黨紅凱, 李瑞奇, 李雁鳴*, 孫亞輝, 3, 張馨文, 劉夢(mèng)星
(1 河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 河北省作物生長調(diào)控重點(diǎn)實(shí)驗(yàn)室,河北保定 071001; 2 河北省農(nóng)林科學(xué)院旱作農(nóng)業(yè)研究所,河北衡水 053000; 3 河北聯(lián)合大學(xué)輕工學(xué)院,河北唐山 063000)
超高產(chǎn)冬小麥對(duì)氮素的吸收、積累和分配
黨紅凱1, 2, 李瑞奇1, 李雁鳴1*, 孫亞輝1, 3, 張馨文1, 劉夢(mèng)星1
(1 河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 河北省作物生長調(diào)控重點(diǎn)實(shí)驗(yàn)室,河北保定 071001; 2 河北省農(nóng)林科學(xué)院旱作農(nóng)業(yè)研究所,河北衡水 053000; 3 河北聯(lián)合大學(xué)輕工學(xué)院,河北唐山 063000)
超高產(chǎn); 冬小麥; 氮素; 吸收; 積累; 分配
1.1 試驗(yàn)地概況
2年中均選用4個(gè)冬小麥新品種,并采用審定時(shí)推薦的適宜基本苗。2004年為石麥14、石麥12、冀豐703、石新828,10月4日播種,翌年5月6日開花,6月11日收獲; 2005年為特麥1號(hào)、石新531、石新828、石麥12,10月6日播種,翌年5月7日開花,6月12日收獲。每個(gè)品種的總面積均為1 hm2,分為面積相等的3個(gè)地塊(3333 m2),取樣時(shí)作為3次重復(fù)。2年的籽粒產(chǎn)量均達(dá)到或接近超高產(chǎn)(9000 kg/hm2)水平(表4)。
1.2 測(cè)定項(xiàng)目和方法
各主要時(shí)期在每個(gè)品種各重復(fù)中按5點(diǎn)法取樣,每個(gè)樣本苗期取樣50株,拔節(jié)后取樣30株。將植株按葉片、葉鞘、莖稈(拔節(jié)期開始)、穗(孕穗期開始,開花后10 d以后不包括籽粒)、籽粒分解,105℃烘箱中殺青30 min,然后降溫至80℃烘干至恒重,冷卻后稱量各器官重量,并根據(jù)取樣株數(shù)和每公頃基本苗數(shù)計(jì)算每公頃該器官的總重量,用于計(jì)算氮的總積累量。土壤速效氮含量采用堿解定氮法[11]。植株全氮含量用比色法[11],U2001型紫外分光光度計(jì)測(cè)定。
1.3 數(shù)據(jù)處理與統(tǒng)計(jì)分析
營養(yǎng)器官氮素轉(zhuǎn)移量=開花期營養(yǎng)器官氮素積累量-成熟期營養(yǎng)器官氮素積累量;
營養(yǎng)器官氮素轉(zhuǎn)移率(%)=該階段營養(yǎng)器官氮素轉(zhuǎn)移量/營養(yǎng)器官氮素總積累量×100;
營養(yǎng)器官氮素貢獻(xiàn)率(%)=營養(yǎng)器官氮素轉(zhuǎn)移量/成熟期籽粒氮素積累量×100。
采用Microsoft Excel 2000處理數(shù)據(jù),采用DPS2000數(shù)據(jù)處理系統(tǒng)進(jìn)行統(tǒng)計(jì)分析和差異顯著性檢驗(yàn)。
2.1 小麥植株體內(nèi)氮濃度的變化動(dòng)態(tài)
表1 小麥不同器官總干物質(zhì)中的氮含量(%,干重)Table 1 N contents in different parts of wheat (dry matter)
注(Note): DAA—Days after anthesis. 同列數(shù)據(jù)后字母相同表示每年度4個(gè)品種間在0.05水平差異不顯著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year.
