• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金/氧化亞銅異質(zhì)球的制備及其可見光催化性能

    2013-09-17 06:59:18施湛斌張東鳳
    物理化學(xué)學(xué)報(bào) 2013年8期
    關(guān)鍵詞:氧化亞銅北京航空航天大學(xué)海濱

    商 旸 陳 陽 施湛斌 張東鳳 郭 林

    (北京航空航天大學(xué)化學(xué)與環(huán)境學(xué)院,北京100191)

    1 Introduction

    The requirement of sustainable energy sources and reduction of environmental pollution has driven considerable research efforts on water splitting and photodegradation of organic pollutants by using the abundant solar energy.1,2Many photoexcited semiconductor metal oxides,such as Cu2O,Fe2O3,TiO2,ZnO,and WO3,were reported as the efficient photocatalyst in aqueous solutions.3-11Among them,Cu2O with bandgap energy of 2.1 eV is expected as one of the promising materials in visible-light photocatalytic degradation,12which stimulated the research effort on the controlled growth of Cu2O and the investigation of morphology-dependent photocatalytic activities.13-17However,the lower photocatalytic efficiency owing to the fast recombination of the photogenerated electron and hole(e-/h+)pairs was still the main barrier limiting the applications of Cu2O in photocatalysis.5

    Previous reports indicated that the hybridation between noble metal with semiconductor could reduce the recombination of the photogenerated e-/h+pairs,and thus enhance the photocatalytic efficiency.18-24For one thing,the loaded noble metal nanoparticles(NPs)can serve as electron sink to promote the e-/h+pairs separation24,25andthus enhance the quantum yield.26For another thing,the surface plasmon resonance(SPR)effect,defined as the collective coherent oscillation of the free charges on noble metal NPs irradiated by visible-light,can enhance the local electric field in the neighborhood of the noble metal NPs,and accelerate the formation of e-/h+pairs in the near-surface region of the semiconductor.27-29In addition,metal oxide photocatalyst with high support surface areas and the uniform distributions of the loaded noble metal NPs are necessary to get high photocatalytic efficiency.30Unlike TiO2,which has been extensively studied for loading with noble metal NPs,24,30,31Cu2O support tends to react with the noble metal precursor due to the low standard reduction potential.3And larger noble metal NPs tend to grow on the surface of Cu2O,which may hinder the adsorption and degradation of organic pollutant.5

    Our previous work reported the preparation of Cu2O mesoporous spheres(MPS),which exhibit excellent adsorption performance.32We believed that the higher specific surface area and short-range-ordered structure of Cu2O MPS are beneficial for the sufficient contact between the organic dye molecules and Cu2O.To further explore their photocatalytic activities,herein,we report the preparation of Au/Cu2O heterogeneous spheres(HGS)by in-situ growth of Au NPs on the surface of Cu2O MPS through a wet-chemical reduction process while keep the mesoporous structure intact.Furthermore,we investigate the visible light photocatalytic activities of Au/Cu2O HGS for the degradation of methylene blue(MB).

    2 Experimental

    2.1 Materials

    All the reagents were used without further purification.Copper chloride(CuCl2·2H2O,AR,≥99.0%),absolute ethanol(AR,≥99.7%),and ammonia(NH3·H2O,25%-28%,mass fraction)were purchased from Beijing Chemical Works.Triblock copolymer Pluronic P123(EO20PO70EO20,MW 5800)was purchased from Sigma-Aldrich,USA.Ascorbic acid(AR,≥99.7%)was purchased from Xilong Chemical Industry Incorporated Co.Ltd.Chloroauric acid(HAuCl4·4H2O,AR,≥47.8%)was purchased from Shenyang Jinke reagent factory.Sodium borohydride(NaBH4,AR,≥98.0%)and L-cysteine(AR,≥99.5%)were purchased fromAladdin reagent.

    2.2 Synthesis

    2.2.1 Synthesis of Cu2O mesoporous spheres

    The Cu2O MPS were fabricated according to our previous works with minor modification.32Typically,0.612 g P123 was firstly dissolved in the mixture of 28.0 mL deionized water and 2.0 mL ethanol at 18°C under constant stirring.And given volume of NH3·H2O(14 mol·L-1)was added into the CuCl2aqueous solution(0.20 mol·L-1)to make the molar ratio of NH3to Cu2+kept as 10:1.The dark blue color of the solution indicated the formation of the Cu(NH3)2+4.Then,2.25 mL Cu(NH3)2+4solution was poured into the solution of P123 under constant stirring.After 30 min,5.0 mL ascorbic acid(AA,0.60 mol·L-1)was added dropwise into the above mixture.All the procedures were kept in water bath at 18°C(calibrated by Lauda Ecoline staredition RE 106).The reaction mixture underwent a series of color change from deep blue,light blue,limpid,white turbid,and finally to bright yellow turbid.The solution was kept stirring for another 10 min,and the resulting bright yellow precipitate was collected by centrifugation,washed with ethanol for several times to remove the P123,and then dried under vacuum at 60°C for 4 h.

    2.2.2 Synthesis of Au/Cu2O heterogeneous spheres

    In a typical synthesis,0.015 g Cu2O MPS was dispersed in 15.0 mL ethanol followed by the addition of 0.20 mL of L-cysteine aqueous solution(0.010 mol·L-1).After subjected to sonication for 30 min,1.0 mL HAuCl4aqueous solution(5.0 mmol·L-1)was added into the Cu2O dispersing.After the solution was vigorously stirred for another 30 min,0.25 mL NaBH4aqueous solution(0.030 mol·L-1)was quickly added into the solution.The mixture was aged for 0.5 h.All the procedures were kept in water bath at 10°C(calibrated by Lauda Ecoline staredition RE 106).The resulting precipitate was collected by centrifugation and decanting,followed by washing with distilled water for 3 times and absolute ethanol twice,respectively.Then,the products were dried under vacuum at 60°C for 4 h for the final characterization.

