• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      外電場(chǎng)作用下改進(jìn)的 Leaky Integrate-And-Fire模型的峰放電頻率適應(yīng)性研究*

      2013-09-17 06:02:04韓春曉王江常莉車艷秋
      關(guān)鍵詞:膜電位穩(wěn)態(tài)適應(yīng)性

      韓春曉 王江 常莉 車艷秋

      (1.天津職業(yè)技術(shù)師范大學(xué)自動(dòng)化與電氣工程學(xué)院,天津 300222)(2.天津大學(xué)電氣與自動(dòng)化工程學(xué)院,天津 300072)

      外電場(chǎng)作用下改進(jìn)的 Leaky Integrate-And-Fire模型的峰放電頻率適應(yīng)性研究*

      韓春曉1王江2?常莉2車艷秋1

      (1.天津職業(yè)技術(shù)師范大學(xué)自動(dòng)化與電氣工程學(xué)院,天津 300222)(2.天津大學(xué)電氣與自動(dòng)化工程學(xué)院,天津 300072)

      峰放電頻率適應(yīng)性是神經(jīng)元在信息處理過程中重要的動(dòng)力學(xué)特性之一.當(dāng)神經(jīng)系統(tǒng)受到外電場(chǎng)作用時(shí),會(huì)對(duì)其動(dòng)力學(xué)行為以及神經(jīng)電信息的產(chǎn)生、傳導(dǎo)產(chǎn)生影響.我們基于Leaky integrate-and-fire(LIF)神經(jīng)元模型,建立了外電場(chǎng)作用下改進(jìn)的LIF神經(jīng)元模型.采用隨時(shí)間演化的膜電位曲線和峰放電頻率曲線,以及隨外電場(chǎng)變化的起始峰放電頻率曲線和穩(wěn)態(tài)峰放電頻率曲線,研究不同強(qiáng)度、頻率外電場(chǎng)作用下改進(jìn)的LIF模型的適應(yīng)性變化.此外,還利用相鄰峰峰間期(ISI)之間的相關(guān)性進(jìn)一步闡明外電場(chǎng)對(duì)神經(jīng)元適應(yīng)性的影響.

      峰放電頻率適應(yīng)性, 外電場(chǎng), Leaky integrate-and-fire模型, ISI, 相關(guān)性

      引言

      峰放電頻率適應(yīng)性 (spike-frequency adaptation,SFA)是指神經(jīng)元在持續(xù)外界刺激下瞬時(shí)峰放電頻率逐漸降低的現(xiàn)象,是神經(jīng)元普遍存在的特性之一,在神經(jīng)信息處理中起到重要作用.目前已在很多物種的神經(jīng)元中發(fā)現(xiàn)了峰放電頻率適應(yīng)性,如小龍蝦的牽引感受器等[1],嚙齒類動(dòng)物運(yùn)動(dòng)神經(jīng)元[2],海馬 CA1 椎體細(xì)胞[3],梨狀皮質(zhì)椎體細(xì)胞[4],貓的視覺皮層神經(jīng)元[5],脊髓運(yùn)動(dòng)神經(jīng)元[6],以及人類大腦皮層[7-11]等.人們對(duì)峰放電頻率適應(yīng)性的功能意義有如下幾種猜測(cè),如弱信號(hào)的前向掩蔽[12],選擇性注意[13],逼近刺激的選擇性響應(yīng)[14]等.

      從生物物理角度看,神經(jīng)元峰放電頻率適應(yīng)性是由 M-type 電流[15]、AHP-type 電流[16]和/或鈉激活鉀電流[17]等多種離子電流作用所致.Integrateand-fire(IF)模型是描述神經(jīng)元峰放電行為的最簡(jiǎn)單的模型[18-20],使得該類神經(jīng)元模型具備適應(yīng)性的一種方法就是由刺激處引入反饋?zhàn)兞?,即適應(yīng)性變量[21-22].2010 年 Benda 等人發(fā)現(xiàn)了 Leaky integrateand-fire(LIF)模型在受到直流刺激時(shí)具有典型的適應(yīng)性[23-24].目前已有研究成功利用具有適應(yīng)性變量的LIF模型復(fù)現(xiàn)皮質(zhì)錐體細(xì)胞的峰放電行為[25-26].