2.2 小麥地上部各器官對(duì)氮的吸收積累和分配
2.2.1 地上部各器官中氮的積累量 由表2可見,在拔節(jié)期以前的各生育時(shí)期,不同品種同類器官中氮積累量的差異較大,拔節(jié)以后品種間的差異逐漸變小。不同品種各器官氮積累量達(dá)到最高值的時(shí)期有所不同,葉片和葉鞘中氮的積累量在拔節(jié)期、孕穗期或開花期達(dá)到最高值,莖稈氮的積累量在孕穗期或開花期達(dá)到最高值,穗部均在開花期達(dá)到最高值,籽粒氮的積累量在成熟期最高。除籽粒以外的各器官氮積累量達(dá)最高值后,即隨生育進(jìn)程逐漸降低。各器官氮積累量比較,生育前期葉片中最高,生育后期籽粒中最高。成熟期不同器官中氮的積累量表現(xiàn)為籽粒>葉片>莖稈≥葉鞘≥穗部。成熟期不同品種各器官中氮的積累量仍存在一定差異,2005年冀豐703和石新828籽粒氮積累量顯著高于石麥14和石麥12的,2006年特麥1號(hào)籽粒氮積累量顯著高于其他3個(gè)品種。
2.2.2 不同生育時(shí)期氮在各器官中的分配 由表3可見,不同品種各生育時(shí)期同類器官中氮的分配率差異較小。生育前期氮在葉片中的分配率最高,孕穗期之前一般都在50%以上,但拔節(jié)期以后呈下降趨勢(shì),成熟期均降到8%以下。冬前和起身期氮在葉鞘中的分配率較高,以后也逐漸降低。氮在莖稈中的分配率2005年以開花期最高,2006年在孕穗期最高,最高值出現(xiàn)后即逐漸降低。穗部的氮素分配率在開花期最高,之后逐漸降低。氮在籽粒中的分配率,從開花后10 d到成熟期逐漸增高,成熟期達(dá)到80%以上。成熟期氮在不同器官的分配順序?yàn)椋鹤蚜?葉片≥莖稈≥葉鞘≥穗部。
2.3 小麥不同生育階段氮的凈吸收和凈轉(zhuǎn)移
表6顯示,葉片和葉鞘在拔節(jié)前,莖稈和穗部在開花前分別是氮的凈吸收器官,之后則轉(zhuǎn)為氮的轉(zhuǎn)移器官。2年中上述器官對(duì)氮的總凈吸收量和總凈轉(zhuǎn)移量均以葉片最高;對(duì)籽粒的貢獻(xiàn)率表現(xiàn)為葉片>葉鞘≥穗部≥莖稈。2年中各器官對(duì)籽粒氮的貢獻(xiàn)率分別為68.02%和73.31%,說明籽粒氮的吸收和積累在很大程度上取決于營養(yǎng)器官中氮的再分配。
3.1關(guān)于小麥植株中氮的含量和積累量及其與產(chǎn)量水平的關(guān)系
表2 不同生育時(shí)期氮在地上部器官中的積累量(kg/hm2)Table 2 Accumulated amounts of N in above-ground parts of wheat at main growth stages
注(Note): DAA—Days after anthesis. 同列數(shù)據(jù)后字母相同表示每年度4個(gè)品種間在0.05水平差異不顯著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year.
表3 不同生育時(shí)期氮在地上部不同器官中的分配率(%)Table 3 Percentages of N stored in different parts of wheat at main growth stages
注(Note): DAA—Days after anthesis. 同列數(shù)據(jù)后字母相同表示每年度4個(gè)品種間在0.05水平差異不顯著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year.
表4 小麥植株氮的總積累量和100 kg籽粒吸收量Table 4 Total N accumulation in wheat plants and N adsorption for 100 kg grain yield
注(Note): DAA—Days after anthesis. 同列數(shù)據(jù)后字母相同表示每年度4個(gè)品種間在0.05水平差異不顯著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year. “平均”行的小寫字母表示2年度4個(gè)品種平均值的差異顯著性The small letters in rows “Mean” show the significance between the averages of the four cultivars in each growing year.
表5 不同生育時(shí)期小麥植株氮的積累百分率 (%)Table 5 The accumulative percentages of N in wheat plants at main growth stages
注(Note): DAA—Days after anthesis. 同列數(shù)據(jù)后字母相同表示每年度4個(gè)品種間在0.05水平差異不顯著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year.“平均”行的小寫字母表示2年度4個(gè)品種平均值的差異顯著性The small letters in rows “Mean” show the significance between the averages of the four cultivars in each growing year.
表6 小麥植株各器官氮的凈吸收與凈轉(zhuǎn)移Table 6 Net absorption and transfer of N of different organs of wheat
注(Note): 正值表示積累量Plus values mean net absorption; 負(fù)值表示轉(zhuǎn)移量Negative values mean net transfer. 同列不同小寫字母表示同一測(cè)定項(xiàng)目或器官兩年度間在0.05水平差異顯著Different small letters in the same column mean that the same parameter or organ between the two years are significant at the 0.05 level.
