• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高階中立型偏微分系統(tǒng)的振動(dòng)性分析

    2013-10-10 03:24:42羅李平羅振國(guó)曾云輝
    關(guān)鍵詞:科學(xué)系振國(guó)衡陽(yáng)

    羅李平,羅振國(guó),曾云輝

    (衡陽(yáng)師范學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)系,湖南 衡陽(yáng) 421002)

    0 Introduction

    The oscillation study of partial functional differential equations(PFDE)are of both theoretical and practical interest.Some applicable examples in such fields as population kinetics,chemistry reactors and control system can be found in the monograph of Wu[1].There have been some results on the oscillations of solutions of various types of partial functional differential equations.We mention here the literatures of Yu et al.[2],Liu and Fu[3],Wang and Yu[4],Wang and Feng[5],Luo et al.[6],Kiguradze et al.[7],Saker[8],Li and Debnath[9],Wang and Teo[10],Wang and Wu[11],Yang[12],Wang et al.[13]and the references cited therein.In addition,several authors including Li[14],Guan and Yang[15],Li and Cui[16],Li[17],Deng et al.[18],Li and Meng[19],Li et al.[20],Wang and Wu[21],Deng and Mu[22]have studied the oscillation problems of partial functional differential systems of different types.In spite of the above studies,hardly any attention was given to the problem of oscillation of high-order PFDE with continuous delay,especially the systems of high-order PFDE with continuous delay.However,we note that in many areas of their actual application,models describing these problems are often effected by such factors as seasonal changes.Therefore it is necessary,either theoretically or practically,to study a type of PFDE in a more general sense——PFDE with continuous delay.The main objective of this paper is to studythe oscillation of a class of systems of high-order neutral PFDE with continuous delay and nonlinear diffusion term.Some sufficient conditions are proved for the oscillation of such systems.It should be noted that in the proof we do not use the results of Dirichlet's eigenvalue problem.

    1 Formulation of the Problem

    In this paper,we study the oscillation of the following even order neutralpartial functional differential systems with continuous delay and nonlinear diffusion term

    where n≥2is even,Ωis a bounded domain in Rmwith a piecewise smooth boundary?Ω,Δis the Laplacian inRm,R+= (0,∞),the integral in(E)are Stieltjes ones.

    Consider the Dirichlet's boundary condition:

    Throughout this paper,we assume that the following conditions hold:

    (H7)τ(η),μ(ξ)is nondecreasing on[c,d]and[a,b],respectively.

    Definition1.1A vector function u(x,t)= {u1(x,t),u2(x,t),…,um(x,t)}Tis said to be a solution of the boundary value problems(E),(B)if it satisfies(E)in Gand boundary condition(B)in?Ω×R+.

    Definition1.2A numeral function v(x,t)is said to be oscillatory in Gif for anyβ>0,there exists a point(x0,t0)∈ Ω× [β,∞)such that v(x0,t0)=0.A vector function u(x,t)of the boundary value problems(E),(B)is said to be oscillatory in Gif u(x,t)has at least one component as a numeral function to be oscillatory.We call a vector function u(x,t)of the boundary value problems(E),(B)to be nonoscillatory in Gif each component of u(x,t)is nonoscillatory.

    The objective of this paper is to derive some newoscillatory criteria of solutions of the boundary value problems(E),(B).

    To prove the main results of this paper,we need the following lemmas.

    Lemma1.1(Kiguradze[23])Let y(t)∈Cn(I,R)be of constant sign,y(n)(t)≠0and y(n)(t)y(t)≤0on I,then

    (?。﹖here exists a t1≥t0,such that y(i)(t)(i=1,2,…,n-1)is of constant sign on[t1,∞);

    (ⅱ)there exists an integer l∈ {0,1,2,…,n-1},with n+l odd,such that

    Lemma1.2(Philos[24])Suppose that y(t)satisfies the conditions of Lemma 1.1,and y(n-1)(t)y(n)(t)≤0,t≥t1,then for everyθ∈ (0,1),there exists a constant N >0satisfying

    2 Main Results

    Theorem2.1Suppose that there exists a functionρ(t)∈C1(I,R+),such that

    Whereλ=1-P ,the definitions of Pand Q(t)see(H1)and(H2),then all solutions of the boundary value problems(E),(B)are oscillatory in G.

    Integrating(E)with respect to xover the domainΩ,we have

    It is easy to see that

    Therefore,

    TheGreen's formula,(B)and(D)yield

    whereνis the unit exterior normal vector to?Ω,dSis the surface element on?Ω.

