• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative systems biology between human and animal models based on next-generation sequencing methods

    2013-09-20 03:39:30YuQiZHAOGongHuaLIJingFeiHUANG
    Zoological Research 2013年2期

    Yu-Qi ZHAO, Gong-Hua LI, Jing-Fei HUANG,2,*

    1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming Yunnan 650223,China;

    2. Kunming Institute of Zoology, Chinese University of Hong Kong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming Yunnan 650223, China

    Accurately modeling the physiology and pathology of human systems research requires the establishment of a quality animal model (Alvarado & Tsonis 2006;Francia et al, 2011, 2006; G?tz & Lttner 2008; Hasenfuss 1998; Lieschke & Currie, 2007). To this end, generally,how closely the model should mimic the human disease depends on the scientific question under investigation.Only in cases when the causal connections—structure function relationship or regulation of gene expression—are definitive, can the differences between human and animal models have minor effect on the analysis results(Hasenfuss, 1998). For example, although the zebrafish(Danio rerio) is phylogenetically distant from humans,its use as a complete animal model for in vivo drug discovery and development is growing rapidly(Chakraborty et al, 2009). However, if the pathophysiological processes are studied, especially for the complex diseases, then models should mimic clinical settings as closely as possible, otherwise the expected results may not be achieved or the findings of such studies will be of limited value.

    Accordingly, comparisons between human and animal models are becoming increasingly important for both clinical and fundamental applications (Alini et al,2008; Cox et al, 2009; Fuentes et al, 2009; Huh et al,2010; Merchenthaler & Shughrue, 2005; Nestler &Hyman, 2010; Northoff, 2009). Among the available strategies to assess this connection, comparative systems biology has begun attracting special attention (Cox et al,2009).1

    In this review, we introduce the concept of comparative systems biology. Next, we focus on the applications of next-generation sequencing methods,including RNA-seq and ChIP-seq, to comparative systems biology between human and animal models,before outlining some general directions of future developments and impacts of these types of studies.

    The rise of comparative systems biology

    One of the greatest twentieth century achievements in biological research is undoubtedly the sequencing of different genomes. There are now complete genome sequences for more than 1,000 organisms (excluding bacteria and archaea), with more sequences being completed (Henkelman, 2010). Once the genome of a species is available, researchers are able to begin mapping sequences against humans and find candidate disease genes and build a proper disease model. However,the ability to fundamentally understand the genotype–phenotype relationship in a distinct species is often hindered by the inherent complexity of biological systems. The difference in genotype–phenotype relationships between human and animal models may originate from three sources (Figure 1): (1) functional divergence of genes or proteins; (2) gene deletions or duplications; and (3) divergent up- or down-stream components, out of which gene deletions or duplications may play the leading role (Jaillon et al, 2004).

    Figure 1 Mechanisms of different genotype-phenotype relationships between human and animal models

    Over the last decade, this third mechanism has received more attention in systems biology. The Rb(Retinoblastoma) gene family is a good case, because the members in this family are functionally conserved while the involved pathways are divergent between C. elegans and humans (van den Heuvel & Dyson, 2008). Likewise,a previous study reported that over 20% of the essential genes for humans are non-essential for mice (Liao &Zhang, 2008). Consequently, traditional molecular biology techniques, while providing valuable insights into individual and/or simple genotype–phenotype relationship, are insufficient in deducing the complex phenotype-genotype relationships. Therefore, the more systematic methods at the systems biology level are necessary.

    The ultimate goal of systems biology is generating successful models to comprehensively describe living organisms. Comparative systems biology, an important subfield of systems biology, has no straightforward definition. In animal model research, the term first appeared in Ogawa et al’s (2008) work, reporting a comparative study of circadian oscillatory network models of Drosophila. Here, we define comparative systems biology as “comparisons of biological systems in different states or species to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels.” The comparison can be performed either horizontally (e.g.,between individuals or states) or longitudinally (between species). The latter, which is mainly focused on human and animal models, is reviewed in detail here.

    Over the past decade, comparative systems biology has attracted widespread interest, especially for its utility in comparisons between human and animal models of complex diseases. Miller et al (2010) used a systems biology approach to find a number of divergent network modules relevant to Alzheimer disease between humans and mice. In a previous work, we compared humans and four common animal models of cardiovascular disease through comparative transcriptome and pathway analysis,revealing that a few pathways have functionally diverged(Zhao et al, 2012). A recent review highlighted that the emerging technologies in comparative systems biology between human and animal models offers a platform to systematically explore not only the molecular mechanism of a particular disease, thus leading to the identification of disease modules and pathways, but also the molecular relationships among distinct(patho)phenotypes (Barabasi et al, 2011).

    The majority of recent comparative systems biology studies on obtain their data through traditional high throughput technologies, such as microarray and ChIP-chip. Despite the experimental and statistical rigor as well as substantial insights gained through these methods,there has been a fundamental shift from these first-generation technologies (microarray and ChIP-chip) to next-generation sequencing (RNA-seq and ChIP-seq)over the last five years. We surmise that the applications of next-generation sequencing methods will serve a crucial function in the field of comparative systems biology between human and animal models, offering a number of potential advantages.

    RNA-seq in transcriptome studies

    Previous studies demonstrated that changes in gene expression underlie many or even most of phenotypic differences between species (Marques et al, 2008; Yanai et al, 2004). As a result, comparative transcriptome analysis potentially provides information on functional conservation for candidate human disease genes within animal models.