      外電場(chǎng)對(duì)于生物致病以及治病都產(chǎn)生很大影響.一方面,由于高壓電線及用電設(shè)備的廣泛應(yīng)用,目前環(huán)境中電磁輻射強(qiáng)度較上世紀(jì)增強(qiáng)近一百萬倍[27].外電場(chǎng)能夠改變神經(jīng)元的動(dòng)態(tài)行為,并影響神經(jīng)信息的產(chǎn)生及傳導(dǎo),如外電場(chǎng)與細(xì)胞內(nèi)信息傳導(dǎo)通路相互作用,可以改變神經(jīng)元鈣振蕩周期,從而影響神經(jīng)元峰放電頻率,并引起神經(jīng)系統(tǒng)功能失常[28-29].另一方面,電磁刺激作為一種物理治療手段越來越受到人們的關(guān)注,如經(jīng)顱磁刺激(Transcranial Magnetic Stimulation,TMS)和深部腦刺激(Deep brain stimulation,DBS)等.TMS是一種無創(chuàng)式的治療方法,它基于電磁感應(yīng)原理,通過快速變化的磁場(chǎng)產(chǎn)生弱電場(chǎng),引起大腦特定點(diǎn)或者區(qū)域產(chǎn)生響應(yīng)[30].DBS則是一種有創(chuàng)的治療方式,它通過腦外科手術(shù)將導(dǎo)線植入腦部的特定位置,利用“腦起搏器”發(fā)出電脈沖刺激,來調(diào)節(jié)腦部的不正常活動(dòng),目前對(duì)慢性疼痛、帕金森病、震顫和肌張力障礙等難治性運(yùn)動(dòng)和情感性精神障礙等疾病取得顯著的療效[31-32].因此,研究外電場(chǎng)對(duì)神經(jīng)系統(tǒng)的影響是十分有意義的.

      在研究外電場(chǎng)對(duì)神經(jīng)系統(tǒng)的影響時(shí),其強(qiáng)度和頻率是兩個(gè)重要參數(shù).如Gluckman等人研究了不同強(qiáng)度的弱外電場(chǎng)對(duì)海馬CA1和CA3區(qū)神經(jīng)元同

      2012-08-16 收到第 1 稿,2012-09-13 收到修改稿.

      *國(guó)家自然科學(xué)基金資助項(xiàng)目(61104032,61072012,61172009,50907044)和學(xué)校科研啟動(dòng)經(jīng)費(fèi)項(xiàng)目(KYQD11005)

      綜上所述,我們有必要研究外電場(chǎng)與神經(jīng)系統(tǒng)適應(yīng)性之間映射關(guān)系,于是本文利用LIF模型研究外電場(chǎng)對(duì)神經(jīng)元峰放電頻率適應(yīng)性的影響.首先,基于Benda提出的LIF模型描述恒定電流作用下神經(jīng)元的適應(yīng)性;然后引入適應(yīng)性變量,建立外電場(chǎng)作用下改進(jìn)的LIF模型,從膜電位曲線、峰放電頻率曲線、起始峰放電頻率曲線、穩(wěn)態(tài)峰放電頻率曲線,相鄰峰峰間期(ISI)相關(guān)性等多角度闡明,在外電場(chǎng)作用下改進(jìn)的LIF神經(jīng)元模型具有峰放電頻率適應(yīng)性,并給出仿真結(jié)果.

      1 模型和方法

      1.1 LIF 模型

      LIF模型可以描述神經(jīng)元膜電位的動(dòng)力學(xué)行為,其膜電位隨輸入刺激電流的動(dòng)態(tài)響應(yīng)過程可由下式來表示[23]:

      式中,τV是時(shí)間常數(shù),R是輸入阻抗.在刺激電流I(t)作用下,當(dāng)膜電位V超過閾值Vth時(shí),神經(jīng)元會(huì)產(chǎn)生一個(gè)峰放電,同時(shí)V復(fù)位至靜息電位Vr.定義適應(yīng)性電流IA,形式如下:

      式中是最大電導(dǎo),α是門變量,EA是反電勢(shì),穩(wěn)態(tài)變量 α∞(V)是關(guān)于膜電位V的 Sigmoid函數(shù)[22].于是膜電位可以表示成如下形式:

      我們用常數(shù)c近似(V-EA),并引入適應(yīng)性變量A=,帶入式(3),于是具有適應(yīng)性變量的LIF模型如下式所示:

      當(dāng)V超過閾值Vth時(shí),V將復(fù)位至Vr,且適應(yīng)性變量A增加ΔA=.各參數(shù)取值如下:τV=10ms,Vth=10mV,Vr=0mV,R=1MΩ,τA=100ms,ΔA=2nA.本文采用前向歐拉法對(duì)LIF模型進(jìn)行數(shù)值仿真模擬,仿真步長(zhǎng)為Δt=0.005ms.

