• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative systems biology between human and animal models based on next-generation sequencing methods

    2013-09-20 03:39:30YuQiZHAOGongHuaLIJingFeiHUANG
    Zoological Research 2013年2期

    Yu-Qi ZHAO, Gong-Hua LI, Jing-Fei HUANG,2,*

    1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming Yunnan 650223,China;

    2. Kunming Institute of Zoology, Chinese University of Hong Kong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming Yunnan 650223, China

    Accurately modeling the physiology and pathology of human systems research requires the establishment of a quality animal model (Alvarado & Tsonis 2006;Francia et al, 2011, 2006; G?tz & Lttner 2008; Hasenfuss 1998; Lieschke & Currie, 2007). To this end, generally,how closely the model should mimic the human disease depends on the scientific question under investigation.Only in cases when the causal connections—structure function relationship or regulation of gene expression—are definitive, can the differences between human and animal models have minor effect on the analysis results(Hasenfuss, 1998). For example, although the zebrafish(Danio rerio) is phylogenetically distant from humans,its use as a complete animal model for in vivo drug discovery and development is growing rapidly(Chakraborty et al, 2009). However, if the pathophysiological processes are studied, especially for the complex diseases, then models should mimic clinical settings as closely as possible, otherwise the expected results may not be achieved or the findings of such studies will be of limited value.

    Accordingly, comparisons between human and animal models are becoming increasingly important for both clinical and fundamental applications (Alini et al,2008; Cox et al, 2009; Fuentes et al, 2009; Huh et al,2010; Merchenthaler & Shughrue, 2005; Nestler &Hyman, 2010; Northoff, 2009). Among the available strategies to assess this connection, comparative systems biology has begun attracting special attention (Cox et al,2009).1

    In this review, we introduce the concept of comparative systems biology. Next, we focus on the applications of next-generation sequencing methods,including RNA-seq and ChIP-seq, to comparative systems biology between human and animal models,before outlining some general directions of future developments and impacts of these types of studies.

    The rise of comparative systems biology

    One of the greatest twentieth century achievements in biological research is undoubtedly the sequencing of different genomes. There are now complete genome sequences for more than 1,000 organisms (excluding bacteria and archaea), with more sequences being completed (Henkelman, 2010). Once the genome of a species is available, researchers are able to begin mapping sequences against humans and find candidate disease genes and build a proper disease model. However,the ability to fundamentally understand the genotype–phenotype relationship in a distinct species is often hindered by the inherent complexity of biological systems. The difference in genotype–phenotype relationships between human and animal models may originate from three sources (Figure 1): (1) functional divergence of genes or proteins; (2) gene deletions or duplications; and (3) divergent up- or down-stream components, out of which gene deletions or duplications may play the leading role (Jaillon et al, 2004).

    Figure 1 Mechanisms of different genotype-phenotype relationships between human and animal models

    Over the last decade, this third mechanism has received more attention in systems biology. The Rb(Retinoblastoma) gene family is a good case, because the members in this family are functionally conserved while the involved pathways are divergent between C. elegans and humans (van den Heuvel & Dyson, 2008). Likewise,a previous study reported that over 20% of the essential genes for humans are non-essential for mice (Liao &Zhang, 2008). Consequently, traditional molecular biology techniques, while providing valuable insights into individual and/or simple genotype–phenotype relationship, are insufficient in deducing the complex phenotype-genotype relationships. Therefore, the more systematic methods at the systems biology level are necessary.

    The ultimate goal of systems biology is generating successful models to comprehensively describe living organisms. Comparative systems biology, an important subfield of systems biology, has no straightforward definition. In animal model research, the term first appeared in Ogawa et al’s (2008) work, reporting a comparative study of circadian oscillatory network models of Drosophila. Here, we define comparative systems biology as “comparisons of biological systems in different states or species to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels.” The comparison can be performed either horizontally (e.g.,between individuals or states) or longitudinally (between species). The latter, which is mainly focused on human and animal models, is reviewed in detail here.

    Over the past decade, comparative systems biology has attracted widespread interest, especially for its utility in comparisons between human and animal models of complex diseases. Miller et al (2010) used a systems biology approach to find a number of divergent network modules relevant to Alzheimer disease between humans and mice. In a previous work, we compared humans and four common animal models of cardiovascular disease through comparative transcriptome and pathway analysis,revealing that a few pathways have functionally diverged(Zhao et al, 2012). A recent review highlighted that the emerging technologies in comparative systems biology between human and animal models offers a platform to systematically explore not only the molecular mechanism of a particular disease, thus leading to the identification of disease modules and pathways, but also the molecular relationships among distinct(patho)phenotypes (Barabasi et al, 2011).

    The majority of recent comparative systems biology studies on obtain their data through traditional high throughput technologies, such as microarray and ChIP-chip. Despite the experimental and statistical rigor as well as substantial insights gained through these methods,there has been a fundamental shift from these first-generation technologies (microarray and ChIP-chip) to next-generation sequencing (RNA-seq and ChIP-seq)over the last five years. We surmise that the applications of next-generation sequencing methods will serve a crucial function in the field of comparative systems biology between human and animal models, offering a number of potential advantages.

    RNA-seq in transcriptome studies

    Previous studies demonstrated that changes in gene expression underlie many or even most of phenotypic differences between species (Marques et al, 2008; Yanai et al, 2004). As a result, comparative transcriptome analysis potentially provides information on functional conservation for candidate human disease genes within animal models.