    2.3 Characterization

    The structure of the products was characterized by the powder X-ray diffraction(XRD)using a Rigaku Rotaflex Dmax 2200(Japan)diffractometer with Cu Kαradiation(λ=0.15406 nm).Scanning electron microscopy(SEM)images of the samples were obtained using Hitachi S-4800(Japan)with an accelerating voltage of 10 kV.Transmission electron microscopy(TEM)and High-resolution transmission electron microscopy(HRTEM)images were recorded by JEOL JEM-2100F(Japan)with an accelerating voltage of 200 kV.Elemental composition data were collected by EDAX equipped within the JEOL JEM-2100F.Specific surface areas were measured by using at least 0.1 g sample at-196°C through Brunauer-Emmett-Teller(BET)nitrogen adsorption-desorption(NOVA 2200e,Quanthachrome,USA).Before the measurements,all samples were degassed in vacuum at 150°C in the port of the adsorption analyzer for 4 h.The Brunauer-Emmett-Teller method was utilized to calculate the specific surface area(SBET).The pore size distribution(PSD)was derived from the adsorption branch using the Barrett-Joyner-Halenda(BJH)theory.Absorption spectra were recorded on a UV-3600 UV-Vis-NIR spectrophotometer made in Shimadzu,Japan.X-ray photoelectron spectroscopy(XPS)measurements were carried out on an Axis Ultra spectrometer(UK)under ultrahigh vacuum conditions with a standard Al Kαexcitation source(1486.6 eV).The charging effect was corrected by adjusting the binding energy of the main C 1s peak to 284.6 eV.

    2.4 Photocatalytic activity measurement

    The photocatalytic activities of the Cu2O and Au/Cu2O were evaluated by the degradation of methylene blue(50 mL,5 mg·L-1)containing 0.015 g as-obtained sample placed in a 200 mL cylindrical quartz vessel under 300 W Xe lamp with UV cutoff filter(providing visible light with λ larger than 400 nm).Before the light was turned on,the solution was stirred in the dark for 30 min to ensure adsorption-desorption equilibrium between the Cu2O and dyes.Under constant stirring in the dark,about 3 mL of the mixture solution was taken out at different intervals.After centrifugation,the UV-Vis spectrum of the supernatant was recorded to monitor the adsorption behavior.

    3 Results and discussion

    3.1 Characterization of Au/Cu2O HGS

    The phase and purity of the samples were verified by X-ray diffraction(XRD)characterizations.Fig.1a illustrated the typical XRD pattern of the as-prepared pure Cu2O MPS.All the diffraction peaks could be well indexed to cuprite Cu2O(JCPDS No.05-0667).No peaks from impurities such as CuO and Cu can be identified.Fig.1b showed a typical XRD pattern of the as-prepared Au/Cu2O HGS.Besides the four diffraction peaks originated from cuprite Cu2O,there appears a peak at 2θ=38.2°,which can be indexed to(111)crystal plane of cube phase Au(JCPDS No.04-0784).The weak diffraction peak of Au indicated the low content ofAu in the sample.

    Fig.1 XRD patterns of(a)pure Cu2O MPS and(b)Au/Cu2O HGS

    Fig.2 presented typical scanning electron microscopy and transmission electron microscopy of the pure Cu2O MPS and Au/Cu2O HGS.The size of the pure Cu2O MPS was 150 to 350 nm(Fig.2a),and the magnified SEM image of a representative spheres illustrated its mesoporous structure feature with the pore diameter of~8 nm(inset of Fig.2a).Fig.2b was the typical SEM image of Au/Cu2O HGS,which demonstrated that no obvious size change of the spheres was observed after Au loading except for the observation of some small attachments.TEM observations as shown in Fig.2d revealed that the spheres kept the mesoporous structure and small particles of~4 nm could be identified on the surface of the mesoporous structures.The small particles on the surface tended to aggregate,corresponding to the attachment in the SEM image.The energy dispersive X-ray(EDX analysis as shown in Fig.2c)gave signals of Au and Cu,which confirmed that the small particles observed in TEM were Au NPs.To learn more structure information,high-resolution transmission electron microscopy was employed.The typical TEM images of Au/Cu2O HGS were shown in Figs.2d and 2e.From the HRTEM image(Fig.2f)recorded from the edge of the sphere(as indicated by the framed area in Fig.2e),lattice fringes with interplanar spacing of 0.246 and 0.235 nm can be identified.The former can be ascribed to the(111)crystal plane of the cubic Cu2O,while the latter can be ascribed to the(111)crystal plane of the cubic Au.The result revealed that the Cu2O mesoporous structure was good supports for the dispersedness of the Au NPs to construct novel catalytically nanoreactors.

    Contrast experiment was carried out to optimize the ratio of Au/Cu2O by changing the amount of the added HAuCl-4solution.According to the experiment,the added HAuCl4/Cu2O ratio is 5%,and the EDX analysis illustrated that the ratio of the loaded Au NPs on Cu2O MPS was 2.4%.If increased the HAuCl4aqueous solution to 1.5 mL,the EDX analysis(Fig.S1(Supporting Information))showed that the ratio of the loaded Au NPs on Cu2O MPS was increased to 2.5%.It means that the amount of Au loaded on Cu2O does not obviously increase with the amount of HAuCl4.To optimize use ratio of the expensive HAuCl4,1.0 mL HAuCl4was added to react with Cu2O MPS.

    Fig.2 SEM images of(a)pure Cu2O MPS and(b)Au/Cu2O HGS;(c)EDX spectrum of theAu/Cu2O HGS;(d)TEM image ofAu/Cu2O HGS;(e)magnified TEM image recorded on the framed area in(d);(f)HRTEM image recorded on the framed area in(e)

    The Brunauer-Emmett-Teller N2adsorption-desorption isotherms of the Cu2O and Au/Cu2O HGS(Fig.3)exhibited type IV hysteresis loops at relative pressures of p/p0=0.45-0.98,providing another evidence for the intact mesoporous structure.The measured surface area of Au/Cu2O HGS is 45.22 m2·g-1,similar with that of the pure Cu2O MPS(48.04 m2·g-1).There are obvious strong and narrow peaks at about 7.4 nm calculated by Barrett-Joyner-Halenda(BJH)analysis using the adsorption branch of the isotherm,proving the narrow pore size distributions and the unchanged Cu2O mesoporous structures after loadedAu NPs.

    Fig.3 Nitrogen adsorption-desorption isotherms and the corresponding BJH pore size distribution curve(inset)of the Cu2O MPS andAu/Cu2O HGS

    Fig.4 showed the UV-Vis absorption spectra of pure Cu2O MPS and Au/Cu2O HGS.The absorption spectrum of Cu2O MPS displayed an adsorption peak centered at about 450 nm(Fig.4b).By contrast,the Au/Cu2O HGS exhibited increased light absorption intensity with a much broader absorption peak,which centred at about 510 nm(Fig.4c).As a noble metal,Au NPs often exhibit strong SPR due to the collective oscillation of conduction electrons when exposed to an external electromagnetic field.33It is well documented that the transverse SPR(TSPR)absorption band of Au NPs with 3-5 nm in solution is about 520 nm(Fig.4a).5,34Due to the low amount of Au loaded on the Cu2O MPS,the plasmon resonance of Au NPs is weaker than the absorption of Cu2O,and the hardly observed adsorption peak of Au SPR might be overlapped with the absorption peak of Cu2O and lead a broaden spectrum feature of Au/Cu2O HGS.