    Initial trancriptomics studies largely relied on hybridization-based microarray technologies and have yielded valuable insights into the functional divergence between human and model animals (Enard et al, 2002;Liao & Zhang 2006). However, microarray technology has several limitations: over reliance upon existing knowledge about genome sequences; high background levels owing to cross-hybridization; and a limited dynamic range of detection owing to both background and saturation of signals (Wang et al, 2009). Recent advances in the DNA sequencing technology have enabled sequencing of cDNA derived from cellular RNA by massively parallel sequencing strategies, a process termed RNA-seq (Garber et al, 2011; Mortazavi et al,2008). Compared with the microarray, RNA-seq has the advantage of allowing high-resolution characterization and quantification of transcriptomes with low background noise and the ability to distinguish different isoforms.

    Figure 2 shows the key procedures performed during RNA-seq analysis of comparative transcriptomes between human and animal models. The computational challenges in this process have been reviewed in detail by (Garber et al, 2011), therefore, we mainly illustrated the potential advantages of RNA-seq in comparative systems biology, including (a) comparisons between human and non-model animals, and (b) actual biological systems induced by the states of gene expression.

    Figure 2 RNA-seq methods in comparative transcriptome analysisThere are two strategies for sequencing animal models. If the genome was not complete or was badly annotated, the genome-independent approach should be used (right part). The genome-guided approach is more typical (left part).

    Though a variety of organisms have been genomically sequenced, the majority of these are used as model organisms. Since microarray relies on the genome information, this technique has serious limitations in both quantifying and comparing gene expression profiles from non-model animals. RNA-seq, meanwhile, can be applied to reconstruct the complete and high-resolution transcriptomes across all species. To build the transcriptome, several methods based on RNA-seq have been developed, usually falling into two main classes:the ‘genome-guided’ (Guttman et al, 2010; Trapnell et al,2010) and genome-independent classes (De novo assembly) (Birol et al, 2009; Schulz et al, 2012). The first methods rely on a reference genome to initially map all the RNA-seq reads to the genome and then assemble overlapping reads into transcripts. Unfortunately, the genome-guided method is not always effective, both because despite a large drop in the cost of nextgeneration sequencing, the study of a complete genome is still costly and difficult, especially for non-model organisms, and because the particular model being studied may be sufficiently different from its reference genome because it comes from a different strain or line.Consequently, de novo assembly is particularly suitable for application to obtain accurate reconstructions. A recent study reported a large RNA-seq data set obtained from six organs of nine different mammals (human,chimpanzee, bonobo, gorilla, orangutan, macaque,mouse, opossum, and platypus) and one bird (chicken),including both males and females (Brawand et al, 2011),demonstrated the utility of applying comparative systems biology between human and non-model animals and elucidated the large evolutionary gaps among these model organisms.

    Determining the expression states (i.e., the presence or absence) of genes with low abundance is a challenge for microarray. Consequently, the reconstruction of the actual biological networks (e.g., protein-protein interaction, transcriptional regulation network, or metabolic network) in either human or animal models in a specific condition is very difficult, not to say anything of the difficulty in comparing the dynamic networks(Farmer et al, 2012). Moreover, abnormal variations in alternative splicing are also implicated in disease, thus alternative splicing is a critical factor to consider in building a proper and viable animal model (Luco et al,2011). Unfortunately, obtain the precise alternative splicing map using the microarray technique is almost impossible.

    RNA-seq data is highly replicable with relatively little technical variation. For many purposes, RNA-seq may be sufficient to sequence each mRNA sample once.The information obtained in a single lane of RNA-seq data appears to be comparable to that in a single array,and is therefore useful in enabling the identification of differentially expressed genes and allowing for additional,further analyses, such as detection of low-expressed genes, novel transcripts and alternative splice variants. In using this method, researchers can obtain actual biological networks in both human and animal models,and garner biologically meaningful results by comparing between these two networks. Rowley et al (2011), for example, compared the actual transcriptome in platelets between humans and mice, providing critical information used in the design of mouse models of hemostasis and in catalyzing the discovery of new platelet functions..

    ChIP-seq for detecting regulation changes

    Molecular interactions between proteins and DNA play an essential role in the regulation of gene expression(Cawley et al, 2004; Pokholok et al, 2006). Accordingly,changes in protein–DNA interactions between human and animal models may lead to the divergent functions of homologous pathways (Brown et al, 2011; Greber et al,2010), which is also an important aspect of comparative systems biology.

    Chromatin immunoprecipitation (ChIP) followed by genomic tiling microarray hybridization (ChIP-chip) has become the most widely used approach for genome-wide identification and characterization of in vivo protein-DNA interactions during the past decade (Ho et al, 2011).Specifically, when applied to the study of animal models of human disease, CHIP-chip approaches led to many important discoveries in relation to transcriptional regulation (Chen et al, 2008), epigenetic regulation through histone modification (Heintzman et al, 2007),and evolution of protein-DNA interactions (Kim et al,2007).

    Like the microarray technique, CHIP-chip also has some limitations arising from the innate characteristics of microarray hybridization. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) makes it possible to obtain the accurate information about the genome-wide profiling of DNA- protein interaction. Compared to the CHIP-chip, ChIP-seq has a higher resolution, fewer artifacts, a larger coverage and a more extensive dynamic range (Blow et al, 2010; Johnson et al, 2007; Mardis 2007; Schmid & Bucher, 2007; Visel et al, 2009).Subsequently, we will introduce the practical applications of ChIP-seq in comparison between human and animals, including (1) identifying the regulatory sequences, and (2) tracing the evolution of epigenetic regulation.