    Initial trancriptomics studies largely relied on hybridization-based microarray technologies and have yielded valuable insights into the functional divergence between human and model animals (Enard et al, 2002;Liao & Zhang 2006). However, microarray technology has several limitations: over reliance upon existing knowledge about genome sequences; high background levels owing to cross-hybridization; and a limited dynamic range of detection owing to both background and saturation of signals (Wang et al, 2009). Recent advances in the DNA sequencing technology have enabled sequencing of cDNA derived from cellular RNA by massively parallel sequencing strategies, a process termed RNA-seq (Garber et al, 2011; Mortazavi et al,2008). Compared with the microarray, RNA-seq has the advantage of allowing high-resolution characterization and quantification of transcriptomes with low background noise and the ability to distinguish different isoforms.

    Figure 2 shows the key procedures performed during RNA-seq analysis of comparative transcriptomes between human and animal models. The computational challenges in this process have been reviewed in detail by (Garber et al, 2011), therefore, we mainly illustrated the potential advantages of RNA-seq in comparative systems biology, including (a) comparisons between human and non-model animals, and (b) actual biological systems induced by the states of gene expression.

    Figure 2 RNA-seq methods in comparative transcriptome analysisThere are two strategies for sequencing animal models. If the genome was not complete or was badly annotated, the genome-independent approach should be used (right part). The genome-guided approach is more typical (left part).

    Though a variety of organisms have been genomically sequenced, the majority of these are used as model organisms. Since microarray relies on the genome information, this technique has serious limitations in both quantifying and comparing gene expression profiles from non-model animals. RNA-seq, meanwhile, can be applied to reconstruct the complete and high-resolution transcriptomes across all species. To build the transcriptome, several methods based on RNA-seq have been developed, usually falling into two main classes:the ‘genome-guided’ (Guttman et al, 2010; Trapnell et al,2010) and genome-independent classes (De novo assembly) (Birol et al, 2009; Schulz et al, 2012). The first methods rely on a reference genome to initially map all the RNA-seq reads to the genome and then assemble overlapping reads into transcripts. Unfortunately, the genome-guided method is not always effective, both because despite a large drop in the cost of nextgeneration sequencing, the study of a complete genome is still costly and difficult, especially for non-model organisms, and because the particular model being studied may be sufficiently different from its reference genome because it comes from a different strain or line.Consequently, de novo assembly is particularly suitable for application to obtain accurate reconstructions. A recent study reported a large RNA-seq data set obtained from six organs of nine different mammals (human,chimpanzee, bonobo, gorilla, orangutan, macaque,mouse, opossum, and platypus) and one bird (chicken),including both males and females (Brawand et al, 2011),demonstrated the utility of applying comparative systems biology between human and non-model animals and elucidated the large evolutionary gaps among these model organisms.

    Determining the expression states (i.e., the presence or absence) of genes with low abundance is a challenge for microarray. Consequently, the reconstruction of the actual biological networks (e.g., protein-protein interaction, transcriptional regulation network, or metabolic network) in either human or animal models in a specific condition is very difficult, not to say anything of the difficulty in comparing the dynamic networks(Farmer et al, 2012). Moreover, abnormal variations in alternative splicing are also implicated in disease, thus alternative splicing is a critical factor to consider in building a proper and viable animal model (Luco et al,2011). Unfortunately, obtain the precise alternative splicing map using the microarray technique is almost impossible.

    RNA-seq data is highly replicable with relatively little technical variation. For many purposes, RNA-seq may be sufficient to sequence each mRNA sample once.The information obtained in a single lane of RNA-seq data appears to be comparable to that in a single array,and is therefore useful in enabling the identification of differentially expressed genes and allowing for additional,further analyses, such as detection of low-expressed genes, novel transcripts and alternative splice variants. In using this method, researchers can obtain actual biological networks in both human and animal models,and garner biologically meaningful results by comparing between these two networks. Rowley et al (2011), for example, compared the actual transcriptome in platelets between humans and mice, providing critical information used in the design of mouse models of hemostasis and in catalyzing the discovery of new platelet functions..

    ChIP-seq for detecting regulation changes

    Molecular interactions between proteins and DNA play an essential role in the regulation of gene expression(Cawley et al, 2004; Pokholok et al, 2006). Accordingly,changes in protein–DNA interactions between human and animal models may lead to the divergent functions of homologous pathways (Brown et al, 2011; Greber et al,2010), which is also an important aspect of comparative systems biology.

    Chromatin immunoprecipitation (ChIP) followed by genomic tiling microarray hybridization (ChIP-chip) has become the most widely used approach for genome-wide identification and characterization of in vivo protein-DNA interactions during the past decade (Ho et al, 2011).Specifically, when applied to the study of animal models of human disease, CHIP-chip approaches led to many important discoveries in relation to transcriptional regulation (Chen et al, 2008), epigenetic regulation through histone modification (Heintzman et al, 2007),and evolution of protein-DNA interactions (Kim et al,2007).

    Like the microarray technique, CHIP-chip also has some limitations arising from the innate characteristics of microarray hybridization. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) makes it possible to obtain the accurate information about the genome-wide profiling of DNA- protein interaction. Compared to the CHIP-chip, ChIP-seq has a higher resolution, fewer artifacts, a larger coverage and a more extensive dynamic range (Blow et al, 2010; Johnson et al, 2007; Mardis 2007; Schmid & Bucher, 2007; Visel et al, 2009).Subsequently, we will introduce the practical applications of ChIP-seq in comparison between human and animals, including (1) identifying the regulatory sequences, and (2) tracing the evolution of epigenetic regulation.