      定義峰峰時(shí)間間隔(Interspike Interval,ISI)為相鄰兩個(gè)峰放電之間的時(shí)間間隔,峰放電頻率為相應(yīng)ISI的倒數(shù).其中起始峰放電頻率f0為神經(jīng)元受到刺激作用后所產(chǎn)生的首個(gè)ISI的倒數(shù),穩(wěn)態(tài)峰放電頻率f∞為神經(jīng)元峰放電頻率達(dá)到穩(wěn)定狀態(tài)的值.

      圖1給出了LIF模型在恒定電流作用下的動(dòng)態(tài)響應(yīng).當(dāng)膜電位超過閾值10mV時(shí),神經(jīng)元產(chǎn)生一個(gè)峰放電,同時(shí)R(I-A)隨著適應(yīng)性變量A的增加而降低,使得神經(jīng)元膜電位到達(dá)閾值的時(shí)間變慢,于是,峰放電頻率由起始峰放電頻率f0逐漸降低,趨近于穩(wěn)態(tài)值f∞.

      圖1 恒定電流作用下LIF模型的動(dòng)態(tài)響應(yīng)(a)膜電位曲線;(b)峰放電頻率曲線Fig.1 Dynamic responses of LIF model under the direct current.(a)membrane potential curve;(b)spike-frequency curve.

      1.2 LIF模型適應(yīng)性

      若神經(jīng)元不具備適應(yīng)性,則神經(jīng)元輸入輸出之間的映射關(guān)系完全可以由f-I曲線表征;然而由于適應(yīng)性的存在,僅通過f-I曲線無法全面刻畫神經(jīng)元的輸入輸出關(guān)系,我們還需要考察在不同適應(yīng)性變量A的情況下,神經(jīng)元起始放電頻率f0隨刺激I的變化規(guī)律,即起始峰放電頻率曲線f0(I,A0).此外,穩(wěn)態(tài)峰放電頻率曲線f∞(I)用于描述LIF模型在給定輸入情況下的適應(yīng)性穩(wěn)態(tài)響應(yīng).由于f0(I,A0)曲線和f∞(I)曲線可以充分描述神經(jīng)元的適應(yīng)性行為[13][35][36][37],因此本文沒有考慮神經(jīng)元除起始狀態(tài)及穩(wěn)態(tài)之外的其他中間狀態(tài)的f-I曲線.

      如圖2所示,(a)為給定恒定輸入電流I=26nA,當(dāng)A0=0nA時(shí),f0=205Hz;當(dāng)A0=5nA時(shí),f0=155Hz.(b)為f0(I,A0)曲線和f∞(I)曲線.隨著適應(yīng)性參數(shù)初始值A(chǔ)0不斷的增加,f0(I,A0)曲線會(huì)沿著刺激強(qiáng)度增大的方向水平向右偏移,這是由于A0增加會(huì)導(dǎo)致膜電位到達(dá)閾值的時(shí)間增加,那么起始峰放電頻率f0就會(huì)降低.然而A0對(duì)于穩(wěn)態(tài)峰放電頻率f0沒有太大影響,在不同A0的情況下,對(duì)于任意給定的恒定輸入I其f∞都趨于一致,而隨著輸入強(qiáng)度的不斷增加,f∞也隨之增加,并趨于線性.

      圖2 LIF模型恒定電流刺激下峰放電頻率曲線.(a)當(dāng)I=26nA時(shí)的f(t,A0)曲線;(b)起始峰放電頻率曲線f0(I,A0)和穩(wěn)態(tài)峰放電頻率曲線f∞(I).Fig.2 Spike - frequency curves of LIF model under the direct current.(a)f(t,A0)curve when I=26nA;(b)onset spike - frequency curve f0(I,A0)and steady state spike - frequency curve f∞ (I).