    The human genome project, while obtaining the complete genomic sequences, leaves open the question of how to identify the regulatory sequences that control the spatial and temporal expression of genes unanswered(Birney et al, 2007; McGaughey et al, 2008). Through applying the ChIP-seq techniques with the enhancerassociated protein p300 from mouse embryonic heart tissue, Blow et al (2010) made an attempt to identify candidate heart enhancers on genomic scale, revealing that most of the candidate heart enhancers were less deeply conserved in vertebrate evolution when compared to the enhancers that are active in other tissues. Such methods could also be applied to identification of other transcriptional factors (TFs), and therefore are helpful in the reconstruction of the transcriptional regulation network in human and animal models. Thankfully, the decreasing cost of ChIP-seq has extended the comparative systems biology investigation to some TFs.For example, Schmidt et al (2010) used ChIP-seq to determine experimentally the genome-wide occupancy of two TFs, i.e., CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates, revealing large interspecies differences in transcriptional regulation and providing insight into the evolution of regulatory networks.

    Epigenetic regulation is now accepted as being closely associated with human development, and subsequently many developmental disorders may be caused by the dysfunction of this regulation (Gottesman& Hanson, 2005). However, due to the deficient knowledge of this phenomena in other animals, build proper animal models for these studies is difficult.Nevertheless, a recent study that employed the CHIP-seq technique to investigate the epigenetic regulation of histone H3 K4 on frogs (Xenopus tropicalis), revealed a hierarchy in the spatial control of zygotic gene activation(Akkers et al, 2009). Taken together, these advances lead us to speculate that the applications of CHIP-seq in comparative systems biology will be of great help in understanding embryonic diseases.

    Despite the advances that ChIP-seq offers,researchers should be cautious when performing ChIP-seq analysis because the experimental steps in ChIP-seq involve several potential sources of artefacts (Park,2009). For example, one challenge in this technique is that the identified enriched regions are of different types for different proteins (for details, refer to (Park, 2009)).The other potential source of artefacts comes from the divergence of both protein and DNA; therefore when using this analysis, the control experiment should be designed carefully.

    Perspective applications of comparative systems biology

    Comparative systems biology takes advantage of the systematic information from other organisms and can be used to great effect in studying human physiology and disease. Over the coming years, we expect many exciting developments as this field evolves in several potential directions.

    Dynamic networks

    Biological systems exhibit complex dynamic behavior, enabling cells to react to various conditions or cell states such as cell cycle progression (Zhu et al, 2007).Although static biological systems have been well studied (Benfey & Mitchell-Olds, 2008; Gianchandani et al, 2006; Macilwain, 2011; Werner, 2007), the information gained from such studies is of limited use in moving forward due to the fact that the static interactions are often identified from cells exposed to a single condition or at a single time point, i.e., under nonnative conditions. Only recently have approaches emerged that attempt to analyze the dynamics of complex biological networks. For transcriptional regulatory interactions,ChIP-seq technology is likely to become increasingly popular as it can be used to uncover contextual and temporal variation. For context-specific metabolic network, RNA-seq could provide the dynamic states of metabolic enzymes.

    Biological engineering

    The ability to manipulate living organisms is at the heart of a range of emerging technologies aimed at addressing critical problems in environment, energy, and health. Because of their complexity and interconnectivity, however, animal models have been less than useful for engineered manipulation. To move forward with employing animal models with greater breadth and application, we vitally need more detailed information that can be obtained using new methods like those outlined in the present study. for instance utilizing real-time RNA-seq technique to obtain the information about the effects of perturbations on biological systems(Faith et al, 2011). Next-generation sequencing technology and the concurrent development of applications for it are a fast-moving area of biomedical research that greatly advance the development of comparative systems biology.

    Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM,Francoijs KJ, Stunnenberg HG, Veenstra GJC. 2009. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus Embryos. Dev Cell, 17(3): 425-434.

    Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K,Melrose J, Ralphs J, Stokes I, Wilke HJ. 2008. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J,17(1): 2-19.

    Alvarado AS, Tsonis PA. 2006. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet, 7(11): 873-884.

    Barabasi AL, Gulbahce N, Loscalzo J. 2011. Network medicine: a network-based approach to human disease. Nate Rev Genet, 12(1): 56-68.

    Benfey PN, Mitchell-Olds T. 2008. From genotype to phenotype:Systems biology meets natural variation. Science, 320(5875): 495-497.Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR,Margulies EH, Weng ZP, Snyder M, Dermitzakis ET,Stamatoyannopoulos JA and others. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146): 799-816.

    Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao YJ, Hirst M, Schein JE, Horsman DE, Connors JM,Gascoyne RD, Marra MA, Jones SJM. 2009. De novo transcriptome assembly with ABySS. Bioinformatics, 25(21): 2872-2877.

    Blow MJ, McCulley DJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F and others. 2010. ChIP-Seq

    identification of weakly conserved heart enhancers. Nat Genet, 42(9):806-810.

    Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P,Weier M, Liechti A, Aximu-Petri A, Kircher M and others. 2011. The evolution of gene expression levels in mammalian organs. Nature,478(7369): 343-348.

    Brown S, Teo A, Pauklin S, Hannan N, Cho CHH, Lim B, Vardy L,Dunn NR, Trotter M, Pedersen R and others. 2011. Activin/nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells, 29(8):1176-1185.

    Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D,Piccolboni A, Sementchenko V, Cheng J, Williams AJ and others. 2004.Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116(4): 499-509.

    Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G. 2009.Zebrafish: A complete animal model for in vivo drug discovery and development. Curr Drug Metab, 10(2): 116-124.

    Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL,Zhang WW, Jiang JM and others. 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6): 1106-1117.

    Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A,Whiteley K, Jurisica I, Adamson SL, Rossant J, Kislinger T. 2009.Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol Syst Biol, 5: 279.

    Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P,Nieselt-Struwe K, Muchmore E, Varki A, Ravid R and others. 2002.Intra-and interspecific variation in primate gene expression patterns.Science, 296(5566): 340-343.

    Faith JJ, McNulty NP, Rey FE, Gordon JI. 2011. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science,333(6038): 101-104.

    Farmer MA, Baliki MN, Apkarian AV. 2012. A dynamic network perspective of chronic pain. Neurosci Lett, 520(2): 197-203.

    Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. 2011. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer, 11(2): 135-141.

    Friese MA, Montalban X, Willcox N, Bell JI, Martin R, Fugger L. 2006.The value of animal models for drug development in multiple sclerosis.Brain, 129(8): 1940-1952.

    Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MAL. 2009.Spinal cord stimulation restores locomotion in animal models of Parkinson's disease. Science, 323(5921): 1578-1582.

    Garber M, Grabherr MG, Guttman M, Trapnell C. 2011. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods, 8(6): 469-477.

    Gianchandani EP, Brautigan DL, Papin JA. 2006. Systems analyses characterize integrated functions of biochemical networks. Trends Biochem Sci, 31(5): 284-291.

    Gottesman II, Hanson DR. 2005. Human development: Biological and genetic processes. Annu Rev Psychol, 56(1): 263-286.

    G?tz J, Ittner LM. 2008. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci, 9(7): 532-544.

    Greber B, Wu GM, Bernemann C, Joo JY, Han DW, Ko K, Tapia N,Sabour D, Sterneckert J, Tesar P and others. 2010. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell, 6(3): 215-226.

    Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X,Fan L, Koziol MJ, Gnirke A, Nusbaum C and others. 2010. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol, 28(5):503-510.

    Hasenfuss G. 1998. Animal models of human cardiovascular disease,heart failure and hypertrophy. Cardiovasc Res, 39(1): 60-76.

    Heintzman ND, Stuart RK, Hon G, Fu YT, Ching CW, Hawkins RD,Barrera LO, Van Calcar S, Qu CX, Ching KA and others. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 39(3): 311-318.

    Henkelman RM. 2010. Systems biology through mouse imaging centers: experience and new directions. Annu Rev Biomed Eng, 12(1):143-166.

    Ho JWK, Bishop E, Karchenko PV, Negre N, White KP, Park PJ. 2011.ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis. Bmc Genomics, 12: 134.

    Huh Y, Ju MS, Park H, Han SJ, Bang YM, Ferris CF, Koppe GA, King JA, Kim ML, Kim DJ and others. 2010. Clavulanic acid protects neurons in pharmacological models of neurodegenerative diseases.Drug Develop Res, 71(6): 351-357.

    Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E,Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A and others. 2004.Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 431(7011): 946-957.

    Johnson DS, Mortazavi A, Myers RM, Wold B. 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830):1497-1502.

    Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B. 2007. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome.Cell, 128(6): 1231-1245.

    Liao BY, Zhang JZ. 2006. Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol Biol Evol,23(3): 530-540.

    Liao BY, Zhang JZ. 2008. Null mutations in human and mouse orthologs frequently result in different phenotypes. Proc Natl Acad Sci USA, 105(19): 6987-6992.

    Lieschke GJ, Currie PD. 2007. Animal models of human disease:zebrafish swim into view. Nat Rev Genet, 8(5): 353-367.

    Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. 2011.Epigenetics in alternative Pre-mRNA splicing. Cell, 144(1): 16-26.

    Macilwain C. 2011. Systems biology: evolving into the mainstream.Cell, 144(6): 839-841.

    Mardis ER. 2007. ChIP-seq: welcome to the new frontier. Nat Methods,4(8): 613-614.

    Marques AC, Vinckenbosh N, Brawand D, Kaessmann H. 2008.Functional diversification of duplicate genes through subcellular adaptation of encoded proteins. Genome Biol, 9(3): 5R4.

    McGaughey DM, Vinton RM, Huynh J, Al-Saif A, Beer MA,McCallion AS. 2008. Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b. Genome Res,18(2): 252-260.

    Merchenthaler I, Shughrue PJ. 2005. Neuroprotection by estrogen in animal models of ischemia and Parkinson's disease. Drug Develop Res,66(2): 172-181.

    Miller JA, Horvath S, Geschwind DH. 2010. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways.Proc Natl Acad Sci USA, 107(28): 12698-12703.

    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008.Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 5(7): 621-628.

    Nestler EJ, Hyman SE. 2010. Animal models of neuropsychiatric disorders. Nat Neurosci, 13(10): 1161-1169.

    Northoff G. 2009. Comparison between animal models and human imaging findings in major depressive disorder-convergences and divergences. Biol Psychiat, 65(8): 18S-18S.

    Ogawa Y, Arakawa K, Kaizu K, Miyoshi F, Nakayama Y, Tomita M.2008. Comparative study of circadian oscillatory network models of Drosophila. Artif Life, 14(1): 29-48.

    Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 10(10): 669-680.

    Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA.2006. Activated signal transduction kinases frequently occupy target genes. Science, 313(5786): 533-536.

    Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS. 2011. Genome-wide RNA-seq

    analysis of human and mouse platelet transcriptomes. Blood, 118(14):E101-E111.

    Schmid CD, Bucher P. 2007. ChIP-Seq data reveal nucleosome architecture of human promoters. Cell, 131(5): 831-832.

    Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD,Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S and others. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science, 328(5981): 1036-1040.

    Schulz MH, Zerbino DR, Vingron M, Birney E. 2012. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels.Bioinformatics, 28(8): 1086-1092.

    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28(5): 511-515.

    van den Heuvel S, Dyson NJ. 2008. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Bio, 9(9): 713-724.

    Visel A, Blow MJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F and others. 2009. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 457(7231): 854-858.

    Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1): 57-63.

    Werner E. 2007. All systems go. Nature, 446(7135): 493-494.

    Yanai I, Graur D, Ophir R. 2004. Incongruent expression profiles between human and mouse orthologous genes suggest widespread neutral evolution of transcription control. Omics, 8(1): 15-24.

    Zhao YQ, Sheng ZZ, Huang JF. 2012. A systematic analysis of heart transcriptome highlights divergent cardiovascular disease pathways between animal models and humans. Mol Biosyst, 8(2): 504-510.

    Zhu XW, Gerstein M, Snyder M. 2007. Getting connected: analysis and principles of biological networks. Gene Dev, 21(9): 1010-1024.