    Combining(2.3)—(2.4),noting that(H2)and(H5),we have

    Let Vi(t)=∫ΩZi(x,t)φ(x)dx ,t≥t1,i∈Im,it is obvious that Vi(t)>0,t≥t1,i∈Im.Then,from(2.5),we have

    Noting that

    Then,from (2.6),we have

    Setting

    Noting that the assumption of p(t,η)and q(t,ξ),from (2.7)and(2.8),we have z(t)≥V(t)>0and

    Thus,from Lemma 1.1,there exists a t2≥t1,such that

    By choosing“l(fā)=1”and“l(fā)=n-1”,respectively,we have“z′(t)>0and z(n-1)(t)>0,t≥t2”.Form(2.8),we have

    whereλ=1-P.

    Combining(2.9)and(2.10)yields

    where Q(t)is defined by(H2).

    Letting

    Then W(t)>0for t≥t2.Because z(t)is increasing,g(t,ξ)is nondecreasing with respect tot andξ,there exists a t3≥t2,such that

    Thus,from (2.11)—(2.13),we have

    Taking

    From the fact that X2-2 XY+Y2≥0for any X,Y∈R,we obtain

    Thus,form (2.14)—(2.15),we have

    Integratingboth sides of(2.16)fromt4to t(t>t4),we have

    The proof of Theorem 2.1is complete.

    Hereinbelowwe consider the sets

    Theorem2.2Assume that there exists functionρ(t),φ(t)∈C(I,R+),H(t,s)∈C(D,R),h(t,s)∈C(D0,R),such that

    (?。〩(t,t)=0,t≥t0,H(t,s)>0, (t,s)∈D0;

    (ⅱ)H(t,s)φ(s)exists a continuous and nonpositive partial derivative on D0with respect to the variable s and satisfies the equality

    If

    for any T≥t0,whereλ=1-Pand

    then all solutions of the boundary value problems(E),(B)are oscillatory in G.

    Proof.Proceeding as in the proof of theorem 2.1,we have still(2.14)holds.Multiplying both sides of(2.14)by H(t,s)φ(s)for t≥T ≥t4,integrating fromTto t,we have

    Therefore,

    Taking

    From the fact that X2-2 XY+Y2≥0for any X,Y∈R,we obtain

    Combining(2.19)—(2.20),we get

    The above formula yields

    This contradicts(2.18).The proof of Theorem 2.2is complete.

    Corollary2.3If condition(2.18)of Theorem 2.2is replaced by

    and

    then the conclusions of Theorem 2.2remain true.

    If the condition(2.18)don't hold,we have the following result.

    Theorem2.4Assume that the other conditions of Theorem 2.2remain unchanged,the condition(2.18)of Theorem 2.2is replaced by

    and

    If there exists a functionψ(t)∈C(I,R)such that

    and

    whereψ+(s)= max{ψ(s),0},the definitions of A(t,T)and B(t,T)see(2.18),then all solutions of the boundary value problems(E),(B)are oscillatory in G.

    Proof.Proceeding as in the proof of theorem 2.2,for any t≥T≥t4,we have still(2.21)holds,then

    From(2.25)—(2.26),we have

    and

    From(2.24)and(2.27),we obtain

    To complete the proof of this theorem,we merely need to prove that(2.29)is impossible.For this purpose,we definite

    From(2.19)and(2.28),we have

    From(2.22)and(2.29),we obtain

    From(2.31),we have

    Combining(2.32)and(2.33),we get

    and

    namely,

    Fromthe above formula and(2.34),we have

    On the other hand,by using the Schwarz's inequality,we obtain

    Thus,we have

    Noting that(2.35),we obtain

    [1]Wu J H.Theory and applications of partial functional differential equations[M].New York:Springer-Verlag,1996.

    [2]Yu Y H,Liu B,Liu Z R.Oscillation of solutions of nonlinear partial differential equations of neutral type[J].Acta Math.Sini.,1997,13(4):563-570.

    [3]Liu X Z,F(xiàn)u X L.Oscillation criteria for high order delay partial differential equations[J].J.Appl.Math.Stochastic A-nal.,1998,11(2):193-208.

    [4]Wang P G,Yu Y H.Oscillation criteria for a nonlinear hyperbolic equations boundary value problem [J].Appl.Math.Lett.,1999,12(1):91-98.

    [5]Wang P G,F(xiàn)eng C H.Oscillation of solutions for parabolic equation[J].Comput.Appl.Math.,2000,126(2):111-120.

    [6]Luo J W,Liu Z R,Yu Y H.Oscillation theorems for hyperbolic equations of neutral type[J].Bull.Inst.Math.Acad.Sinica,2001,29(1):135-145.

    [7]Kiguradze I T,Kusano T,Yoshida N.Oscillation criteria for a class of partial functional-differential equations of higher order[J].J.Appl.Math.Stochastic Anal.,2002,15(3):255-267.