      依據(jù)ISI定義,由多個(gè)峰放電組成的膜電位時(shí)間序列可以轉(zhuǎn)換成 ISI序列{Δt1,Δt2,…,ΔtN}.則相應(yīng)ISI序列平均值為

      ISI序列的方差為

      ISI序列中任意相鄰ISI之間的協(xié)方差為

      則ISI序列中任意相鄰ISI之間的相關(guān)系數(shù)為

      式中CC∈[-1,1].對(duì)于泊松過程,甚至任意更新過程,任意相鄰ISI之間不存在相關(guān)性,因此CC=0.而對(duì)于LIF模型,當(dāng)對(duì)其輸入強(qiáng)度足夠大時(shí),隨著強(qiáng)度的不斷增強(qiáng),相鄰ISI相關(guān)性隨之降低,并且A0的改變對(duì)相鄰ISI相關(guān)性影響很小,如圖3所示.

      圖3 LIF模型在恒定電流作用下相鄰ISI相關(guān)性Fig.3 Correlation between successive ISI of LIF model under the direct current

      1.3 外電場(chǎng)作用下改進(jìn)的LIF模型

      為研究外電場(chǎng)對(duì)神經(jīng)元適應(yīng)性的影響,本文在LIF模型上基礎(chǔ)上引入外電場(chǎng)參數(shù)VE,于是有外電場(chǎng)作用下改進(jìn)的LIF模型,如下所示:

      對(duì)于神經(jīng)元?jiǎng)恿W(xué)行為研究,無論是電生理實(shí)驗(yàn)還是數(shù)值仿真,人們普遍采用恒定刺激或者脈沖刺激作為神經(jīng)元外部刺激[38].然而,對(duì)于實(shí)際的神經(jīng)系統(tǒng),誘發(fā)神經(jīng)元放電的并非脈沖形式的電流或電場(chǎng),相比而言,正弦信號(hào)更貼近實(shí)際情況[34][35][39].因此我們定義外電場(chǎng)形式為交流外電場(chǎng)VE=Vssin(2πfint),其中Vs為交流外電場(chǎng)強(qiáng)度,fin為交流外電場(chǎng)頻率;由于我們主要討論外電場(chǎng)對(duì)LIF模型適應(yīng)性的影響,所以令I(lǐng)=0,其余參數(shù)設(shè)定與式(4)相同.

      2 仿真結(jié)果

      2.1 不同強(qiáng)度交流外電場(chǎng)對(duì)改進(jìn)的LIF模型的影響

      為研究不同交流外電場(chǎng)強(qiáng)度對(duì)改進(jìn)LIF模型的影響,首先,令交流外電場(chǎng)頻率為定值fin=40Hz.仿真結(jié)果如圖4所示,當(dāng)交流外電場(chǎng)強(qiáng)度Vs=20mV時(shí),起始峰放電頻率f0=90Hz;當(dāng)Vs=30mV時(shí),f0=150Hz,且隨著時(shí)間的演化,峰放電頻率f逐漸減小并趨于穩(wěn)態(tài).然而Vs不同,f達(dá)到穩(wěn)態(tài)所需要的時(shí)間也有所不同,如Vs=20mV和30mV相比,當(dāng)Vs=20mV時(shí)達(dá)到穩(wěn)態(tài)所需要的時(shí)間相對(duì)較短.此外,當(dāng)Vs足夠大時(shí),即使處于穩(wěn)態(tài),f在一段時(shí)間內(nèi)仍然存在波動(dòng),且Vs越大,波動(dòng)越頻繁,持續(xù)時(shí)間越長(zhǎng),如與Vs=20mV相比,當(dāng)Vs=30mV時(shí)峰放電頻率曲線更為波動(dòng).