    久久久久网色| 黄色成人免费大全| 久久精品亚洲熟妇少妇任你| 精品国内亚洲2022精品成人 | 欧美日本中文国产一区发布| 男人舔女人的私密视频| 三上悠亚av全集在线观看| 悠悠久久av| 久久久精品区二区三区| 动漫黄色视频在线观看| 中文字幕制服av| 亚洲精品国产区一区二| 国产视频一区二区在线看| 麻豆成人av在线观看| 欧美激情久久久久久爽电影 | 国产极品粉嫩免费观看在线| 日韩视频一区二区在线观看| 性高湖久久久久久久久免费观看| 国产精品二区激情视频| 精品乱码久久久久久99久播| 国产单亲对白刺激| 18禁美女被吸乳视频| 国产男女超爽视频在线观看| 欧美激情高清一区二区三区| 亚洲欧美一区二区三区黑人| 国产男女超爽视频在线观看| 人成视频在线观看免费观看| 1024视频免费在线观看| 亚洲av国产av综合av卡| 大香蕉久久成人网| 美女主播在线视频| 久久亚洲真实| 国产免费福利视频在线观看| av网站免费在线观看视频| 亚洲五月婷婷丁香| 久久午夜亚洲精品久久| 亚洲人成伊人成综合网2020| 婷婷丁香在线五月| 亚洲avbb在线观看| 久久午夜综合久久蜜桃| 久久人妻av系列| 精品国产乱子伦一区二区三区| 亚洲av片天天在线观看| 国产在视频线精品| 777久久人妻少妇嫩草av网站| 一区二区三区激情视频| 婷婷成人精品国产| 国产成人系列免费观看| 日韩成人在线观看一区二区三区| 久久精品国产a三级三级三级| 999精品在线视频| 老熟妇仑乱视频hdxx| videos熟女内射| 天天躁狠狠躁夜夜躁狠狠躁| 国产不卡一卡二| 男女无遮挡免费网站观看| 日本精品一区二区三区蜜桃| 热99久久久久精品小说推荐| 精品人妻熟女毛片av久久网站| 国产一区有黄有色的免费视频| 午夜福利在线观看吧| 亚洲精品在线观看二区| 不卡一级毛片| 天天躁夜夜躁狠狠躁躁| 国产在线精品亚洲第一网站| av国产精品久久久久影院| 中文字幕高清在线视频| 不卡av一区二区三区| 国产精品亚洲一级av第二区| 亚洲少妇的诱惑av| 日韩欧美一区视频在线观看| 蜜桃在线观看..| 国产精品久久久人人做人人爽| 少妇被粗大的猛进出69影院| www.999成人在线观看| 色94色欧美一区二区| 高清黄色对白视频在线免费看| 香蕉国产在线看| 大码成人一级视频| 人人澡人人妻人| 精品久久久精品久久久| 日本黄色视频三级网站网址 | 日韩免费av在线播放| 国产日韩欧美在线精品| 19禁男女啪啪无遮挡网站| 国产成人精品无人区| 男人操女人黄网站| 女人精品久久久久毛片| 91大片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 别揉我奶头~嗯~啊~动态视频| 桃花免费在线播放| www.精华液| 青青草视频在线视频观看| 免费日韩欧美在线观看| 亚洲精品国产区一区二| 国产亚洲精品第一综合不卡| 黄片小视频在线播放| 老司机影院毛片| 久久精品成人免费网站| 亚洲国产av影院在线观看| 美女扒开内裤让男人捅视频| 色视频在线一区二区三区| 亚洲国产欧美网| 国产精品久久久久久精品电影小说| av线在线观看网站| 天天躁夜夜躁狠狠躁躁| 欧美精品高潮呻吟av久久| a级片在线免费高清观看视频| 国产av精品麻豆| 国产精品偷伦视频观看了| av网站在线播放免费| av国产精品久久久久影院| 激情在线观看视频在线高清 | 丁香六月天网| 午夜福利一区二区在线看| 精品久久久久久久毛片微露脸| 这个男人来自地球电影免费观看| 久久久久视频综合| 中文字幕av电影在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 中文亚洲av片在线观看爽 | 久久狼人影院| 亚洲精品美女久久久久99蜜臀| 国产男女超爽视频在线观看| 亚洲五月婷婷丁香| 高清av免费在线| 一级毛片精品| 搡老熟女国产l中国老女人| 欧美日韩黄片免| 国产av一区二区精品久久| 黄色视频,在线免费观看| 黄色片一级片一级黄色片| 精品第一国产精品| 国产精品一区二区精品视频观看| 好男人电影高清在线观看| 日韩精品免费视频一区二区三区| 成人亚洲精品一区在线观看| 一区二区三区精品91| 亚洲免费av在线视频| 91大片在线观看| 99国产精品一区二区三区| 亚洲全国av大片| 国产一卡二卡三卡精品| 天天添夜夜摸| 黄片大片在线免费观看| 亚洲avbb在线观看| 真人做人爱边吃奶动态| www日本在线高清视频| 男女免费视频国产| 午夜福利在线观看吧| 亚洲免费av在线视频| 最新美女视频免费是黄的| 精品卡一卡二卡四卡免费| 亚洲五月色婷婷综合| 日韩免费av在线播放| 国产精品国产av在线观看| 亚洲九九香蕉| 一区二区三区精品91| 国产成人免费观看mmmm| 精品第一国产精品| 精品少妇内射三级| www日本在线高清视频| 天天躁夜夜躁狠狠躁躁| 一区福利在线观看| 欧美日本中文国产一区发布| 男女之事视频高清在线观看| 国产av又大| 成人国语在线视频| 777米奇影视久久| 青青草视频在线视频观看| 免费在线观看视频国产中文字幕亚洲| 国产亚洲av高清不卡| 亚洲伊人色综图| 少妇被粗大的猛进出69影院| 中文字幕另类日韩欧美亚洲嫩草| 欧美亚洲 丝袜 人妻 在线| 一本—道久久a久久精品蜜桃钙片| 淫妇啪啪啪对白视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久大尺度免费视频| 天天影视国产精品| 美女高潮喷水抽搐中文字幕| 亚洲精品中文字幕一二三四区 | 亚洲欧美激情在线| 欧美av亚洲av综合av国产av| 99re6热这里在线精品视频| av超薄肉色丝袜交足视频| 久久久精品国产亚洲av高清涩受| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区二区在线观看av| 丰满人妻熟妇乱又伦精品不卡| 男男h啪啪无遮挡| 下体分泌物呈黄色| 久久久久久久大尺度免费视频| 人妻 亚洲 视频| 极品教师在线免费播放| 国产极品粉嫩免费观看在线| 美女扒开内裤让男人捅视频| 国产精品国产高清国产av | 国产精品亚洲一级av第二区| 乱人伦中国视频| 黄片小视频在线播放| 满18在线观看网站| 国产精品美女特级片免费视频播放器 | 国产精品久久久av美女十八| 久久久精品免费免费高清| 女性生殖器流出的白浆| 高清毛片免费观看视频网站 | 亚洲成人手机| av免费在线观看网站| 一区二区三区激情视频| 国产一区有黄有色的免费视频| 日韩欧美免费精品| 亚洲精华国产精华精| 亚洲国产av新网站| 日日夜夜操网爽| 建设人人有责人人尽责人人享有的| 日韩成人在线观看一区二区三区| 美女高潮到喷水免费观看| 黑丝袜美女国产一区| 大型av网站在线播放| 最黄视频免费看| 久久影院123| 99国产精品一区二区三区| 丁香六月天网| 一二三四社区在线视频社区8| 人成视频在线观看免费观看| 老司机午夜福利在线观看视频 | 国产日韩欧美亚洲二区| 十八禁网站免费在线| 国产色视频综合| 9色porny在线观看| 国产成人欧美| 国产精品二区激情视频| av网站免费在线观看视频| www.