    Fig.4 UV-Vis absorption spectra of(a)Au NPs with~4 nm,(b)Cu2O MPS,and(c)Au/Cu2O HGS

    Fig.5 XPS results of theAu/Cu2O HGS

    The element analysis of the Au/Cu2O HGS examined by XPS was shown in Fig.5.The XPS spectra gave strong signals at around 932.1,952.0,83.9,and 87.6 eV,the former two correspond to the Cu 2p3/2and Cu 2p1/2of Cu+,35while the latter two can be assigned to metallic Au0.36Although the signals related to Cu2+states were also observed(satellite peaks at 934.7,943.8,and 954.6 eV),they are very weak.According to the previous reports,it may due to the adsorption of ambient CO2and/or hydration during the sample handling(e.g.,surface CuCO3and/or Cu(OH)2),which is always not detectable by XRD due to the small amount and the poor crystalline.33The predominant pure-metallic Au0component observed herein excludes the presence of any Au-Cu alloys(e.g.,Cu3Au).33Thus,the XPS study also reconfirms the formation of binary nanocomposites of theAu NPs and Cu2O.

    3.2 Formation mechanism

    Due to the quite different standard reduction potential=+0.15 V),Cu2O inclined to be oxidized by HAuCl4.To keep the Cu2O mesoporous structure intact with Au NPs loading,the key factor is to ensure the redox action betweenions and Cu2O not to occur before the introduction of NaBH4.Therefore,the L-cysteine molecules with bi-functional groups(-NH2and -COOH)act as a linker for in-situ growth of Au NPs on Cu2O MPS.The strong coordination ability between-COOH group and Cu atoms in Cu2O MPS makes the L-cysteine bind to the Cu2O.WhenAuCl-4is introduced,the bonding between Au3+and-NH2group promote the adsorption ofonto the surface of the pores of the Cu2O MPS,which ensured the in-situ reduction of AuCl-4and the formation of theAu/Cu2O heterogeneous structures.

    When distilled water was used as the reaction solvent,the solution color simultaneously transformed into dark green just after HAuCl4solution was added.This rapid process without using the reducing agent NaBH4could be expressed by Eq.(1).

    From the corresponding SEM image as shown in Fig.6a,some sheet-like structures were obvious in the products,which is the characteristic structure feature of CuO.37The EDX analysis(Fig.S2c)confirms that the sheet-like structures are composed of Cu and O,and the Cu/O molar ratio of the product is 51/49 that can be ascribed to CuO.From the HRTEM image(Fig.S2b)recorded from the edge of the structures(as indicated by the framed area in Fig.S2a),lattice fringes with interplanar spacing of 0.231 nm can be ascribed to the(111)crystal plane of the CuO.The CuO sheet-like structures may be the by-products when the Eq.(1)was happened that Cu2O MPS was oxidized into CuO by oxygen in the air.Furthermore,some larger Au NPs can be found independent with the Cu2O MPS.The larger Au NPs may result from the fast reduction of Au seeds and the subsequent quick seeded growth process.38It is well documented that the additional ethanol in deionized water can slow down the formation rate of inorganic nanocrystals.39When the solvent changed into the mixture of 10.0 mL distilled water and 5.0 mL ethanol,it can be seen that the sheet structures are decreased(Fig.6b).This result illustrates that the degree of oxidation for Cu2O is declined by the addition of ethanol.Furthermore,some of hollow spheres may cause by the corrosion of the production of HCl.When increasing the amount of ethanol to 10.0 mL,the sheet structures significantly reduced.Therefore,the use of ethanol retarded the redox be-tween AuCl-4and Cu2O and facilitated the absorption of AuCl-4onto the surface of the pores of the Cu2O MPS.After the strong reducing agent NaBH4was added,a rapid redox reaction between HAuCl4and NaBH4could happen as shown in Eq.(2).9H2O+3NaBH4+8HAuCl4=8Au+3NaCl+29HCl+8H3BO3(2)The fast reduction is beneficial for the fast nucleation of Au,which produces small sizedAu NPs.

    Fig.6 SEM images of theAu/Cu2O HGS obtained with different solution of(a)15.0 mLdeionized water,(b)10.0 mLdeionized water with 5.0 mLethanol,and(c)5.0 mLdeionized water with 10.0 mLethanol

    3.3 Photocatalytic degradation of MB

    To avoid the adsorption of the negatively charged dyes such as methyl orange,32the photocatalytic activities of the as-prepared Cu2O HGS were investigated on the decomposition of positively charged methylene blue(MB)under visible-light irradiation.Fig.7A summarized the activities of the photocatalyst toward MB degradation through monitoring the adsorption intensity at 664 nm versus time.Before visible-light irradiation,the mixed solution containing the catalyst and MB was stirred in the dark for 30 min to ensure that MB was adsorbed to saturation on the surface of catalysts.In the blank test(without catalyst),Ct/C0(relative concentration)of MB was degraded by only 4%after visible-light irradiation for 120 min(curve a in Fig.7A).However,the degradation rate was significantly improved in the presence of the Cu2O MPS with a slight adsorption capacity in the range of 0.04-0.05 of Ct/C0.Under the same conditions,Au/Cu2O HGS illustrated a higher photocatalytic activity(curve c in Fig.7A)than Cu2O MPS.MB degraded to 62%by the Cu2O MPS(curve b in Fig.7A)after 120 min;by contrast,Au/Cu2O HGS decomposed the MB to 85%after 120 min.Therefore,the photocatalytic activity was enhanced afterAu NPs loaded on the Cu2O MPS.

    Fig.7 (A)Curves of the photocatalytic activities on the decomposition of MB concentration and(B)apparent reaction rate constant versus visible irradiation time in the presence of different Cu2O catalysts

    The photodegradation of MB could be described as a firstorder reaction by using a simplified Langmuir-Hinshelwood model,40-42when C0is very small:ln(Ct/C0)=-kt,where k is the apparent first-order reaction rate constant.Fig.7B shows the linear relationship represented by the ln(Ct/C0)versus reaction time t for different catalysts employed in this work.As all these plots match the first-order reaction kinetics very well,the apparent reaction rate constant(k)can be calculated from the rate equation ln(Ct/C0)=-kt(Fig.7B).The reaction rate constants for the photodegradation of MB were 4×10-4,8.2×10-3,and 1.43×10-2min-1for the blank experiment,in the presence of Cu2O and Au/Cu2O,respectively.The kinetic reaction constants k of MB photodegradation in the presence of Au/Cu2O were 1.74 times that of the reaction in the presence of pure Cu2O MPS.