      圖4 改進(jìn)的LIF模型在不同強(qiáng)度交流外電場(chǎng)作用下的動(dòng)態(tài)響應(yīng)(a)膜電位曲線;(b)峰放電頻率曲線.(fin=40Hz,A0=0mV)Fig.4 Dynamic responses of modified LIF model under the AC electric field with different strength.(a)membrane potential curves;(b)spike - frequency curve.(fin=40Hz,A0=0mV)

      圖5為改進(jìn)的LIF模型在不同強(qiáng)度交流外電場(chǎng)作用下峰放電頻率曲線.在一定Vs范圍內(nèi),Vs相對(duì)較小時(shí),起始峰放電頻率曲線f0(Vs,A0)近似,且隨著適應(yīng)性變量初值A(chǔ)0的增加,起始峰放電頻率曲線f0(Vs,A0)會(huì)沿著Vs增大的方向水平移動(dòng);而穩(wěn)態(tài)峰放電頻率曲線f∞(Vs)則在該Vs范圍呈近似線性.但是當(dāng)Vs增大到19mV后,f0(Vs,A0)曲線及f∞(Vs)曲線均呈現(xiàn)非線性.

      圖5 改進(jìn)的LIF模型在不同強(qiáng)度交流外電場(chǎng)作用下的峰放電頻率曲線(a)起始峰放電頻率曲線f0(Vs,A0);(b)穩(wěn)態(tài)峰放電頻率曲線.f∞(Vs)(fin=40Hz)Fig.5 Spike- frequency curves of modified LIF model under the AC electric field with different strength.(a)onset spike-frequency curve f0(Vs,A0);(b)steady state spike - frequency curve f∞ (Vs).(fin=40Hz)

      圖6為改進(jìn)的LIF模型在不同強(qiáng)度交流外電場(chǎng)作用下相鄰ISI相關(guān)性曲線.仿真結(jié)果表明,若Vs較小時(shí),隨著Vs的增強(qiáng),相鄰ISI相關(guān)性|CC|升高;當(dāng)Vs增大至19mV時(shí),隨著Vs的增強(qiáng),|CC|降低;當(dāng)Vs增大到一定強(qiáng)度,|CC|趨于飽和.因此,當(dāng)外電場(chǎng)強(qiáng)度Vs過大時(shí),改進(jìn)的LIF模型適應(yīng)性會(huì)變差.這是由于在神經(jīng)元峰放電過程中刺激強(qiáng)度波動(dòng)導(dǎo)致的,外電場(chǎng)強(qiáng)度越強(qiáng),波動(dòng)越劇烈,適應(yīng)性就越差.

      圖6 改進(jìn)的LIF模型在不同強(qiáng)度交流外電場(chǎng)作用下相鄰ISI相關(guān)性Fig.6 Correlation between successive ISI of modified LIF model under the AC electric field with different strength

      2.2 不同頻率交流外電場(chǎng)對(duì)改進(jìn)的LIF模型的影響

      為研究不同交流外電場(chǎng)頻率對(duì)改進(jìn)LIF模型的影響,首先,令交流外電場(chǎng)強(qiáng)度為定值Vs=20mV.仿真結(jié)果如圖7所示,當(dāng)交流外電場(chǎng)頻率fin=8Hz時(shí),起始峰放電頻率f0=38Hz;當(dāng)fin=24Hz時(shí),f0=100Hz.隨著時(shí)間的演化,峰放電頻率f逐漸衰減至穩(wěn)態(tài)峰放電頻率f∞.此外當(dāng)fin較低時(shí),峰放電頻率曲線f(t)會(huì)存在一定程度的波動(dòng),fin越低,f(t)曲線波動(dòng)越頻繁,持續(xù)時(shí)間越長(zhǎng).

      圖8為改進(jìn)的LIF模型在不同強(qiáng)度交流外電場(chǎng)作用下峰放電頻率曲線.隨著fin的增加,f0隨之增加.當(dāng)A0增加時(shí),起始峰放電頻率曲線f0(fin,A0)會(huì)沿著fin增大的方向水平移動(dòng),并且在一定fin取值范圍內(nèi),不同A0時(shí),各f0(fin,A0)曲線斜率近似;當(dāng)fin足夠大時(shí),穩(wěn)態(tài)峰放電頻率曲線f∞(fin)呈線性變化.

      圖9為改進(jìn)的LIF模型在不同頻率交流外電場(chǎng)作用下相鄰ISI相關(guān)性曲線.隨著fin的不斷增大,相鄰ISI相關(guān)性|CC|首先升高,然后逐漸降低,當(dāng)fin>20Hz時(shí),|CC|升高.因此,交流外電場(chǎng)頻率越高,改進(jìn)的 LIF 模型適應(yīng)性越好.Benda[23]等人提出在刺激信息傳遞過程中,刺激的平均信息被移除,而快速波動(dòng)信息被傳遞.這是外電場(chǎng)頻率越高,適應(yīng)性越好的主要原因之一.