精华液| 9热在线视频观看99| 一个人免费看片子| 国产男女超爽视频在线观看| 国产黄频视频在线观看| 亚洲精品乱久久久久久| 午夜久久久在线观看| 男男h啪啪无遮挡| 亚洲av片天天在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久av网站| 亚洲精华国产精华精| 免费av中文字幕在线| 国产成+人综合+亚洲专区| 丁香六月天网| 亚洲九九香蕉| 精品久久蜜臀av无| 王馨瑶露胸无遮挡在线观看| 亚洲 国产 在线| 午夜福利免费观看在线| 亚洲国产av新网站| 一区二区三区国产精品乱码| 国产精品 国内视频| 日韩视频在线欧美| 中文字幕另类日韩欧美亚洲嫩草| 国产97色在线日韩免费| 热re99久久国产66热| 欧美+亚洲+日韩+国产| 日韩视频一区二区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 在线观看舔阴道视频| 新久久久久国产一级毛片| 日韩视频一区二区在线观看| aaaaa片日本免费| 午夜福利视频精品| 欧美日韩亚洲高清精品| 欧美日韩中文字幕国产精品一区二区三区 | av一本久久久久| 一边摸一边做爽爽视频免费| 国产又色又爽无遮挡免费看| 一边摸一边抽搐一进一小说 | www.熟女人妻精品国产| av免费在线观看网站| 国产亚洲精品一区二区www | 亚洲伊人久久精品综合| 在线播放国产精品三级| 美国免费a级毛片| 久久国产精品男人的天堂亚洲| 日本a在线网址| 免费不卡黄色视频| av电影中文网址| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av欧美aⅴ国产| 成人国语在线视频| 下体分泌物呈黄色| 亚洲精品一二三| 日本一区二区免费在线视频| 在线观看舔阴道视频| 国产不卡一卡二| 欧美精品人与动牲交sv欧美| 亚洲欧洲精品一区二区精品久久久| 日本黄色视频三级网站网址 | 久久久国产精品麻豆| 桃花免费在线播放| 变态另类成人亚洲欧美熟女 | 十八禁人妻一区二区| 国产免费视频播放在线视频| tube8黄色片| 又大又爽又粗| 精品少妇内射三级| 国产又爽黄色视频| 久久精品亚洲av国产电影网| 午夜日韩欧美国产| av欧美777| 制服诱惑二区| av电影中文网址| 国产精品国产av在线观看| 一进一出抽搐动态| 超碰成人久久| 久久av网站| 日韩一卡2卡3卡4卡2021年| 国产精品国产高清国产av | 久久久国产精品麻豆| 亚洲精品国产一区二区精华液| 激情视频va一区二区三区| 91成年电影在线观看| 桃花免费在线播放| 亚洲自偷自拍图片 自拍| 欧美变态另类bdsm刘玥| 99精品久久久久人妻精品| 一本综合久久免费| 欧美变态另类bdsm刘玥| 欧美人与性动交α欧美精品济南到| 一本综合久久免费| 成年动漫av网址| 亚洲精品自拍成人| 国产在线一区二区三区精| 男女之事视频高清在线观看| 男女高潮啪啪啪动态图| 9热在线视频观看99| 99精品欧美一区二区三区四区| 亚洲国产av新网站| 色婷婷久久久亚洲欧美| 久久av网站| 精品熟女少妇八av免费久了| 777久久人妻少妇嫩草av网站| 久久毛片免费看一区二区三区| 国产色视频综合| 亚洲中文日韩欧美视频| 丝袜喷水一区| 亚洲av欧美aⅴ国产| 黑人欧美特级aaaaaa片| 三上悠亚av全集在线观看| 一夜夜www| 精品第一国产精品| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 国产免费视频播放在线视频| 丁香欧美五月| 一边摸一边抽搐一进一小说 | 真人做人爱边吃奶动态| 亚洲国产毛片av蜜桃av| 汤姆久久久久久久影院中文字幕| 国产免费视频播放在线视频| 两个人免费观看高清视频| 免费观看a级毛片全部| 久久精品亚洲精品国产色婷小说| 午夜福利乱码中文字幕| 如日韩欧美国产精品一区二区三区| 精品少妇内射三级| 91成人精品电影| 久久免费观看电影| 99国产精品99久久久久| av在线播放免费不卡| 国产欧美日韩综合在线一区二区| a级毛片黄视频| 久久久久精品人妻al黑| 大码成人一级视频| 久久久久久久大尺度免费视频| 电影成人av| 亚洲午夜理论影院| h视频一区二区三区| 中文字幕人妻熟女乱码| a级毛片黄视频| 老司机影院毛片| 国产高清三级在线| 亚洲精品在线观看二区| 最近最新中文字幕大全免费视频| www.熟女人妻精品国产| 日韩免费av在线播放| 欧美zozozo另类| 欧美大码av| 精品久久久久久,| 在线观看午夜福利视频| 成人欧美大片| 丰满的人妻完整版| 成人性生交大片免费视频hd| 亚洲成av人片在线播放无| 美女午夜性视频免费| 欧美日韩一级在线毛片| 白带黄色成豆腐渣| 国产亚洲欧美在线一区二区| 国产久久久一区二区三区| 亚洲 国产 在线| 久久亚洲真实| 日日夜夜操网爽| 国产精品香港三级国产av潘金莲| 1024手机看黄色片| 中文字幕高清在线视频| 香蕉av资源在线| 精品熟女少妇八av免费久了| 国产毛片a区久久久久| 国产高清激情床上av| 一进一出抽搐动态| 国产精品1区2区在线观看.