    The human genome project, while obtaining the complete genomic sequences, leaves open the question of how to identify the regulatory sequences that control the spatial and temporal expression of genes unanswered(Birney et al, 2007; McGaughey et al, 2008). Through applying the ChIP-seq techniques with the enhancerassociated protein p300 from mouse embryonic heart tissue, Blow et al (2010) made an attempt to identify candidate heart enhancers on genomic scale, revealing that most of the candidate heart enhancers were less deeply conserved in vertebrate evolution when compared to the enhancers that are active in other tissues. Such methods could also be applied to identification of other transcriptional factors (TFs), and therefore are helpful in the reconstruction of the transcriptional regulation network in human and animal models. Thankfully, the decreasing cost of ChIP-seq has extended the comparative systems biology investigation to some TFs.For example, Schmidt et al (2010) used ChIP-seq to determine experimentally the genome-wide occupancy of two TFs, i.e., CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates, revealing large interspecies differences in transcriptional regulation and providing insight into the evolution of regulatory networks.

    Epigenetic regulation is now accepted as being closely associated with human development, and subsequently many developmental disorders may be caused by the dysfunction of this regulation (Gottesman& Hanson, 2005). However, due to the deficient knowledge of this phenomena in other animals, build proper animal models for these studies is difficult.Nevertheless, a recent study that employed the CHIP-seq technique to investigate the epigenetic regulation of histone H3 K4 on frogs (Xenopus tropicalis), revealed a hierarchy in the spatial control of zygotic gene activation(Akkers et al, 2009). Taken together, these advances lead us to speculate that the applications of CHIP-seq in comparative systems biology will be of great help in understanding embryonic diseases.

    Despite the advances that ChIP-seq offers,researchers should be cautious when performing ChIP-seq analysis because the experimental steps in ChIP-seq involve several potential sources of artefacts (Park,2009). For example, one challenge in this technique is that the identified enriched regions are of different types for different proteins (for details, refer to (Park, 2009)).The other potential source of artefacts comes from the divergence of both protein and DNA; therefore when using this analysis, the control experiment should be designed carefully.

    Perspective applications of comparative systems biology

    Comparative systems biology takes advantage of the systematic information from other organisms and can be used to great effect in studying human physiology and disease. Over the coming years, we expect many exciting developments as this field evolves in several potential directions.

    Dynamic networks

    Biological systems exhibit complex dynamic behavior, enabling cells to react to various conditions or cell states such as cell cycle progression (Zhu et al, 2007).Although static biological systems have been well studied (Benfey & Mitchell-Olds, 2008; Gianchandani et al, 2006; Macilwain, 2011; Werner, 2007), the information gained from such studies is of limited use in moving forward due to the fact that the static interactions are often identified from cells exposed to a single condition or at a single time point, i.e., under nonnative conditions. Only recently have approaches emerged that attempt to analyze the dynamics of complex biological networks. For transcriptional regulatory interactions,ChIP-seq technology is likely to become increasingly popular as it can be used to uncover contextual and temporal variation. For context-specific metabolic network, RNA-seq could provide the dynamic states of metabolic enzymes.

    Biological engineering

    The ability to manipulate living organisms is at the heart of a range of emerging technologies aimed at addressing critical problems in environment, energy, and health. Because of their complexity and interconnectivity, however, animal models have been less than useful for engineered manipulation. To move forward with employing animal models with greater breadth and application, we vitally need more detailed information that can be obtained using new methods like those outlined in the present study. for instance utilizing real-time RNA-seq technique to obtain the information about the effects of perturbations on biological systems(Faith et al, 2011). Next-generation sequencing technology and the concurrent development of applications for it are a fast-moving area of biomedical research that greatly advance the development of comparative systems biology.

    Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM,Francoijs KJ, Stunnenberg HG, Veenstra GJC. 2009. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus Embryos. Dev Cell, 17(3): 425-434.

    Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K,Melrose J, Ralphs J, Stokes I, Wilke HJ. 2008. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J,17(1): 2-19.

    Alvarado AS, Tsonis PA. 2006. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet, 7(11): 873-884.

    Barabasi AL, Gulbahce N, Loscalzo J. 2011. Network medicine: a network-based approach to human disease. Nate Rev Genet, 12(1): 56-68.

    Benfey PN, Mitchell-Olds T. 2008. From genotype to phenotype:Systems biology meets natural variation. Science, 320(5875): 495-497.Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR,Margulies EH, Weng ZP, Snyder M, Dermitzakis ET,Stamatoyannopoulos JA and others. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146): 799-816.

    Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao YJ, Hirst M, Schein JE, Horsman DE, Connors JM,Gascoyne RD, Marra MA, Jones SJM. 2009. De novo transcriptome assembly with ABySS. Bioinformatics, 25(21): 2872-2877.

    Blow MJ, McCulley DJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F and others. 2010. ChIP-Seq

    identification of weakly conserved heart enhancers. Nat Genet, 42(9):806-810.

    Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P,Weier M, Liechti A, Aximu-Petri A, Kircher M and others. 2011. The evolution of gene expression levels in mammalian organs. Nature,478(7369): 343-348.

    Brown S, Teo A, Pauklin S, Hannan N, Cho CHH, Lim B, Vardy L,Dunn NR, Trotter M, Pedersen R and others. 2011. Activin/nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells, 29(8):1176-1185.

    Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D,Piccolboni A, Sementchenko V, Cheng J, Williams AJ and others. 2004.Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116(4): 499-509.

    Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G. 2009.Zebrafish: A complete animal model for in vivo drug discovery and development. Curr Drug Metab, 10(2): 116-124.

    Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL,Zhang WW, Jiang JM and others. 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6): 1106-1117.

    Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A,Whiteley K, Jurisica I, Adamson SL, Rossant J, Kislinger T. 2009.Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol Syst Biol, 5: 279.

    Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P,Nieselt-Struwe K, Muchmore E, Varki A, Ravid R and others. 2002.Intra-and interspecific variation in primate gene expression patterns.Science, 296(5566): 340-343.

    Faith JJ, McNulty NP, Rey FE, Gordon JI. 2011. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science,333(6038): 101-104.

    Farmer MA, Baliki MN, Apkarian AV. 2012. A dynamic network perspective of chronic pain. Neurosci Lett, 520(2): 197-203.

    Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. 2011. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer, 11(2): 135-141.

    Friese MA, Montalban X, Willcox N, Bell JI, Martin R, Fugger L. 2006.The value of animal models for drug development in multiple sclerosis.Brain, 129(8): 1940-1952.

    Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MAL. 2009.Spinal cord stimulation restores locomotion in animal models of Parkinson's disease. Science, 323(5921): 1578-1582.

    Garber M, Grabherr MG, Guttman M, Trapnell C. 2011. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods, 8(6): 469-477.

    Gianchandani EP, Brautigan DL, Papin JA. 2006. Systems analyses characterize integrated functions of biochemical networks. Trends Biochem Sci, 31(5): 284-291.

    Gottesman II, Hanson DR. 2005. Human development: Biological and genetic processes. Annu Rev Psychol, 56(1): 263-286.

    G?tz J, Ittner LM. 2008. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci, 9(7): 532-544.

    Greber B, Wu GM, Bernemann C, Joo JY, Han DW, Ko K, Tapia N,Sabour D, Sterneckert J, Tesar P and others. 2010. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell, 6(3): 215-226.

    Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X,Fan L, Koziol MJ, Gnirke A, Nusbaum C and others. 2010. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol, 28(5):503-510.

    Hasenfuss G. 1998. Animal models of human cardiovascular disease,heart failure and hypertrophy. Cardiovasc Res, 39(1): 60-76.

    Heintzman ND, Stuart RK, Hon G, Fu YT, Ching CW, Hawkins RD,Barrera LO, Van Calcar S, Qu CX, Ching KA and others. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 39(3): 311-318.

    Henkelman RM. 2010. Systems biology through mouse imaging centers: experience and new directions. Annu Rev Biomed Eng, 12(1):143-166.

    Ho JWK, Bishop E, Karchenko PV, Negre N, White KP, Park PJ. 2011.ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis. Bmc Genomics, 12: 134.

    Huh Y, Ju MS, Park H, Han SJ, Bang YM, Ferris CF, Koppe GA, King JA, Kim ML, Kim DJ and others. 2010. Clavulanic acid protects neurons in pharmacological models of neurodegenerative diseases.Drug Develop Res, 71(6): 351-357.

    Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E,Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A and others. 2004.Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 431(7011): 946-957.

    Johnson DS, Mortazavi A, Myers RM, Wold B. 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830):1497-1502.

    Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B. 2007. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome.Cell, 128(6): 1231-1245.

    Liao BY, Zhang JZ. 2006. Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol Biol Evol,23(3): 530-540.

    Liao BY, Zhang JZ. 2008. Null mutations in human and mouse orthologs frequently result in different phenotypes. Proc Natl Acad Sci USA, 105(19): 6987-6992.

    Lieschke GJ, Currie PD. 2007. Animal models of human disease:zebrafish swim into view. Nat Rev Genet, 8(5): 353-367.

    Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. 2011.Epigenetics in alternative Pre-mRNA splicing. Cell, 144(1): 16-26.

    Macilwain C. 2011. Systems biology: evolving into the mainstream.Cell, 144(6): 839-841.

    Mardis ER. 2007. ChIP-seq: welcome to the new frontier. Nat Methods,4(8): 613-614.

    Marques AC, Vinckenbosh N, Brawand D, Kaessmann H. 2008.Functional diversification of duplicate genes through subcellular adaptation of encoded proteins. Genome Biol, 9(3): 5R4.

    McGaughey DM, Vinton RM, Huynh J, Al-Saif A, Beer MA,McCallion AS. 2008. Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b. Genome Res,18(2): 252-260.

    Merchenthaler I, Shughrue PJ. 2005. Neuroprotection by estrogen in animal models of ischemia and Parkinson's disease. Drug Develop Res,66(2): 172-181.

    Miller JA, Horvath S, Geschwind DH. 2010. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways.Proc Natl Acad Sci USA, 107(28): 12698-12703.

    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008.Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 5(7): 621-628.

    Nestler EJ, Hyman SE. 2010. Animal models of neuropsychiatric disorders. Nat Neurosci, 13(10): 1161-1169.

    Northoff G. 2009. Comparison between animal models and human imaging findings in major depressive disorder-convergences and divergences. Biol Psychiat, 65(8): 18S-18S.

    Ogawa Y, Arakawa K, Kaizu K, Miyoshi F, Nakayama Y, Tomita M.2008. Comparative study of circadian oscillatory network models of Drosophila. Artif Life, 14(1): 29-48.

    Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 10(10): 669-680.

    Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA.2006. Activated signal transduction kinases frequently occupy target genes. Science, 313(5786): 533-536.

    Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS. 2011. Genome-wide RNA-seq

    analysis of human and mouse platelet transcriptomes. Blood, 118(14):E101-E111.