3.2超高產(chǎn)冬小麥植株中氮的吸收分配特點(diǎn)與栽培環(huán)境的關(guān)系
3.3 超高產(chǎn)冬小麥氮素吸收關(guān)鍵期與施肥的關(guān)系
[1] 張緒成, 于顯楓, 馬一凡, 上官周平. 高大氣CO2濃度下小麥旗葉光合能量利用對(duì)氮素和光強(qiáng)的響應(yīng)[J]. 生態(tài)學(xué)報(bào), 2011, 31(4): 1046-1057. Zhang X C, Yu X F, Ma Y F, Shangguan Z P. The responses of photosynthetic energy use in wheat flag leaves to nitrogen application rates and light density under elevated atmospheric CO2concentration[J]. Acta Ecol. Sin., 2011, 31(4): 1046-1057.
[2] Evans J R, Poorter H. Photosynthetic acclimation to growth irradiance: the relative importance of plants specific leaf area and nitrogen partitioning in maximizing carbon gain[J]. Plant Cell Environ., 2001, 24: 755-767.
[3] 張永麗, 于振文. 灌水量對(duì)小麥氮素吸收、分配、利用及產(chǎn)量與品質(zhì)的影響[J]. 作物學(xué)報(bào), 2008, 34(5): 870-878. Zhang Y L, Yu Z W. Effects of irrigation amount on nitrogen uptake, distribution, use, and grain yield and quality in wheat[J]. Acta Agron. Sin., 2008, 34(5): 870-878.
[4] 李瑞奇, 李雁鳴, 何建興, 等. 施氮量對(duì)冬小麥氮素利用和產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào), 2011, 31(2): 270-275. Li R Q, Li Y M, He J Xetal. Effect of nitrogen application rate on nitrogen utilization and grain yield of winter wheat[J]. J. Tritic. Crops, 2011, 31(2): 270-275.
[5] 趙俊曄, 于振文, 李延奇, 王雪. 施氮量對(duì)小麥氮磷鉀養(yǎng)分吸收利用和產(chǎn)量的影響[J]. 西北植物學(xué)報(bào), 2006, 26(1): 98-103. Zhao J Y, Yu Z W, Li Y Q, Wang X. Effects of different nitrogen rates of fertilization on nitrogen, phosphorous and potassium uptakes and utilizations as well as kernel yield of wheat under high-yield circumstances[J]. Acta Bot. Bo.-Oc. Sin., 2006, 26(1): 98-103.
[6] 趙萬春, 董劍, 高翔, 張改生. 施氮對(duì)雜交小麥不同器官氮素積累與轉(zhuǎn)運(yùn)及其雜種優(yōu)勢(shì)的影響[J]. 作物學(xué)報(bào), 2007, 33(1): 57-62. Zhao W C, Dong J, Gao X, Zhang G S. Effects of nitrogen application on nitrogen accumulation and translocation as well as their heterosis in different organs of hybrid wheat[J]. Acta Agron. Sin., 2007, 33(1): 57-62.
[7] 李世清, 王瑞軍, 張興昌, 等. 小麥氮素營養(yǎng)與籽粒灌漿期氮素轉(zhuǎn)移量的研究進(jìn)展[J]. 水土保持學(xué)報(bào), 2004, 18(3): 106-111. Li S Q, Wang R J, Zhang X Cetal. Research advancement of wheat nitrogen nutrition and nitrogen transportation in wheat grain filling[J]. J. Soil Water Conserv., 2004, 18(3): 106-111.
[8] 張法全, 王小燕, 于振文, 等. 公頃產(chǎn)10000 kg小麥氮素和干物質(zhì)積累與分配特性[J]. 作物學(xué)報(bào), 2009, 35(6): 1086-1096. Zhang F Q, Wang X Y, Yu Z Wetal. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare[J]. Acta Agron. Sin., 2009, 35(6): 1086-1096.
[9] 潘慶民, 于振文, 王月福, 田奇卓. 公頃產(chǎn)9000 kg 小麥氮素吸收分配的研究[J]. 作物學(xué)報(bào), 1999, 25(5): 541-547. Pan Q M, Yu Z W, Wang Y F, Tian Q Z. Studies on uptake and distribution of nitrogen in wheat at level of 9000 kg per hectare[J]. Acta Agron. Sin., 1999, 25(5): 541-547.