    [8]Saker S H.Oscillation criteria of hyperbolic equations with deviating arguments[J].Publ.Math.Debrecen,2003,62(1):165-185.

    [9]Li W N,Debnath L.Oscillation of higher order neutral partial functional differential equations[J].Appl.Math.Lett.,2003,16:525-530.

    [10]Wang P G,Teo K L.Oscillation of solutions of parabolic differential equations of neutral type[J].J.Math.Anal.Appl.,2005,311(2):616-625.

    [11]Wang P G,Y.H.Wu Y H.Forced oscillation of a class of neutral hyperbolic differential equations[J].J.Comput.Appl.Math.,2005,177(2):301-308.

    [12]Yang Q G.On the oscillation of certain nonlinear neutral partial differential equations[J].Appl.Math.Lett.,2007,20:900-907.

    [13]Wang P G,Wu Y H,Caccetta L.Oscillation criteria for boundary value problems of high-order partial functional differential equations[J].J.Comput.Appl.Math.,2007,206(1):567-577.

    [14]Li Y K.Oscillations of systems of hyperbolic differential equations with deviating arguments[J].Acta Math.Sinica 1997,40(1):100-105.

    [15]Guan X P,Yang J.Oscillation of systems of nonlinear hyperbolic partial functional differential equations of neutral type[J].J.Sys.Sci.&Math.Scis.,1998,18(2):239-246.

    [16]Li W N,Cui B T.Oscillation for systems of neutral delay hyperbolic differential equations[J].Indian J.Pure Appl.Math.,2000,31:933-948.

    [17]Li W N.Oscillation properties for systems of hyperbolic differential equationsof neutral type[J].J.Math.Anal.Appl.,2000,248:369-384.

    [18]Deng L H,Ge W G,Yu Y H.Oscillation of systems of quasilinear parabolic functional differential equations about boundary value problems[J].Acta Math.Appl.Sinica,2001,24(2):295-301.

    [19]Li W N,Meng F W.Oscillation for systems of neutral partial differential equations with continuous distributed deviating arguments[J].Demonstratio Math.,2001,34:619-633.

    [20]Li W N,Cui B T,Debnath L.Oscillation of systems of certain neutral delay parabolic differential equations[J].J.Appl.Math.Stochastic Anal.,2003,16(1):83-94.

    [21]Wang P G,Wu Y H.Oscillation of solutions for systems of hyperbolic equations of neutral type[J].Electronic of Differential Equations,2004,2004(80):1-8.

    [22]Deng L H,Mu C L.Oscillation of solutions of the systems of quasilinear hyperbolic equations under nonlinear boundary condition[J].Acta.Math.Scientia,2007,27B(3):656-662.

    [24]Philos Ch G.A new criterion for oscillatory and asymptofic behavior of delay differential equations[J].Bull.Acad.Pol.Sci.Ser.Sci.Mat.,1981,29:367-370.

    猜你喜歡
    科學(xué)系振國(guó)衡陽(yáng)
    衡陽(yáng)師范學(xué)院美術(shù)學(xué)院作品選登
    致力草學(xué),推進(jìn)草業(yè),共創(chuàng)輝煌
    ——慶祝湖南農(nóng)業(yè)大學(xué)草業(yè)科學(xué)系建系20 周年
    作物研究(2021年2期)2021-04-26 09:34:40
    愛(ài)在拉薩
    我和繼父13 年
    文苑(2019年23期)2019-12-05 06:50:22
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    我和繼父的13年
    37°女人(2019年6期)2019-06-10 08:48:11
    大城衡陽(yáng)
    樂(lè)在其中 研我自由——記清華大學(xué)數(shù)學(xué)科學(xué)系助理教授宗正宇
    完善我國(guó)人大選舉監(jiān)督機(jī)制的思路——以衡陽(yáng)破壞選舉案為例
    創(chuàng)新(2014年5期)2014-03-20 13:20:06
    中油桃4號(hào)在衡陽(yáng)種植表現(xiàn)及栽培技術(shù)要點(diǎn)
    作物研究(2014年6期)2014-03-01 03:39:13
    祁连县| 利辛县| 蓬莱市| 宁城县| 石泉县| 合水县| 太和县| 绩溪县| 望江县| 新余市| 南阳市| 大关县| 中阳县| 和硕县| 镇平县| 水富县| 闽清县| 班戈县| 彭水| 内乡县| 金坛市| 河间市| 应用必备| 林州市| 盐源县| 丹江口市| 丹阳市| 谢通门县| 巴彦县| 建平县| 桐城市| 家居| 金塔县| 长岭县| 陆川县| 长顺县| 福鼎市| 万盛区| 阿瓦提县| 海伦市| 万山特区|