    Schmid CD, Bucher P. 2007. ChIP-Seq data reveal nucleosome architecture of human promoters. Cell, 131(5): 831-832.

    Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD,Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S and others. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science, 328(5981): 1036-1040.

    Schulz MH, Zerbino DR, Vingron M, Birney E. 2012. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels.Bioinformatics, 28(8): 1086-1092.

    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28(5): 511-515.

    van den Heuvel S, Dyson NJ. 2008. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Bio, 9(9): 713-724.

    Visel A, Blow MJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F and others. 2009. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 457(7231): 854-858.

    Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1): 57-63.

    Werner E. 2007. All systems go. Nature, 446(7135): 493-494.

    Yanai I, Graur D, Ophir R. 2004. Incongruent expression profiles between human and mouse orthologous genes suggest widespread neutral evolution of transcription control. Omics, 8(1): 15-24.

    Zhao YQ, Sheng ZZ, Huang JF. 2012. A systematic analysis of heart transcriptome highlights divergent cardiovascular disease pathways between animal models and humans. Mol Biosyst, 8(2): 504-510.

    Zhu XW, Gerstein M, Snyder M. 2007. Getting connected: analysis and principles of biological networks. Gene Dev, 21(9): 1010-1024.

    成人国产一区最新在线观看| 男人舔女人的私密视频| a在线观看视频网站| 麻豆成人av在线观看| 亚洲国产精品一区二区三区在线| 日日摸夜夜添夜夜添小说| 精品国产一区二区三区四区第35| 操出白浆在线播放| 激情视频va一区二区三区| 国产成人影院久久av| 免费在线观看视频国产中文字幕亚洲| 又大又爽又粗| 欧美日韩黄片免| 少妇的丰满在线观看| 在线天堂中文资源库| 在线播放国产精品三级| 中国美女看黄片| 99re6热这里在线精品视频| 午夜影院日韩av| 免费在线观看视频国产中文字幕亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 交换朋友夫妻互换小说| 深夜精品福利| 国产高清视频在线播放一区| 王馨瑶露胸无遮挡在线观看| 成人三级做爰电影| 中国美女看黄片| 国产午夜精品久久久久久| 99热只有精品国产| 国产在线观看jvid| 成人av一区二区三区在线看| 黑人巨大精品欧美一区二区mp4| 夜夜躁狠狠躁天天躁| 亚洲七黄色美女视频| 国产欧美日韩一区二区三| 国产精品亚洲一级av第二区| 亚洲色图综合在线观看| 欧美黄色淫秽网站| 欧美日韩视频精品一区| 在线免费观看的www视频| 亚洲精品国产区一区二| 中文字幕最新亚洲高清| 麻豆av在线久日| 久久中文看片网| 免费在线观看影片大全网站| 亚洲成人手机| 啦啦啦在线免费观看视频4| 777米奇影视久久| 无人区码免费观看不卡| 欧美亚洲 丝袜 人妻 在线| 在线看a的网站| 中文字幕人妻丝袜制服| 国产日韩欧美亚洲二区| 久久精品亚洲熟妇少妇任你| 国产高清国产精品国产三级| 18禁黄网站禁片午夜丰满| 久久99一区二区三区| 天堂√8在线中文| 成人亚洲精品一区在线观看| 一二三四社区在线视频社区8| 一区福利在线观看| 久久国产精品影院| 久久国产亚洲av麻豆专区| www.