    The enhanced photocatalytic activities are attributed to the loaded Au NPs on Cu2O,which may act as electron sink to slow down the recombination of the photogenerated e-/h+pairs in Cu2O so as to improve the separation on its surfaces.The Fermi level of Au is-5.1 eV,43which is lower than that of Cu2O.As the Au/Cu2O heterojunction formed,an interfacial charge equilibrium will be established through electrons transfer from Au to Cu2O(Scheme 1a).When the as-obtained Au/Cu2O is excited by visible light,electrons in the conduction band(VB)are excited to the valence band(CB);meanwhile,holes are simultaneously generated in the VB.Since the bottom of the CB of Cu2O is higher than the new equilibrium Fermi level of Au/Cu2O,the photo-generated electrons will transfer from the CB of Cu2O to the Au NPs until new interfacial charge equilibrium is reached(Scheme 1b).Due to the Schottky barrier formed at the metal-semiconductor interface,Au NPs will act as electron sink that enhances the separation of photogenerated e-/h+pairs,and prolong their lifetime.The photogenerated holes in the VB can be trapped by OH-,resulting in generation of hydroxyl radical(·OH).Furthermore,the exposed{111}surface of Cu2O MPS possess active“Cu”atoms which tend to adsorb O2that will capture photogenerated electrons,and then lead to the formation of superoxide anion radical(·O-2).Finally,the·O-2radicals are all reduced to·OH radicals.Due to the strong oxidization of·OH free radicals(the reduction potential of·OH is about 2.8 V),those radicals attack organic dye and cause dye molecules photodegradation under the irradiation of visible light.

    Furthermore,the SPR of Au NPs anchored on Cu2O MPS may also enhance the visible-light photocatalytic efficiency of the Au/Cu2O HGS.It has been demonstrated that SPR-induced local electric field enhancement in the neighborhood of metal NPs could accelerate the generation of e-/h+pairs in the semiconductor.23,44Under visible-light illumination,electric fields are spatially inhomogeneous and intensive in the vicinity of Au NPs,24which would induce rapid formation of e-/h+pairs on the Cu2O surface region near the Au NPs.Therefore,more photoelectrons are generated and could produce more·OH radicals which attack organic dye and cause dye molecules photodegradation under the irradiation of visible-light.

    Scheme 1 Schematic illustration of(a)energy level diagram ofAu/Cu2O interface before visible-light irradiation and(b)charge separation process and photocatalytic mechanism of theAu/Cu2O GHS under visible-light irradiation

    4 Conclusions

    In summary,Au/Cu2O GHS have been successfully prepared through in-situ growth of Au NPs on the surfaces of Cu2O MPS by using a facile wet-chemical reduction.The Au/Cu2O exhibits higher visible-light photocatalytic activities than pure Cu2O counterpart for the degradation of MB.Au NPs are believed to work in two ways to improve the photocatalytic activities.On the one hand,Au NPs served as an electron sink to allow the quick separation of photogenerated electrons and holes and prolong their lifetime to have sufficient time to participate the overall photocatalytic reactions;On the other hand,the SPR-induced local electric field enhancement on Au NPs may increase the generation of electrons and holes of Cu2O under visible-light irradiation,and thus improve the photocatalytic efficiency of the Au/Cu2O HGS.We envisage that this strategy of the heterostructure synthesis involving loaded noble metal NPs on semiconductor surface may have important impact on the future development of highly efficient visible light photocatalyst for organic pollutant degradation.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Fujishima,A.;Honda,K.Nature 1972,238,37.doi:10.1038/238037a0

    (2) Zou,Z.G.;Ye,J.H.;Sayama,K.;Arakawa,H.Nature 2001,414,625.doi:10.1038/414625a

    (3)Wang,Z.H.;Zhao,S.P.,Zhu,S.Y.;Sun Y.L.;Fang,M.CrystEngComm 2011,13,2262.doi:10.1039/c0ce00681e

    (4) Fan,H.B.;Zhang,D.F.;Guo,L.Acta Phys.-Chim.Sin.2012,28,2214.[范海濱,張東鳳,郭 林.物理化學(xué)學(xué)報(bào),2012,28,2214.]doi:10.3866/PKU.WHXB201206122

    (5) Pan,Y.L.;Deng,S.Z.;Polavarapu,L.;Gao,N.Y.;Yuan,P.Y.;Sow,C.H.;Xu,Q.H.Langmuir 2012,28,12304.doi:10.1021/la301813v

    (6)Kochuveedu,S.T.;Oh,J.H.;Do,Y.R.;Kim,D.H.Chem.Eur.J.2012,18,7467.

    (7) Shang,Y.;Sun,D.;Shao,Y.M.;Zhang,D.F.;Guo,L.;Yang,S.H.Chem.Eur.J.2012,18,14261.doi:10.1002/chem.v18.45

    (8)Subramanian,V.;Wolf,E.E.;Kamat,P.V.J.Am.Chem.Soc.2004,126,4943.doi:10.1021/ja0315199

    (9)Tong,G.X.;Guan J.G.;Xiao,Z.D.;Huang,X.;Guan,Y.J.Nanopart.Res.2010,12,3025.doi:10.1007/s11051-010-9897-2

    (10)Tong,G.X.;Guan J.G.;Zhang,Q.J.Mater.Chem.Phys.2011,127,371.doi:10.1016/j.matchemphys.2011.02.021

    (11)Wei,S.Q.;Ma,Y.Y.;Chen,Y.Y.;Liu,L.;Liu,Y.;Shao,Z.C.J.Hazard.Mater.2011,194,243.doi:10.1016/j.jhazmat.2011.07.096

    (12) Hara,M.;Kondo,T.;Komoda,M.;Ikeda,S.;Shinohara,K.;Tanaka,A.;Kondo J.N.;Domen,K.Chem.Commun.1998,357.