[10] 孫亞輝, 李瑞奇, 黨紅凱, 等. 河北省超高產(chǎn)冬小麥群體和個(gè)體生育特性及產(chǎn)量結(jié)構(gòu)特點(diǎn)[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2007, 30(3): 1-8. Sun Y H, Li R Q, Dang H Ketal. Population and individual characteristics of growth and development and yield components of super-high-yielding winter wheat in Hebei Province[J]. J. Hebei Agric. Univ., 2007, 30(3): 1-8.
[11] 鮑士旦. 土壤農(nóng)化分析[M]. 北京: 中國農(nóng)業(yè)出版社, 2000. 49-52, 263-268. Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000. 49-52, 263-268.
[12] Bar-Tal A, Yermiyahu U, Berahd Metal. Nitrogen, phosphorus, and potassium uptake by wheat and their distribution in soil following successive, annual compost applications[J]. J. Envir. Qual., 2004, 33(5): 1855-1865.
[13] 陸貴生, 梁振興, 梅楠. 小麥?zhǔn)煜嗯c粒重形成[J]. 北京農(nóng)業(yè)大學(xué)學(xué)報(bào), 1987, 13(3): 263-271. Lu G S, Liang Z X, Mei N. The maturing phases and the formation of grain weight in wheat[J]. Acta Agric. Univ. Pek., 1987, 13(3): 263-271.
[14] 李雁鳴, 梁振興, 梅楠. 冬小麥葉片衰亡及其形態(tài)生理變化[J]. 北京農(nóng)學(xué)院學(xué)報(bào), 1988, 3(2): 58-69. Li Y M, Liang Z X, Mei N. Leaf senescence and its morphological, anatomical and physiological changes in winter wheat[J]. J. Beijing Agric. Col., 1988, 3(2): 58-69.
[15] 王樹安. 作物栽培學(xué)各論[M]. 北京: 中國農(nóng)業(yè)出版社, 1995. 50-51. Wang S A. Crop cultivation science[M]. Beijing: China Agriculture Press, 1995. 50-51.
[16] 李雁鳴, 張建平, 王煥忠, 等. 噴灌條件下高產(chǎn)冬小麥植株體內(nèi)氮磷鉀的時(shí)空分配特點(diǎn)[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2002, 25(3): 1-5. Li Y M, Zhang J P, Wang H Zetal. Properties of spatial and temporal distribution of nitrogen, phosphorus and potassium in the plant of high yield winter wheat under the conditions of sprinkling irrigation[J]. J. Hebei Agric. Univ., 2002, 25(3): 1-5.
[17] 黨紅凱, 李瑞奇, 孫亞輝, 等. 超高產(chǎn)栽培條件下冬小麥對(duì)錳的吸收、積累和分配[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2010, 16(3): 575-583. Dang H K, Li R Q, Sun Y Hetal. Absorption, accumulation and distribution of manganese in winter wheat cultivated under super-high-yielding conditions[J]. Plant Nutr. Fert. Sci., 2010, 16(3): 575-583.
[18] 石玉, 于振文, 王東, 等. 施氮量和底追比例對(duì)小麥氮素吸收轉(zhuǎn)運(yùn)及產(chǎn)量的影響[J]. 作物學(xué)報(bào), 2006, 32(12): 1860-1866. Shi Y, Yu Z W, Wang Detal. Effects of nitrogen rate and ratio of base fertilizer and topdressing on uptake, translocation of nitrogen and yield in wheat[J]. Acta Agron. Sin., 2006, 32(12): 1860-1866.
[19] 杜世州, 曹承富, 張耀蘭, 等. 氮素運(yùn)籌對(duì)淮北地區(qū)超高產(chǎn)小麥養(yǎng)分吸收利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17(1): 9-15. Du S Z, Cao C F, Zhang Y Letal. Effects of nitrogen application on nitrogen absorption, utilization in super-high-yielding wheat in Huaibei region[J]. Plant. Nutr. Fert. Sci., 2011, 17(1): 9-15.
[20] 李春艷, 張宏, 馬龍, 李誠. 冬小麥苗期氮素吸收利用生理指標(biāo)的綜合評(píng)價(jià)[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18(3): 523-530. Li C Y, Zhang H, Ma L, Li C. Comprehensive evaluation on physiological indices of nitrogen absorption and utilization in winter wheat at seedling stage[J]. Plant Nutr. Fert. Sci., 2012, 18(3): 523-530.
