字幕高清在线视频| 18禁在线播放成人免费| 久久久久国产精品人妻aⅴ院| 夜夜爽天天搞| 欧美日韩黄片免| 国产精品美女特级片免费视频播放器| 他把我摸到了高潮在线观看| 国内久久婷婷六月综合欲色啪| 我的女老师完整版在线观看| 国产欧美日韩精品一区二区| 欧美性猛交╳xxx乱大交人| 熟妇人妻久久中文字幕3abv| 欧美黑人巨大hd| 日本成人三级电影网站| 日本一二三区视频观看| 麻豆久久精品国产亚洲av| av女优亚洲男人天堂| 波多野结衣高清无吗| 男人狂女人下面高潮的视频| www.色视频.com| 国产色爽女视频免费观看| 淫秽高清视频在线观看| 尤物成人国产欧美一区二区三区| 97人妻精品一区二区三区麻豆| 免费在线观看成人毛片| 久久久久亚洲av毛片大全| 久久精品国产99精品国产亚洲性色| www日本黄色视频网| 一卡2卡三卡四卡精品乱码亚洲| 丰满的人妻完整版| 成人一区二区视频在线观看| 美女xxoo啪啪120秒动态图 | 午夜亚洲福利在线播放| av天堂中文字幕网| av女优亚洲男人天堂| 日本五十路高清| 国产v大片淫在线免费观看| 久久久成人免费电影| 亚洲天堂国产精品一区在线| 色哟哟·www| 在线播放无遮挡| 欧美激情在线99| 麻豆成人av在线观看| 欧美乱妇无乱码| 好男人电影高清在线观看| 夜夜夜夜夜久久久久| 欧美在线黄色| 中文在线观看免费www的网站| 亚洲熟妇熟女久久| 亚洲无线观看免费| 一区二区三区免费毛片| 国产爱豆传媒在线观看| 亚洲精品456在线播放app | a在线观看视频网站| ponron亚洲| 国产69精品久久久久777片| 精品人妻视频免费看| 99久久成人亚洲精品观看| 亚洲av成人av| 亚洲无线观看免费| 狠狠狠狠99中文字幕| 天天一区二区日本电影三级| 我要搜黄色片| 日韩国内少妇激情av| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放| 少妇的逼水好多| 亚洲性夜色夜夜综合| 欧美乱色亚洲激情| 岛国在线免费视频观看| 又黄又爽又免费观看的视频| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 女人十人毛片免费观看3o分钟| 国产黄片美女视频| 99国产精品一区二区蜜桃av| 欧美乱色亚洲激情| 国产高清有码在线观看视频| 国产毛片a区久久久久| 51午夜福利影视在线观看| 99久久九九国产精品国产免费| 夜夜爽天天搞| 国产精品久久久久久久电影| 精品欧美国产一区二区三| 1000部很黄的大片| 国产成人av教育| 久久人人精品亚洲av| 特大巨黑吊av在线直播| 搡女人真爽免费视频火全软件 | 成人国产一区最新在线观看| 热99re8久久精品国产| 人人妻,人人澡人人爽秒播| 最新在线观看一区二区三区| 婷婷精品国产亚洲av在线| 午夜激情福利司机影院| 成人国产一区最新在线观看| 亚洲人成伊人成综合网2020| 自拍偷自拍亚洲精品老妇| 狂野欧美白嫩少妇大欣赏| 成人国产一区最新在线观看| 亚洲人与动物交配视频| 又粗又爽又猛毛片免费看| 99热6这里只有精品| 熟女电影av网| 性色avwww在线观看| 全区人妻精品视频| 禁无遮挡网站| 两个人的视频大全免费| 熟女人妻精品中文字幕| 日韩精品中文字幕看吧| 亚洲国产精品成人综合色| 黄色日韩在线| 久久性视频一级片| 国产一区二区三区视频了| 简卡轻食公司| 国产乱人视频| 在线看三级毛片| 精品人妻视频免费看| 午夜福利成人在线免费观看| 国产精品av视频在线免费观看| 人妻久久中文字幕网| 热99在线观看视频| 一本精品99久久精品77| 精品午夜福利在线看| 亚洲三级黄色毛片| 国产一区二区亚洲精品在线观看| av专区在线播放| 亚洲av电影在线进入| 亚洲最大成人中文| 91在线精品国自产拍蜜月| 国产黄片美女视频| 午夜激情欧美在线| 久久精品国产清高在天天线| 一本综合久久免费| 男人和女人高潮做爰伦理| 精品久久久久久,| 成人美女网站在线观看视频| 一区二区三区四区激情视频 | 亚洲第一欧美日韩一区二区三区| 长腿黑丝高跟| 国产毛片a区久久久久| 可以在线观看的亚洲视频| 精品国产三级普通话版| 18+在线观看网站| 成人无遮挡网站| 国产精品久久久久久亚洲av鲁大| 国产综合懂色| 一夜夜www| 亚洲一区二区三区色噜噜| 精品日产1卡2卡| 国产国拍精品亚洲av在线观看| 白带黄色成豆腐渣| 18禁黄网站禁片午夜丰满| 国产免费av片在线观看野外av| 在线播放无遮挡| 毛片女人毛片| 亚洲乱码一区二区免费版| 国产色爽女视频免费观看| 日本a在线网址| 永久网站在线| 99热这里只有精品一区| 久久久久久大精品| 夜夜看夜夜爽夜夜摸| 欧美中文日本在线观看视频| 床上黄色一级片| 国产黄片美女视频| 99热这里只有是精品在线观看 | 亚洲一区二区三区不卡视频| 欧美成狂野欧美在线观看| www日本黄色视频网| 天堂av国产一区二区熟女人妻| 国模一区二区三区四区视频| 国产男靠女视频免费网站| 久久久精品大字幕| 成人午夜高清在线视频| 日韩欧美国产一区二区入口| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 天堂影院成人在线观看| 国内毛片毛片毛片毛片毛片| 日韩欧美 国产精品| 丰满人妻熟妇乱又伦精品不卡| 国产精品女同一区二区软件 | 国产av不卡久久| 国产黄片美女视频| 日本黄色片子视频| 亚洲国产欧洲综合997久久,| 一个人看视频在线观看www免费| 可以在线观看的亚洲视频| 国产精品一及| 国内精品一区二区在线观看| 亚洲人与动物交配视频| 99热只有精品国产| 欧美不卡视频在线免费观看| 99热6这里只有精品| 精品午夜福利在线看| 日韩av在线大香蕉| 国产精品影院久久| 国产 一区 欧美 日韩| 91在线精品国自产拍蜜月| 亚洲 国产 在线| 九色国产91popny在线| 国内毛片毛片毛片毛片毛片| 欧美一区二区精品小视频在线|