精华液| 久久这里只有精品19| 久久99一区二区三区| 国产午夜精品久久久久久| 精品国产美女av久久久久小说| 亚洲成人免费电影在线观看| 亚洲 欧美一区二区三区| 国产av又大| 香蕉久久夜色| 成人黄色视频免费在线看| 岛国毛片在线播放| 在线永久观看黄色视频| 村上凉子中文字幕在线| 国产精品99久久99久久久不卡| av电影中文网址| 成人影院久久| 视频区图区小说| 两性夫妻黄色片| 99精国产麻豆久久婷婷| 亚洲男人天堂网一区| 精品国产亚洲在线| 日韩免费高清中文字幕av| 久久青草综合色| 天天影视国产精品| 久久精品国产a三级三级三级| 一区二区三区激情视频| 欧美 亚洲 国产 日韩一| 色综合欧美亚洲国产小说| 国产一区二区三区在线臀色熟女 | 最近最新中文字幕大全电影3 | 人妻 亚洲 视频| 少妇粗大呻吟视频| 淫妇啪啪啪对白视频| 国产亚洲欧美精品永久| 日韩有码中文字幕| 中国美女看黄片| 午夜亚洲福利在线播放| 黄片小视频在线播放| 亚洲国产毛片av蜜桃av| 新久久久久国产一级毛片| 一进一出抽搐gif免费好疼 | 国产在视频线精品| 亚洲精品一卡2卡三卡4卡5卡| 久久 成人 亚洲| 精品第一国产精品| 久久人妻av系列| 在线播放国产精品三级| 欧美另类亚洲清纯唯美| 两人在一起打扑克的视频| 欧美日韩成人在线一区二区| 最近最新中文字幕大全免费视频| 91成年电影在线观看| 亚洲成av片中文字幕在线观看| 99re在线观看精品视频| av天堂在线播放| 亚洲伊人色综图| 一区二区三区激情视频| 欧美日韩精品网址| 男男h啪啪无遮挡| 成人影院久久| 成年女人毛片免费观看观看9 | 丝袜人妻中文字幕| 夜夜爽天天搞| 天堂中文最新版在线下载| 亚洲欧美一区二区三区黑人| 最近最新中文字幕大全免费视频| 久久99一区二区三区| 国产精品成人在线| 香蕉丝袜av| 90打野战视频偷拍视频| 精品国产美女av久久久久小说| 一a级毛片在线观看| 国产精品久久久av美女十八| 99久久人妻综合| 免费在线观看影片大全网站| 国产视频一区二区在线看| 国产亚洲av高清不卡| 婷婷精品国产亚洲av在线 | 国产欧美日韩综合在线一区二区| 亚洲精品乱久久久久久| 久久国产亚洲av麻豆专区| 亚洲精品国产区一区二| a级片在线免费高清观看视频| 亚洲av第一区精品v没综合| 99精国产麻豆久久婷婷| 大香蕉久久成人网| 亚洲一码二码三码区别大吗| 亚洲性夜色夜夜综合| videosex国产| 亚洲成人国产一区在线观看| 亚洲av美国av| 91成人精品电影| 精品人妻1区二区| 中文亚洲av片在线观看爽 | 久久久国产成人精品二区 | 女警被强在线播放| av福利片在线| 色婷婷av一区二区三区视频| 大片电影免费在线观看免费| 午夜成年电影在线免费观看| 黄片播放在线免费| 少妇猛男粗大的猛烈进出视频| 欧美 亚洲 国产 日韩一| 国产aⅴ精品一区二区三区波| 国产aⅴ精品一区二区三区波| av国产精品久久久久影院| 久久热在线av| 高潮久久久久久久久久久不卡| 黄色毛片三级朝国网站| 一级毛片高清免费大全| www日本在线高清视频| 九色亚洲精品在线播放| 在线观看免费视频日本深夜| 久久香蕉精品热| 欧美 日韩 精品 国产| 久久国产乱子伦精品免费另类| 精品久久久久久,| 国产一区有黄有色的免费视频| 日韩中文字幕欧美一区二区| 在线观看免费视频日本深夜| 国产亚洲av高清不卡| 欧美精品亚洲一区二区| 一二三四在线观看免费中文在| 亚洲精品成人av观看孕妇| 黄色 视频免费看| 村上凉子中文字幕在线| 亚洲国产毛片av蜜桃av| 国产欧美日韩一区二区三| 国产男女超爽视频在线观看| 在线观看免费视频网站a站| 精品一品国产午夜福利视频| 久热这里只有精品99| 久久精品国产清高在天天线| 日本精品一区二区三区蜜桃| 亚洲av日韩精品久久久久久密| 亚洲性夜色夜夜综合| 高清毛片免费观看视频网站 | 热re99久久精品国产66热6| 国产精品1区2区在线观看. | 亚洲av成人不卡在线观看播放网| 亚洲精品中文字幕在线视频| 亚洲成人免费电影在线观看| 亚洲欧美激情在线| 建设人人有责人人尽责人人享有的| 亚洲午夜精品一区,二区,三区| 麻豆成人av在线观看| 每晚都被弄得嗷嗷叫到高潮| 超碰97精品在线观看| 巨乳人妻的诱惑在线观看| 国产91精品成人一区二区三区| 天天添夜夜摸| 十八禁人妻一区二区| 两人在一起打扑克的视频| 国产区一区二久久| 免费久久久久久久精品成人欧美视频| 久久人妻av系列| 午夜91福利影院| 亚洲午夜精品一区,二区,三区| 9热在线视频观看99| 亚洲精品成人av观看孕妇| 午夜精品国产一区二区电影| 午夜精品国产一区二区电影| 亚洲国产精品sss在线观看 | 多毛熟女@视频| av天堂久久9| 一区二区三区国产精品乱码| 国产精品98久久久久久宅男小说| 国产精品一区二区精品视频观看| 久久久精品区二区三区| 新久久久久国产一级毛片| 在线观看免费视频网站a站| 捣出白浆h1v1| 丝瓜视频免费看黄片| 成人精品一区二区免费| 在线av久久热| 亚洲av欧美aⅴ国产| 亚洲久久久国产精品| 亚洲av成人av| 国产91精品成人一区二区三区| 国产精品久久久久久精品古装| 国产精品一区二区精品视频观看| 在线观看舔阴道视频| 中文字幕av电影在线播放| 女人爽到高潮嗷嗷叫在线视频| 王馨瑶露胸无遮挡在线观看| 午夜久久久在线观看| 夜夜爽天天搞| 两个人免费观看高清视频| 精品一区二区三区视频在线观看免费 | 在线观看日韩欧美| av天堂久久9| 岛国在线观看网站| 欧美亚洲日本最大视频资源| 