[21] 王紅光, 于振文, 張永麗, 等. 推遲拔節(jié)水對(duì)小麥氮素積累與分配和硝態(tài)氮運(yùn)移的影響[J]. 生態(tài)學(xué)報(bào), 2012, 32(6): 1861-1870. Wang H G, Yu Z W, Zhang Y Letal. Effects of delayed irrigation at jointing stage on nitrogen accumulation and its allocation, and NO3-N migration in wheat[J]. Acta Ecol. Sin., 2012, 32(6): 1861-1870.
[22] 胡承霖. 安徽麥作學(xué)[M]. 合肥: 安徽科學(xué)技術(shù)出版社, 2009. 129-137. Hu C L. Anhui wheat science[M]. Hefei: Anhui Science and Technology Press, 2009. 129-137.
[23] 張福鎖, 王激清, 張衛(wèi)峰, 等. 中國主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J]. 土壤學(xué)報(bào), 2008, 45(5): 915-924. Zhang F S, Wang J Q, Zhang W Fetal. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedol. Sin., 2008, 45(5): 915-924.
[24] 王旭, 李貞宇, 馬文奇, 張福鎖. 中國主要生態(tài)區(qū)小麥?zhǔn)┓试霎a(chǎn)效應(yīng)分析[J]. 中國農(nóng)業(yè)科學(xué), 2010, 43(12): 2469-2476. Wang X, Li Z Y, Ma W Q, Zhang F S. Effects of fertilization on yield increase of wheat in different agro-ecological regions of China[J]. Sci. Agri. Sin., 2010, 43(12): 2469-2476.
Absorption,accumulationanddistributionofnitrogeninsuper-highlyyieldingwinterwheat
DANG Hong-kai1, 2, LI Rui-qi1, LI Yan-ming1*, SUN Ya-hui1, 3, ZHANG Xin-wen1, LIU Meng-xing1
(1CollegeofAgronomy,AgriculturalUniversityofHebei/KeyLaboratoryofCropGrowthRegulationofHebeiProvince,Baoding,Hebei071000,China; 2DrylandFarmingInstitute,HebeiAcademyofAgricultureandForestrySciences,Hengshui,Hebei053000,China; 3CollegeofLightIndustry,HebeiUnitedUniversity,Tangshan,Hebei063000,China)
In order to clarify the characteristics of nitrogen nutrition in winter wheat with yields of above 9000 kg/ha, field experiments were conducted in Gaocheng County, Hebei Province during 2004-2006. Eight winter wheat cultivars: Shimai14, Jifeng703, Shimai12 and Shixin828 during 2004-2005, and Temai1, Shimai12, Shixin531 and Shixin828 during 2005-2006, were used for the experiments. Plant samples were collected at 8 growth stages and the nitrogen contents in different parts of wheat were determined. The results showed that the N contents in the tested parts of wheat were in the range of 0.22%-3.35% (dry weight). The highest nitrogen contents and accumulation were occurred in leaf blades during the early growing period and in grains during the mature period. The total amount of accumulated N in whole plants were in the range of 232.48 to 285.18 kg/ha, the amount of N needed for forming 100 kg of grain yield was in the range of 2.63 to 3.13 kg. Before booting stage, more than 50% of the absorbed N was stored in leaf blades, and in maturity stage, more than 80% of the N was stored in grains in all the cultivars. 68.02%-73.31% of the nitrogen in grains at maturity stage came from the redistribution from vegetative organs. From seedling emergence to erecting stage, jointing to booting stage, and anthesis to maturity stage are important for winter wheat to absorb nitrogen. According to the characteristics of nitrogen absorption and accumulation, it is essential for winter wheat to yield 9000 kg/ha in Hebei Plain that the soil total N be higher than 0.75 g/kg, and the total fertilizing N be about 260 kg/ha.
supper-highly yielding; winter wheat; nitrogen; absorption; accumulation; distribution
2013-01-06接受日期2013-03-14
國家科技支撐計(jì)劃項(xiàng)目“糧食豐產(chǎn)科技工程”課題(2006BAD02A08,2011BAD16B08)資助。
黨紅凱(1979—),男,河北巨鹿人,博士,助理研究員,主要從事作物節(jié)水節(jié)肥栽培生理研究。E-mail:wheatcrop@126.com * 通信作者 E-mail:liym315@126.com
S512.1+1.01
A
1008-505X(2013)05-1037-11