    (13)Zhou,W.W.;Yan,B.;Cheng,C.W.;Cong,C.X.;Hu,H.L.;Fan,H.J.;Yu,T.CrystEngComm 2009,11,2291.doi:10.1039/b912034n

    (14) Cao,Y.B.;Fan,J.M.;Bai,L.Y.;Yuan,F.L.;Chen,Y.F.Cryst.Growth Des.2010,10,232.doi:10.1021/cg9008637

    (15) Li,H.;Ni,Y.H.;Cai,Y.F.;Zhang,L.;Zhou,J.Z.;Hong,J.M.;Wei,X.W.J.Mater.Chem.2009,19,594.doi:10.1039/b818574c

    (16)Xu,H.L.;Wang,W.Z.;Zhu,W.J.Phys.Chem.B 2006,110,13829.doi:10.1021/jp061934y

    (17) Sun,S.D.;Zhang,H.;Song,X.P.;Liang,S.H.;Kong,C.C.;Yang,Z.M.CrystEngComm 2011,13,6040.doi:10.1039/c1ce05597f

    (18) Deo,M.;Shinde,D.;Yengantiwar,A.;Jog,J.;Hannoyer,B.;Sauvage,X.;Moreb,M.;Ogale,S.J.Mater.Chem.2012,22,17055.doi:10.1039/c2jm32660d

    (19)Wang,Y.B.;Zhang,Y.N.;Zhao,G.H.;Tian,H.Y.;Shi,H.J.;Zhou,T.C.ACS Appl.Mater.Interfaces 2012,4,3965.doi:10.1021/am300795w

    (20) Cao,S.W.;Yin,Z.;Barber,J.;Boey,F.Y.C.;Loo,S.C.J.;Xue,C.ACS Appl.Mater.Interfaces 2012,4,418.doi:10.1021/am201481b

    (21) Georgekutty,R.;Seery,M.K.;Pillai,S.C.J.Phys.Chem.C 2008,112,13563.doi:10.1021/jp802729a

    (22)Wang,P.;Huang,B.B.;Qin,X.Y.;Zhang,X.Y.;Dai,Y.;Wei,J.Y.;Whangbo,M.H.Angew.Chem.Int.Edit.2008,47,7931.doi:10.1002/anie.v47:41

    (23) Jiang,J.;Zhang,L.Z.Chem.Eur.J.2012,18,6360.doi:10.1002/chem.201102606

    (24)Wang,H.;You,T.T.;Shi,W.W.;Li,J.H.;Guo,L.J.Phys.Chem.C 2012,116,6490.doi:10.1021/jp212303q

    (25) Li,X.Z.;Li,F.B.Environ.Sci.Technol.2001,35,2381.doi:10.1021/es001752w

    (26)Zhang,H.;Wang,G.;Chen,D.;Lv,X.J.;Li,J.H.Chem.Mater.2008,20,6543.doi:10.1021/cm801796q

    (27) Hou,W.B.;Cronin,S.B.Adv.Funct.Mater.2012,23,1612.

    (28) Hirakawa,T.;Kamat,P.V.J.Am.Chem.Soc.2005,127,3928.doi:10.1021/ja042925a

    (29) Costi,R.;Saunders,A.E.;Elmalem,E.;Salant,A.;Banin,U.Nano Lett.2008,8,637.doi:10.1021/nl0730514

    (30)Jin,Z.;Xiao,M.D.;Bao,Z.H.;Wang,P.;Wang,J.F.Angew.Chem.Int.Edit.2012,51,6406.doi:10.1002/anie.201106948

    (31)Li,C.C.;Zheng,Y.P.;Wang,T.H.J.Mater.Chem.2012,22,13216.doi:10.1039/c2jm16921e

    (32) Shang,Y.;Zhang,D.F.;Guo,L.J.Mater.Chem.2012,22,856.doi:10.1039/c1jm14258e

    (33)Pang,M.L.;Wang,Q.X.;Zeng,H.C.Chem.Eur.J.2012,46,14605.

    (34) Zhang,D.F.;Niu,L.Y.;Jiang,L.;Yin,P.G.;Sun,L.D.;Zhang,H.;Zhang,R.;Guo,L.;Yan,C.H.J.Phys.Chem.C 2008,112,16011.doi:10.1021/jp803102h

    (35) Zhang,D.F.;Zhang,H.;Shang,Y.;Guo,L.Cryst.Growth Des.2011,11,3748.doi:10.1021/cg101283w

    (36)Zhang,J.;Liu,X.H.;Wang,L.W.;Yang,T.L.;Guo,X.Z.;Wu,S.H.;Wang,S.R.;Zhang,S.M.J.Phys.Chem.C 2011,115,5352.doi:10.1021/jp110421v

    (37) Sun,D.;Yin,P.G.;Guo,L.Acta Phys.-Chim.Sin.2011,27,1543.[孫 都,殷鵬剛,郭 林.物理化學(xué)學(xué)報(bào),2011,27,1543.]doi:10.3866/PKU.WHXB20110619

    (38)Gu,J.;Zhang,Y.W.;Tao,F.Chem.Soc.Rev.2012,41,8050.doi:10.1039/c2cs35184f

    (39)Wang,Z.Y.;Luan,D.Y.;Boey,F.Y.C.;Lou,X.W.J.Am.Chem.Soc.2011,133,4738.doi:10.1021/ja2004329

    (40) Peng,C.;Jiang,B.W.;Liu,Q.;Guo,Z.;Xu,Z.J.;Huang,Q.;Xu,H.J.;Tai,R.Z.;Fan,C.H.Energy Environ.Sci.2011,4,2035.doi:10.1039/c0ee00495b

    (41)Zuo,X.L.;Peng,C.;Huang,Q.;Song,S.P.;Wang,L.H.;Li,D.;Fan,C.H.Nano Res.2009,2,617.doi:10.1007/s12274-009-9062-3

    (42) Zhang,N.;Liu,S.Q.;Fu,X.Z.;Xu,Y.J.J.Phys.Chem.C 2011,115,9136.doi:10.1021/jp2009989

    (43)Subramanian,V.;Wolf,E.E.;Kamat,P.V.J.Am.Chem.Soc.2004,126,4943.doi:10.1021/ja0315199

    (44) Wu,J.L.;Chen,F.C.;Hsiao,Y.S.;Chien,F.C.;Chen,P.L.;Kuo,C.H.;Huang,M.H.;Hsu,C.S.ACS Nano 2011,5,959.doi:10.1021/nn102295p