国产蜜桃级精品一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 丝袜美足系列| 麻豆乱淫一区二区| 91成人精品电影| 黄色女人牲交| 国产男女超爽视频在线观看| 一区二区三区精品91| 亚洲avbb在线观看| 日日爽夜夜爽网站| 久久久久国产精品人妻aⅴ院 | 精品国产乱码久久久久久男人| 18禁裸乳无遮挡免费网站照片 | 亚洲av日韩精品久久久久久密| av超薄肉色丝袜交足视频| tocl精华| 女人精品久久久久毛片| 99精品在免费线老司机午夜| 成年版毛片免费区| 国产日韩欧美亚洲二区| 人人妻人人爽人人添夜夜欢视频| 日韩欧美免费精品| 女人精品久久久久毛片| 亚洲avbb在线观看| 一级毛片女人18水好多| 黑人操中国人逼视频| 久热爱精品视频在线9| 美女视频免费永久观看网站| 涩涩av久久男人的天堂| 他把我摸到了高潮在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美一区二区综合| 免费高清在线观看日韩| 欧美日韩乱码在线| 叶爱在线成人免费视频播放| 丝袜美腿诱惑在线| 极品教师在线免费播放| 91av网站免费观看| 亚洲熟妇中文字幕五十中出 | 久久ye,这里只有精品| 亚洲国产中文字幕在线视频| 视频区图区小说| 久99久视频精品免费| 中文字幕人妻熟女乱码| 欧美色视频一区免费| 香蕉丝袜av| 精品乱码久久久久久99久播| 免费看a级黄色片| 国产一区二区三区视频了| 国产精品乱码一区二三区的特点 | 成人18禁高潮啪啪吃奶动态图| 久久性视频一级片| 18禁黄网站禁片午夜丰满| 国产精品久久电影中文字幕 | 免费日韩欧美在线观看| ponron亚洲| 91麻豆精品激情在线观看国产 | 黄片小视频在线播放| 人成视频在线观看免费观看| 欧美一级毛片孕妇| 欧美日韩国产mv在线观看视频| 婷婷精品国产亚洲av在线 | 成人黄色视频免费在线看| 美女扒开内裤让男人捅视频| 亚洲欧美一区二区三区久久| 丝瓜视频免费看黄片| 国产精品二区激情视频| 黄频高清免费视频| 久久久久久亚洲精品国产蜜桃av| 精品卡一卡二卡四卡免费| 午夜影院日韩av| 亚洲精品美女久久av网站| 夜夜爽天天搞| 亚洲人成电影观看| 最新在线观看一区二区三区| 国产精品一区二区免费欧美| 久久精品亚洲熟妇少妇任你| 欧美+亚洲+日韩+国产| 欧美黑人欧美精品刺激| 99国产精品一区二区蜜桃av | 亚洲三区欧美一区| 久久久久久久午夜电影 | 亚洲av第一区精品v没综合| 如日韩欧美国产精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 免费一级毛片在线播放高清视频 | 高清毛片免费观看视频网站 | 男女下面插进去视频免费观看| 国产精品秋霞免费鲁丝片| 精品高清国产在线一区| 午夜精品国产一区二区电影| 国产男女超爽视频在线观看| 一夜夜www| 中文欧美无线码| 老司机午夜福利在线观看视频| 在线观看舔阴道视频| 成人av一区二区三区在线看| 国产欧美日韩精品亚洲av| 大香蕉久久成人网| 精品第一国产精品| 天堂俺去俺来也www色官网| 久热这里只有精品99| 黄频高清免费视频| 中出人妻视频一区二区| 精品高清国产在线一区| 纯流量卡能插随身wifi吗| 深夜精品福利| cao死你这个sao货| 人妻久久中文字幕网| 亚洲自偷自拍图片 自拍| 色在线成人网| 亚洲七黄色美女视频| 久久久久久亚洲精品国产蜜桃av| 不卡av一区二区三区| 国产成人系列免费观看| 中文字幕人妻丝袜制服| 在线观看免费午夜福利视频| 精品国产乱子伦一区二区三区| 日本黄色视频三级网站网址 | 亚洲五月婷婷丁香| 亚洲在线自拍视频| 一边摸一边做爽爽视频免费| 老汉色av国产亚洲站长工具| 日韩有码中文字幕| 咕卡用的链子| 免费在线观看影片大全网站| 高清视频免费观看一区二区| 亚洲欧美激情综合另类| 好看av亚洲va欧美ⅴa在| 乱人伦中国视频| 久久精品国产亚洲av香蕉五月 | 中文字幕最新亚洲高清| 国产精品98久久久久久宅男小说| 久久精品aⅴ一区二区三区四区| 无人区码免费观看不卡| 一本大道久久a久久精品| 天堂动漫精品| 欧美成人免费av一区二区三区 | 人妻 亚洲 视频| 1024视频免费在线观看| 欧美最黄视频在线播放免费 | 免费av中文字幕在线| 亚洲一区中文字幕在线| 精品国产一区二区三区四区第35| 大型av网站在线播放| 成人三级做爰电影| 手机成人av网站| 两个人免费观看高清视频| 国产成人精品久久二区二区91| 一级片'在线观看视频| 9热在线视频观看99| 精品国产美女av久久久久小说| 国产成人影院久久av| 国产aⅴ精品一区二区三区波| 欧美亚洲日本最大视频资源| 国产一区二区三区综合在线观看| 日本vs欧美在线观看视频| av不卡在线播放| 日韩精品免费视频一区二区三区| 十八禁人妻一区二区| 精品少妇久久久久久888优播| 丝瓜视频免费看黄片| 高清黄色对白视频在线免费看| 久久国产精品人妻蜜桃| 老司机靠b影院| 老司机影院毛片| 亚洲第一欧美日韩一区二区三区| 欧美成人午夜精品| 亚洲av电影在线进入| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱视频在线免费观看| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| av不卡在线播放| 人人妻人人爽人人添夜夜欢视频| 欧美日韩福利视频一区二区| a级毛片黄视频| 国产免费现黄频在线看| 国产成人啪精品午夜网站| 亚洲熟女毛片儿| 五月开心婷婷网| 亚洲精品乱久久久久久| 欧美成人午夜精品| 午夜福利免费观看在线| 免费av中文字幕在线| 三上悠亚av全集在线观看| √禁漫天堂资源中文www| 久久久久国内视频| 精品无人区乱码1区二区| 久久人妻av系列| 国产乱人伦免费视频| 一进一出好大好爽视频| 欧美成狂野欧美在线观看| 黄色毛片三级朝国网站| 悠悠久久av| 欧美黑人欧美精品刺激| 在线观看午夜福利视频| www.