      圖7 改進(jìn)的LIF模型在不同頻率交流外電場(chǎng)作用下的動(dòng)態(tài)響應(yīng)(a)膜電位曲線;(b)峰放電頻率曲線.(Vs=20mV,A0=0mV)Fig.7 Dynamic responses of modified LIF model under the AC electric field with different frequency.(a)membrane potential curves;(b)spike-frequency curve.(Vs=20mV,A0=0mV)

      圖8 改進(jìn)的LIF模型在不同頻率交流外電場(chǎng)作用下的峰放電頻率曲線(a)起始峰放電頻率曲線f0(fin,A0);(b)穩(wěn)態(tài)峰放電頻率曲線.f∞(fin)(Vs=20mV)Fig.8 Spike- frequency curves of modified LIF model under the AC electric field with different frequency(a)onset spike-frequency curve f0(fin,A0);(b)steady state spike-frequency curve .f∞(fin)(Vs=20mV)

      圖9 改進(jìn)的LIF模型在不同頻率交流外電場(chǎng)作用下相鄰ISI相關(guān)性Fig.9 Correlation between successive ISI of modified LIF model under the AC electric field with different frequency

      3 結(jié)論

      本文通過數(shù)值仿真,基于膜電位、峰放電頻率、初始峰放電頻率、穩(wěn)態(tài)峰放電頻率以及相鄰ISI相關(guān)性等研究發(fā)現(xiàn),LIF模型在交流外電場(chǎng)作用下呈現(xiàn)峰放電頻率適應(yīng)性,并且交流外電場(chǎng)的強(qiáng)度和頻率均對(duì)適應(yīng)性產(chǎn)生影響.外電場(chǎng)強(qiáng)度越小,頻率越大,適應(yīng)性越好.本文的研究結(jié)果為探索外電場(chǎng)對(duì)生物神經(jīng)系統(tǒng)的影響以及一些神經(jīng)系統(tǒng)疾病的物理治療提供思路.

      1 Michaelis B,Chaplain R A.Ion conductance changes associated with spike adaptation in the rapidly adapting stretch receptor of the crayfish.Plugers Arch,1975,354(4):367~377

      2 Sawczuk A,Powers R K,Binder M.Spike frequency adaptation studied in hypoglossal motoneurons of the rat.J Neurophysiol,1995,73(5):1799~1810

      3 Lancester B,Nicoll R A.Properties of two calcium-activated hyperpolarizations in rat hippocampal neurons.J Physiol,1987,389:187 ~203

      4 Barkai E,Hasselmo M.Modulation of the input/output function of rat piriform cortex pyramidal cells.J Neurophysiol,1994,72(2):644~658

      5 Ahmed B,Anderson J,Douglas R,et al.Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex.Cereb Cortex,1998,8(5):462~476

      6 Brownstone R M,Krawitz S,Jordan L M.Reversal of the late phase of spike frequency adaptation in cat spinal motoneurons during fictive locomotion.Journal of Neurophysiology,2011,105(3):1045~1050

      7 Avoli M,Olivier A.Electrophysiological properties and synaptic responses in the deep layers of the human epileptogenic neocortex in vitro.J Neurophysiol,1989,61(3):589~606

      8 Lorenzon N M,F(xiàn)oehring R C.Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons.J Neurophysiol,1992,67(2):350 ~363

      9 Vandecasteele M,Deniau J M,Venance L.Spike frequency adaptation is developmentally regulated in substantia nigra pars compacta dopaminergic neurons.Neuroscience,2011,192:1~10

      10 Fernandez F R,Broicher T,Truong A,et al.Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state.The Journal of Neuroscience,2011,31(10):3880~3893

      11 Cortes J M,Marinazzo D,Series P,et al.The effect of neural adaptation on population coding accuracy.Journal of Computational Neuroscience,2012,32(3):387~402

      12 Sobel E C,Tank D W.In vivo Ca2+dynamics in a cricket auditory neuron:an example of chemical computation.Science,1994,263(5148):823~826