    猜你喜歡
    氧化亞銅北京航空航天大學(xué)海濱
    空心微珠負(fù)載鈰或氮摻雜氧化亞銅光催化劑的制備方法
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    夏日海濱
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    納米氧化亞銅的制備及其抑菌性研究
    安徽化工(2018年1期)2018-04-03 03:06:28
    海濱書簡
    散文詩(2017年17期)2018-01-31 02:34:19
    海濱1
    用銅鎢合金廢料制備氧化亞銅
    国产成人a∨麻豆精品| 草草在线视频免费看| 麻豆乱淫一区二区| 午夜亚洲福利在线播放| 久久久久久伊人网av| av中文乱码字幕在线| 亚洲,欧美,日韩| 亚洲精品乱码久久久v下载方式| 亚洲精品国产av成人精品 | 国内精品宾馆在线| 中国国产av一级| 国产高清激情床上av| 国产精品一区二区性色av| 黄色配什么色好看| 日韩一区二区视频免费看| 日本在线视频免费播放| 99久久无色码亚洲精品果冻| 五月玫瑰六月丁香| 精华霜和精华液先用哪个| 黄色日韩在线| 欧美日本视频| 亚洲无线观看免费| 老司机午夜福利在线观看视频| 亚洲内射少妇av| av中文乱码字幕在线| 九九在线视频观看精品| 久久久欧美国产精品| 尤物成人国产欧美一区二区三区| 亚洲av不卡在线观看| 给我免费播放毛片高清在线观看| 性色avwww在线观看| 精品免费久久久久久久清纯| 国产一区二区激情短视频| 久久国产乱子免费精品| 国产精品亚洲美女久久久| 久久久a久久爽久久v久久| 91精品国产九色| 久久久色成人| 国产精品女同一区二区软件| 五月玫瑰六月丁香| 男女啪啪激烈高潮av片| 色视频www国产| 两个人视频免费观看高清| 精品久久国产蜜桃| 免费电影在线观看免费观看| 日韩精品中文字幕看吧| 丰满人妻一区二区三区视频av| 日日摸夜夜添夜夜添av毛片| 性色avwww在线观看| 自拍偷自拍亚洲精品老妇| 国产精品一区二区三区四区免费观看 | 伦精品一区二区三区| 国产精品,欧美在线| 国产精品一区二区免费欧美| 国产高清激情床上av| 日本黄大片高清| 又爽又黄无遮挡网站| 亚洲七黄色美女视频| 午夜a级毛片| 日韩,欧美,国产一区二区三区 | 亚洲不卡免费看| 97热精品久久久久久| 日韩欧美一区二区三区在线观看| 久久欧美精品欧美久久欧美| 亚洲第一区二区三区不卡| 老熟妇乱子伦视频在线观看| 精品久久久噜噜| 99热这里只有是精品50| 免费黄网站久久成人精品| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区av在线 | 一级a爱片免费观看的视频| 成年版毛片免费区| 国产 一区 欧美 日韩| 久99久视频精品免费| 午夜精品在线福利| 久久久久久伊人网av| 亚洲精品乱码久久久v下载方式| 在线观看av片永久免费下载| 午夜精品在线福利| 国产男人的电影天堂91| 日本黄大片高清| 欧美+日韩+精品| 日韩欧美在线乱码| 啦啦啦啦在线视频资源| 亚洲国产欧美人成| 婷婷六月久久综合丁香| 亚洲中文字幕日韩| 三级毛片av免费| 亚洲av.av天堂| 国产精品一区二区免费欧美| 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱 | 人妻夜夜爽99麻豆av| 亚洲av中文字字幕乱码综合| 国产精品国产高清国产av| 日韩欧美免费精品| 蜜臀久久99精品久久宅男| 国产成人一区二区在线| 婷婷精品国产亚洲av在线| 色吧在线观看| 成人欧美大片| 欧美另类亚洲清纯唯美| 日本撒尿小便嘘嘘汇集6| 中文字幕av成人在线电影| 淫妇啪啪啪对白视频| 热99re8久久精品国产| 狠狠狠狠99中文字幕| 深爱激情五月婷婷| 91久久精品电影网| 小蜜桃在线观看免费完整版高清| 九九爱精品视频在线观看| 国产淫片久久久久久久久| 亚洲欧美清纯卡通| 欧美在线一区亚洲| 露出奶头的视频| 嫩草影院精品99| 搡老岳熟女国产| h日本视频在线播放| 成人二区视频| 欧美性猛交╳xxx乱大交人| 99久久中文字幕三级久久日本| 中文字幕精品亚洲无线码一区| 亚洲一级一片aⅴ在线观看| 午夜福利高清视频| 亚洲人成网站高清观看| 嫩草影院入口| 欧美bdsm另类| 亚洲成人av在线免费| 日日啪夜夜撸| 欧美三级亚洲精品| 久久精品夜色国产| 男女边吃奶边做爰视频| 免费看光身美女| 中国国产av一级| 2021天堂中文幕一二区在线观| 国产单亲对白刺激| 嫩草影院精品99| 亚洲自偷自拍三级| 精品国产三级普通话版| 免费av观看视频| 成年女人毛片免费观看观看9| 精品一区二区三区视频在线| 免费人成视频x8x8入口观看| 成人特级av手机在线观看| 日韩精品有码人妻一区| 国产在视频线在精品| 国产精品一区www在线观看| 两个人视频免费观看高清| 男女下面进入的视频免费午夜| 欧美+亚洲+日韩+国产| 亚洲最大成人中文| 日韩一区二区视频免费看| 欧美成人免费av一区二区三区| 国产精品国产三级国产av玫瑰| 婷婷精品国产亚洲av| 国产免费男女视频| 亚洲欧美精品综合久久99| 少妇人妻精品综合一区二区 | 高清毛片免费观看视频网站| 国产一区亚洲一区在线观看| av中文乱码字幕在线| 国产爱豆传媒在线观看| 九九在线视频观看精品| 成人美女网站在线观看视频| 97超级碰碰碰精品色视频在线观看| 午夜福利视频1000在线观看| 亚洲精品影视一区二区三区av| 在线免费观看的www视频| 男女下面进入的视频免费午夜| 成人三级黄色视频| 欧美不卡视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲自偷自拍三级| 欧美日韩一区二区视频在线观看视频在线 | 久久亚洲精品不卡| 午夜福利在线观看免费完整高清在 | 欧美在线一区亚洲| 