精华液| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产成人免费| 夫妻午夜视频| 下体分泌物呈黄色| 国产成人系列免费观看| 国产成人av教育| av天堂久久9| 亚洲 国产 在线| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 91字幕亚洲| 交换朋友夫妻互换小说| 国产成人av激情在线播放| 老熟女久久久| 母亲3免费完整高清在线观看| 精品一区二区三区av网在线观看| 男人舔女人的私密视频| 亚洲一码二码三码区别大吗| 国产在线精品亚洲第一网站| 人人妻,人人澡人人爽秒播| 1024视频免费在线观看| 久久精品亚洲熟妇少妇任你| 午夜福利在线免费观看网站| 黑人欧美特级aaaaaa片| 国产一区在线观看成人免费| 国产精品美女特级片免费视频播放器 | 青草久久国产| 亚洲午夜理论影院| 一本一本久久a久久精品综合妖精| 久久久精品国产亚洲av高清涩受| 国产精品一区二区精品视频观看| 日韩熟女老妇一区二区性免费视频| 欧美黄色淫秽网站| 国产精品久久久久久精品古装| 满18在线观看网站| 亚洲精品久久午夜乱码| 国产精品久久久av美女十八| 中文字幕人妻熟女乱码| 97人妻天天添夜夜摸| 久久中文字幕人妻熟女| 精品久久久久久久久久免费视频 | 人人澡人人妻人| 午夜福利欧美成人| 很黄的视频免费| 999精品在线视频| 一级,二级,三级黄色视频| 超碰成人久久| 精品国产一区二区三区久久久樱花| 黄片播放在线免费| 久久久精品免费免费高清| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| a级毛片在线看网站| 搡老熟女国产l中国老女人| 日本精品一区二区三区蜜桃| 多毛熟女@视频| 色在线成人网| 99久久国产精品久久久| 老司机靠b影院| 欧美在线一区亚洲| 在线观看舔阴道视频| 成年人免费黄色播放视频| 国产高清国产精品国产三级| 国产xxxxx性猛交| 日本vs欧美在线观看视频| 少妇粗大呻吟视频| 91国产中文字幕| 亚洲国产精品合色在线| 久久精品人人爽人人爽视色| www.精华液| 国产野战对白在线观看| 日本wwww免费看| 99久久人妻综合| 性少妇av在线| 每晚都被弄得嗷嗷叫到高潮| 最新的欧美精品一区二区| 女性被躁到高潮视频| 亚洲精品国产精品久久久不卡| 正在播放国产对白刺激| 在线观看一区二区三区激情| 免费在线观看黄色视频的| 麻豆乱淫一区二区| 亚洲一码二码三码区别大吗| 热re99久久国产66热| 免费在线观看完整版高清| 亚洲avbb在线观看| 村上凉子中文字幕在线| 久久这里只有精品19| 999精品在线视频| 一级,二级,三级黄色视频| 热99国产精品久久久久久7| videosex国产| 午夜免费鲁丝| 亚洲精品一二三| 欧美另类亚洲清纯唯美| 免费看a级黄色片| 欧美日韩一级在线毛片| 午夜两性在线视频| av网站免费在线观看视频| 又黄又粗又硬又大视频| 国产亚洲精品久久久久5区| 欧美性长视频在线观看| 免费人成视频x8x8入口观看| 国产乱人伦免费视频| 亚洲aⅴ乱码一区二区在线播放 | 国产免费av片在线观看野外av| 大片电影免费在线观看免费| 天天影视国产精品| 老司机午夜福利在线观看视频| 欧美在线黄色| 亚洲精品乱久久久久久| 每晚都被弄得嗷嗷叫到高潮| 91国产中文字幕| 丰满饥渴人妻一区二区三| 欧美亚洲 丝袜 人妻 在线| av免费在线观看网站| 久久久久久久精品吃奶| 成年人午夜在线观看视频| 精品国产乱码久久久久久男人| 韩国av一区二区三区四区| 黄色女人牲交| 精品熟女少妇八av免费久了| 欧美亚洲日本最大视频资源| 黄片大片在线免费观看| 日韩中文字幕欧美一区二区| 欧美日韩视频精品一区| 亚洲伊人色综图| 亚洲一区高清亚洲精品| 午夜福利一区二区在线看| 熟女少妇亚洲综合色aaa.| 亚洲国产看品久久| 大片电影免费在线观看免费| 欧美av亚洲av综合av国产av| 久久久国产成人精品二区 | 天天躁狠狠躁夜夜躁狠狠躁| 校园春色视频在线观看| 国产免费av片在线观看野外av| av一本久久久久| 99精品欧美一区二区三区四区| 看片在线看免费视频| 午夜福利免费观看在线| 午夜91福利影院| 少妇裸体淫交视频免费看高清 | 国产一卡二卡三卡精品| 最新美女视频免费是黄的| 高清视频免费观看一区二区| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 美女高潮喷水抽搐中文字幕| 亚洲精品久久午夜乱码| 国产午夜精品久久久久久| 91精品国产国语对白视频| 久久人妻福利社区极品人妻图片| 色婷婷久久久亚洲欧美| cao死你这个sao货| av不卡在线播放| cao死你这个sao货| 黄网站色视频无遮挡免费观看|