      13 Wang X J.Calcium coding and adaptive temporal computation in cortical pyramidal neurons.J Neurophysiol,1998,79(3):1549~1566

      14 Peron S,Gabbiani F.Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron.Nat Neurosci,2009,12(3):318~326

      15 Brown D A,Adams P R.Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron.Nature,1980,283(5748):673~676

      16 Sah P.Ca2+ -activated K+currents in neurones:types,physiological roles and modulation.Trends Neurosci,1996,19(4):150~154

      17 Wang X J ,Liu Y,Sanchez-Vives M V,et al.Adaptation and temporal decorrelation by single neurons in the primary visual cortex.J Neurophysiol,2003,89(6):3279 ~3293 18 Lapicque L.Quantitative investigations of electrical nerve excitation treated as polarization.Biol Cybern,2007,97(5-6):341 ~349

      19 Stein R B.A theoretical analysis of neuronal variability.Biophys J,1965,5(2):173~194

      20 焦賢發(fā),王俊琦,王如彬.突觸噪聲作用下的IF閾值神經(jīng)元模型的隨機(jī)共振.動(dòng)力學(xué)與控制學(xué)報(bào),2010,8(3):273~276(Jiao X F,Wang J Q,Wang R B.Stochastic resonance of an integrate and fire neuron model with threshold driven by synaptic noise.Journal of Dynamics and Control,2010,8(3):273 ~276(in Chiniese))

      21 Treves A.Mean-field analysis of neuronal spike dynamics.Network:Comput Neural Syst,1993,4(3):259 ~284

      22 Gigante G,Giudice P D,Mattia M.Frequency-dependent response properties of adapting spiking neurons.Math Biosci,2007,207(2):336 ~351

      23 Benda J,Maler L,Longtin A.Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds.J Neurophysiol,2010,104(5):2806~2820

      24 Benda J,Hennig R M.Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron.J Comput Neurosci,2008,24(2):113 ~136

      25 Rauch A,Camera G L,Lüscher H R.Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivolike input currents.J Neurophysiol,2003,90(3):1598 ~1612

      26 Lapicque P E,Richmond B J,Nelson P G.Intrinsic dynamics in neuronal networks.II.experiment.J Neurophysiol,2000,83(2):808~827

      27 Huang K M ,Li Y.The dynamic principle of interaction between weak electromagnetic fields and living system-Interference of electromagnetic waves in dynamic metabolism.Chinese J Med Phys,1997,14(4):205~207

      28 Eichwald C,Kaiser F.Model for external influences on cellular signal transduction pathways including cytosolic calcium oscillations.Bioelectromagnetics,1995,16(2):75~85

      29 Huang C M,Xu B Q,Lin J R.Effects of extremely low frequency magnetic fields on hormone-induced cytosolic calcium oscillations.Acta Biophys Sin,1999,15:543 ~546

      30 Durand D M,Bikson M.Suppression and control of Epileptiform activity by electrical stimulation:A review.Proc of the IEEE,2001,89(7):1065~1082

      31 Gluckman B J,Neel E J,Netoff T I,et al.Electric field suppression of epileptiform activity in hippocampal slices.J Neurophysiol,1996,76(6):4202~4205

      32 Kringebach M L,Jenkisnson N,Owen S L F,et al.Translational principles of deep brain stimulation.Nature Reviews Neuroscience,2007,8(8):623~635

      33 Ghai R,Durand D.Effects of applied electric fields on low calcium epileptiform activity in the CA1 region of rat hippocampal slices.J Neurophysiol,2000,84(1):274 ~280

      34 Ebert U,Ziemann U.Altered seizure susceptibility after high-frequency transcranial magnetic stimulation in rats.Neurosci Lett,1999,273(3):155 ~158

      35 Benda J,Herz A V M.A universal model for spike-frequency adaptation.Neural Comput,2003,15(11):2523~2564

      36 Brette R,Gerstner W.Adaptive exponential integrateand-fire model as an effective description of neuronal activity.J Neurophysiol,2005,94(5):3637 ~3642

      37 Crook M,Ermentrout G B,Bower J M.Spike frequency adaptation affects the synchronization properties of networks of cortical oscillators.Neural Computation,1998,10(4):837~854

      38 Ermentrout B,Pascal M,Gutkin B.The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators.Neural Comput,2001,13(6):1285~1310