听说在线观看完整版免费高清| 国产精品,欧美在线| 一进一出抽搐gif免费好疼| 黄色欧美视频在线观看| 日韩欧美一区二区三区在线观看| 老女人水多毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲性夜色夜夜综合| 俄罗斯特黄特色一大片| 精品国产三级普通话版| 日本熟妇午夜| 啦啦啦啦在线视频资源| 九九久久精品国产亚洲av麻豆| 神马国产精品三级电影在线观看| 国产白丝娇喘喷水9色精品| 国产91av在线免费观看| 国产精品美女特级片免费视频播放器| 露出奶头的视频| 国内精品美女久久久久久| 小说图片视频综合网站| 12—13女人毛片做爰片一| 国产三级中文精品| 精品人妻视频免费看| 菩萨蛮人人尽说江南好唐韦庄 | www日本黄色视频网| 午夜福利高清视频| 国产探花极品一区二区| 欧美人与善性xxx| 伦精品一区二区三区| 一边摸一边抽搐一进一小说| 日本黄色视频三级网站网址| 精品久久久久久久久久免费视频| 亚洲久久久久久中文字幕| 精品人妻熟女av久视频| av视频在线观看入口| 深爱激情五月婷婷| 99视频精品全部免费 在线| 免费观看的影片在线观看| 欧美激情在线99| 大香蕉久久网| 日日摸夜夜添夜夜添小说| 久久人人爽人人爽人人片va| 欧美日本亚洲视频在线播放| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品乱码久久久v下载方式| 日本一二三区视频观看| 欧美性感艳星| 久久久久久久久久成人| 美女高潮的动态| 成年av动漫网址| 国产一区二区三区av在线 | 亚洲美女黄片视频| 亚洲av中文av极速乱| 国产成人影院久久av| 综合色丁香网| 女人十人毛片免费观看3o分钟| 国模一区二区三区四区视频| 五月玫瑰六月丁香| 国产精品日韩av在线免费观看| 亚洲精品日韩在线中文字幕 | 免费av不卡在线播放| 91久久精品国产一区二区成人| 一区二区三区免费毛片| 日本精品一区二区三区蜜桃| 欧美精品国产亚洲| 噜噜噜噜噜久久久久久91| 久久精品国产清高在天天线| 天堂动漫精品| 久久欧美精品欧美久久欧美| 亚洲av五月六月丁香网| 女同久久另类99精品国产91| 夜夜夜夜夜久久久久| 淫秽高清视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 女人十人毛片免费观看3o分钟| 免费av毛片视频| 久久人人爽人人爽人人片va| 国国产精品蜜臀av免费| 精品午夜福利在线看| 人人妻人人澡欧美一区二区| 久久久久久久久大av| 国产精品免费一区二区三区在线| 国产精品不卡视频一区二区| 成年女人看的毛片在线观看| 精品国内亚洲2022精品成人| 国产精品日韩av在线免费观看| 久久热精品热| 又黄又爽又免费观看的视频| 99在线人妻在线中文字幕| 国产高清有码在线观看视频| 久久久久久大精品| 午夜影院日韩av| 中文字幕av成人在线电影| 中国美白少妇内射xxxbb| 亚洲熟妇熟女久久| 日韩欧美一区二区三区在线观看| 亚洲精品亚洲一区二区| .国产精品久久| 精品熟女少妇av免费看| 在线观看av片永久免费下载| 精品人妻偷拍中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩国产亚洲二区| 亚洲国产日韩欧美精品在线观看| 麻豆成人午夜福利视频| 97人妻精品一区二区三区麻豆| 成年版毛片免费区| 午夜免费男女啪啪视频观看 | 国产 一区 欧美 日韩| 欧美在线一区亚洲| 亚洲国产欧洲综合997久久,| 国产一区亚洲一区在线观看| 国产成人福利小说| av免费在线看不卡| www.色视频.com| 欧美一区二区国产精品久久精品| 久久这里只有精品中国| 看免费成人av毛片| 国语自产精品视频在线第100页| 日本成人三级电影网站| 日本免费一区二区三区高清不卡| 热99在线观看视频| 少妇丰满av| 久久99热这里只有精品18| 国产欧美日韩精品亚洲av| 亚洲精品国产成人久久av| 免费搜索国产男女视频| 国产精华一区二区三区| 秋霞在线观看毛片| 午夜免费男女啪啪视频观看 | 少妇裸体淫交视频免费看高清| 亚洲五月天丁香| 免费观看的影片在线观看| 禁无遮挡网站| 麻豆av噜噜一区二区三区| 色尼玛亚洲综合影院| 菩萨蛮人人尽说江南好唐韦庄 | 91精品国产九色| 又爽又黄无遮挡网站| 97热精品久久久久久| 少妇人妻精品综合一区二区 | 我要搜黄色片| 听说在线观看完整版免费高清| 欧美性猛交╳xxx乱大交人| 国产黄色小视频在线观看| 一个人免费在线观看电影| 色播亚洲综合网| 日本与韩国留学比较| 男人舔奶头视频| 午夜福利在线在线| 久久精品久久久久久噜噜老黄 | 国产成人精品久久久久久| av在线播放精品| 国产一区二区亚洲精品在线观看| 麻豆国产av国片精品| 亚洲精品成人久久久久久| 国产老妇女一区| 国产免费一级a男人的天堂| 99九九线精品视频在线观看视频| 精品一区二区三区人妻视频| 亚洲成人av在线免费| 晚上一个人看的免费电影| 我的女老师完整版在线观看| 国产不卡一卡二| 国产精品福利在线免费观看| 嫩草影视91久久| 国产欧美日韩精品一区二区| 啦啦啦啦在线视频资源| 美女cb高潮喷水在线观看| 99久国产av精品国产电影| 亚洲乱码一区二区免费版| 一进一出抽搐gif免费好疼| 色哟哟哟哟哟哟| 麻豆久久精品国产亚洲av| 亚洲精品成人久久久久久| 国产成人91sexporn| 黑人高潮一二区| 亚洲内射少妇av| 免费大片18禁| 色播亚洲综合网| 久久久色成人| 99热全是精品| 狂野欧美白嫩少妇大欣赏| www.