| 国产黄a三级三级三级人| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 99国产综合亚洲精品| xxx96com| 成人国产一区最新在线观看| 免费观看人在逋| 午夜精品一区二区三区免费看| 日韩成人在线观看一区二区三区| 久久午夜亚洲精品久久| 亚洲最大成人中文| 国产av不卡久久| 很黄的视频免费| 久久精品91蜜桃| 日韩av在线大香蕉| 精品国内亚洲2022精品成人| 又粗又爽又猛毛片免费看| 一个人观看的视频www高清免费观看 | 成人18禁在线播放| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 免费一级毛片在线播放高清视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美日韩高清专用| 曰老女人黄片| 最近视频中文字幕2019在线8| 久久久久久久久免费视频了| 欧美av亚洲av综合av国产av| 黄色片一级片一级黄色片| 黄色成人免费大全| av在线天堂中文字幕| 国产精品电影一区二区三区| 亚洲激情在线av| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 国产亚洲精品久久久com| www日本在线高清视频| 免费电影在线观看免费观看| 欧美3d第一页| 一区二区三区高清视频在线| 日本 欧美在线| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 午夜福利成人在线免费观看| 999久久久国产精品视频| 国产精品 国内视频| 久久精品国产综合久久久| 久久久水蜜桃国产精品网| 女人被狂操c到高潮| 国产精品亚洲一级av第二区| 久久久久久九九精品二区国产| 又粗又爽又猛毛片免费看| 桃红色精品国产亚洲av| 国产精品亚洲美女久久久| 老汉色av国产亚洲站长工具| 一本精品99久久精品77| 亚洲成人中文字幕在线播放| 午夜激情欧美在线| 日本黄大片高清| 亚洲欧美日韩高清专用| 久久久久亚洲av毛片大全| 性欧美人与动物交配| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲精品一区二区精品久久久| 美女高潮喷水抽搐中文字幕| 中文资源天堂在线| 中国美女看黄片| 欧美日韩综合久久久久久 | 亚洲va日本ⅴa欧美va伊人久久| 男女视频在线观看网站免费| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 人人妻人人澡欧美一区二区| 午夜成年电影在线免费观看| 九色成人免费人妻av| 国产亚洲精品av在线| 夜夜爽天天搞| 日韩欧美 国产精品| 国产单亲对白刺激| 国产91精品成人一区二区三区| 可以在线观看毛片的网站| 一夜夜www| 一二三四在线观看免费中文在| 亚洲人成电影免费在线| 2021天堂中文幕一二区在线观| 日韩欧美在线二视频| 中文字幕人妻丝袜一区二区| 韩国av一区二区三区四区| 最近最新免费中文字幕在线| 99久久久亚洲精品蜜臀av| 久久精品国产99精品国产亚洲性色| 国产精品久久久人人做人人爽| 亚洲av成人精品一区久久| 99国产综合亚洲精品| 不卡av一区二区三区| 亚洲精品中文字幕一二三四区| 亚洲熟女毛片儿| 国产成人一区二区三区免费视频网站| 中文字幕人成人乱码亚洲影| 夜夜躁狠狠躁天天躁| 噜噜噜噜噜久久久久久91| 亚洲自偷自拍图片 自拍| 亚洲国产精品成人综合色| 欧美日韩精品网址| 亚洲七黄色美女视频| 波多野结衣巨乳人妻| 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| a级毛片a级免费在线| 亚洲中文日韩欧美视频| 一个人免费在线观看的高清视频| 久久久久久久久中文| 亚洲狠狠婷婷综合久久图片| 国产激情欧美一区二区| 免费电影在线观看免费观看| 久久伊人香网站| 久久精品国产清高在天天线| 欧美极品一区二区三区四区| 搡老岳熟女国产| 亚洲第一欧美日韩一区二区三区| 午夜免费成人在线视频| 中文字幕精品亚洲无线码一区| 999久久久精品免费观看国产| 观看美女的网站| 亚洲九九香蕉| 日日夜夜操网爽| 亚洲国产欧洲综合997久久,| 黑人欧美特级aaaaaa片| 婷婷六月久久综合丁香| 久久精品国产99精品国产亚洲性色| 99国产极品粉嫩在线观看| 成年人黄色毛片网站| 久久国产精品影院| 黄片大片在线免费观看| 成年女人看的毛片在线观看| 嫁个100分男人电影在线观看| 久久香蕉精品热| 日本 欧美在线| 色老头精品视频在线观看| 狠狠狠狠99中文字幕| 超碰成人久久| 日本a在线网址| 99国产精品一区二区三区| 国产精品女同一区二区软件 | 日韩国内少妇激情av| 日本a在线网址| 国产精品一区二区三区四区免费观看 | 伊人久久大香线蕉亚洲五| 亚洲欧美日韩高清专用| 亚洲乱码一区二区免费版| 观看免费一级毛片| 亚洲九九香蕉| 精品国产超薄肉色丝袜足j| 久久久国产成人精品二区| 欧美黑人欧美精品刺激| 国产精品乱码一区二三区的特点| 最近在线观看免费完整版| 亚洲片人在线观看| 高潮久久久久久久久久久不卡| 一夜夜www| 老汉色∧v一级毛片| 欧美一级毛片孕妇| 长腿黑丝高跟| 亚洲午夜精品一区,二区,三区| 国产精品美女特级片免费视频播放器 | 操出白浆在线播放| 热99在线观看视频| 久久久久久久久中文| 男人的好看免费观看在线视频| 亚洲美女黄片视频| 高潮久久久久久久久久久不卡| 免费人成视频x8x8入口观看| 成人av一区二区三区在线看| 欧美国产日韩亚洲一区| 香蕉丝袜av| 999久久久精品免费观看国产| 欧美一级毛片孕妇| 亚洲av日韩精品久久久久久密| 麻豆成人av在线观看| 色视频www国产| АⅤ资源中文在线天堂| 国产黄片美女视频| 色视频www国产| 天堂动漫精品| 欧美激情久久久久久爽电影| 精品一区二区三区四区五区乱码| 亚洲美女视频黄频| 亚洲国产日韩欧美精品在线观看 | 99热精品在线国产| 老鸭窝网址在线观看| 国产av在哪里看| 淫妇啪啪啪对白视频| 欧美在线一区亚洲| 午夜福利在线在线| 精品国产乱子伦一区二区三区| 欧美在线一区亚洲| 人人妻人人澡欧美一区二区| 国产成人av激情在线播放| 亚洲aⅴ乱码一区二区在线播放| 日本五十路高清| 天堂网av新在线| 免费搜索国产男女视频| 日本与韩国留学比较| 啦啦啦观看免费观看视频高清|