      39 Ermentrout B.Linearization of F-I curves by adaptation.Neural Comput,1998,10(7):1721~1729

      *The project supported by the National Natural Science Foundation of China(61104032,61072012,61172009,50907044)and the Research Program of Tianjin University of Technology and Education(KYQD11005)

      ? Corresponding author E-mail:jiangwang@tju.edu.cn

      SPIKE-FREQUENCY ADAPTATION IN THE MODIFIED LEAKY INTEGRATE-AND-FIRE MODEL UNDER EXTERNAL ELECTRIC FIELD*

      Han Chunxiao1Wang Jiang2?Chang Li2Che Yanqiu1
      (1.School of Automation and Electrical Engineering,Tianjin University of Technology and Education,Tianjin300222,China)(2.School of Electrical and Automation Engineering,Tianjin University,Tianjin300072,China)

      Spike-frequency adaptation is a prominent property of neuronal dynamics in neural information processing.The external electric field has effect on the generation and conduction of neural information,and the dynamic behaviors of the neural system.Based on the leaky integrate-and-fire(LIF)model,a modified LIF model under the external electric field is established.From the membrane potential curve and the spike-frequency curve along with the time evolution process,the onset spike-frequency curve and the steady state spike-frequency curve along with the external electric field changes,and the correlation between successive inter-spike intervals(ISIs),the effect of external electrical field with different strength or frequency on the adaptability of the proposed model is discussed.

      spike-frequency adaptation, external electric field, Leaky integrate-and-fire model, ISI,correlation

      16 August 2012,

      13 September 2012.

      10.6052/1672-6553-2013-008

      E-mail:jiangwang@tju.edu.cn步活動(dòng)的影響,發(fā)現(xiàn)弱外電場(chǎng)能夠完全抑制癲癇發(fā)作間簇放電[31];Ghai等人研究外生直流電場(chǎng)對(duì)自發(fā)低Ca2+簇放電的影響,增強(qiáng)刺激強(qiáng)度會(huì)對(duì)簇放電產(chǎn)生抑制作用[33];Ebert等人通過TMS研究低頻刺激對(duì)大鼠杏仁核點(diǎn)燃發(fā)作的敏感性,發(fā)現(xiàn)經(jīng)過低頻TMS刺激,會(huì)在停止刺激后很長(zhǎng)一段時(shí)間抑制癲癇[34].

      猜你喜歡
      膜電位穩(wěn)態(tài)適應(yīng)性
      谷子引種適應(yīng)性鑒定與篩選初報(bào)
      可變速抽水蓄能機(jī)組穩(wěn)態(tài)運(yùn)行特性研究
      碳化硅復(fù)合包殼穩(wěn)態(tài)應(yīng)力與失效概率分析
      有關(guān)動(dòng)作電位的“4坐標(biāo)2比較”
      參芪復(fù)方對(duì)GK大鼠骨骼肌線粒體膜電位及相關(guān)促凋亡蛋白的影響研究
      電廠熱力系統(tǒng)穩(wěn)態(tài)仿真軟件開發(fā)
      煤氣與熱力(2021年4期)2021-06-09 06:16:54
      元中期歷史劇對(duì)社會(huì)穩(wěn)態(tài)的皈依與維護(hù)
      中華戲曲(2020年1期)2020-02-12 02:28:18
      健全現(xiàn)代金融體系的適應(yīng)性之“點(diǎn)論”
      大型飛機(jī)A380-800在既有跑道起降的適應(yīng)性研究
      固有免疫和適應(yīng)性免疫與慢性丙肝的研究進(jìn)展
      武威市| 敦化市| 沈丘县| 蕉岭县| 射洪县| 潜山县| 鄂托克旗| 台中县| 博乐市| 泗阳县| 北宁市| 马关县| 大田县| 水城县| 万山特区| 泊头市| 白银市| 石景山区| 朝阳区| 阿图什市| 华安县| 阳原县| 济南市| 阿城市| 若尔盖县| 东乌珠穆沁旗| 乌兰浩特市| 淮北市| 耒阳市| 彭州市| 景谷| 吐鲁番市| 湛江市| 鸡东县| 石城县| 镇雄县| 名山县| 工布江达县| 辉县市| 黎川县| 百色市|