色视频.com| 男女啪啪激烈高潮av片| 亚洲国产精品sss在线观看| 久久久久久久久久黄片| 亚洲中文日韩欧美视频| 在线国产一区二区在线| 黄色一级大片看看| 亚洲精品日韩在线中文字幕 | 色吧在线观看| 免费高清视频大片| 毛片一级片免费看久久久久| 久99久视频精品免费| 又爽又黄无遮挡网站| 国产大屁股一区二区在线视频| 真人做人爱边吃奶动态| 精品熟女少妇av免费看| 3wmmmm亚洲av在线观看| 91久久精品国产一区二区三区| 我要搜黄色片| 亚洲人与动物交配视频| 乱码一卡2卡4卡精品| 午夜免费男女啪啪视频观看 | 色综合亚洲欧美另类图片| 在现免费观看毛片| 蜜桃亚洲精品一区二区三区| 亚洲在线观看片| h日本视频在线播放| 日韩欧美国产在线观看| 久久久精品欧美日韩精品| 天堂√8在线中文| 91在线精品国自产拍蜜月| 毛片女人毛片| 亚洲美女搞黄在线观看 | 一级av片app| 国产精华一区二区三区| av女优亚洲男人天堂| 日韩一区二区视频免费看| 免费在线观看影片大全网站| 十八禁网站免费在线| 观看美女的网站| 深爱激情五月婷婷| 午夜精品在线福利| 色尼玛亚洲综合影院| 久久久久久久久久成人| 日日啪夜夜撸| 日韩欧美三级三区| 一区福利在线观看| 69av精品久久久久久| 久久精品夜色国产| 精品国内亚洲2022精品成人| 小说图片视频综合网站| 亚洲美女视频黄频| 91在线精品国自产拍蜜月| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 成人av在线播放网站| 久久久久久久亚洲中文字幕| 国产精品乱码一区二三区的特点| 国产高清不卡午夜福利| 亚洲精品亚洲一区二区| 精品午夜福利在线看| 国产成人精品久久久久久| 国产蜜桃级精品一区二区三区| 最近中文字幕高清免费大全6| 免费高清视频大片| 99热这里只有是精品在线观看| 日韩欧美国产在线观看| 亚洲av五月六月丁香网| 插逼视频在线观看| 日本色播在线视频| 色综合亚洲欧美另类图片| 男女视频在线观看网站免费| 两个人视频免费观看高清| 国产一区二区三区在线臀色熟女| 在线观看午夜福利视频| 天堂影院成人在线观看| 黄色配什么色好看| 亚洲精品在线观看二区| 久久人人爽人人爽人人片va| 亚洲自拍偷在线| 亚洲婷婷狠狠爱综合网| 午夜亚洲福利在线播放| 一级黄色大片毛片| 国产aⅴ精品一区二区三区波| 麻豆一二三区av精品| 日韩大尺度精品在线看网址| 少妇的逼好多水| 国产高清视频在线观看网站| 偷拍熟女少妇极品色| 卡戴珊不雅视频在线播放| 18禁在线无遮挡免费观看视频 | 国产蜜桃级精品一区二区三区| 久久久精品欧美日韩精品| 午夜激情福利司机影院| 国产麻豆成人av免费视频| 美女被艹到高潮喷水动态| 国产三级中文精品| 神马国产精品三级电影在线观看| 久久久久久伊人网av| 乱人视频在线观看| 可以在线观看的亚洲视频| 国产乱人偷精品视频| 少妇的逼好多水| 草草在线视频免费看| 久久6这里有精品| 久久精品国产亚洲av天美| 九九在线视频观看精品| 男女做爰动态图高潮gif福利片| 亚洲七黄色美女视频| 亚洲精品日韩av片在线观看| 天堂√8在线中文| 一夜夜www| 国内精品宾馆在线| 欧美性感艳星| 国产91av在线免费观看| av福利片在线观看| 丰满的人妻完整版| 十八禁网站免费在线| 亚洲va在线va天堂va国产| 国产高清三级在线| 国产视频内射| 欧美激情在线99| 老女人水多毛片| 国产精品国产高清国产av| 久久99热这里只有精品18| 久久中文看片网| 欧美色视频一区免费| 日韩欧美精品免费久久| 人妻久久中文字幕网| 亚洲欧美日韩高清在线视频| 国产午夜精品论理片| 日韩精品中文字幕看吧| 1000部很黄的大片| 91久久精品电影网| 两个人的视频大全免费| 99在线人妻在线中文字幕| 免费观看人在逋| 久久精品国产亚洲网站| 日韩成人伦理影院| 成人av一区二区三区在线看| 国产一区二区三区av在线 | 欧美日韩在线观看h| 六月丁香七月| 精品午夜福利视频在线观看一区| or卡值多少钱| 波多野结衣高清作品| 婷婷六月久久综合丁香| 好男人在线观看高清免费视频| 日本爱情动作片www.在线观看 | 在线a可以看的网站| 欧美精品国产亚洲| 非洲黑人性xxxx精品又粗又长| 晚上一个人看的免费电影| 亚洲中文字幕日韩| 99久久中文字幕三级久久日本| 亚洲专区国产一区二区| 美女大奶头视频| 日本爱情动作片www.在线观看 | 激情 狠狠 欧美| 亚洲欧美中文字幕日韩二区| 伊人久久精品亚洲午夜| 黑人高潮一二区| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 91午夜精品亚洲一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产乱人偷精品视频| 22中文网久久字幕| 搡老妇女老女人老熟妇| 91久久精品国产一区二区成人| 老女人水多毛片| 欧美+亚洲+日韩+国产| 岛国在线免费视频观看| 日韩欧美国产在线观看| 此物有八面人人有两片| 国产一区二区亚洲精品在线观看| 国产精品一二三区在线看| 免费看光身美女| 波多野结衣高清作品| 又爽又黄无遮挡网站| 亚洲av免费高清在线观看| 久久99热6这里只有精品| 看十八女毛片水多多多| 久久精品国产亚洲av天美| 国产高清视频在线播放一区| 综合色丁香网| 久久久精品大字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲av中文字字幕乱码综合| 欧美日本亚洲视频在线播放| 欧美成人免费av一区二区三区| 欧美另类亚洲清纯唯美| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 国产美女午夜福利| 天堂影院成人在线观看| 人人妻人人看人人澡| 国产亚洲精品久久久久久毛片| 亚洲av.av天堂| www日本黄色视频网| 99久久久亚洲精品蜜臀av| 亚洲自偷自拍三级| 亚洲成人久久爱视频| 俄罗斯特黄特色一大片| 国内久久婷婷六月综合欲色啪| 欧美最黄视频在线播放免费| 白带黄色成豆腐渣| 国语自产精品视频在线第100页| 大香蕉久久网| 床上黄色一级片| 蜜桃亚洲精品一区二区三区| 夜夜看夜夜爽夜夜摸| 久久人人精品亚洲av| 午夜亚洲福利在线播放| 别揉我奶头~嗯~啊~动态视频| aaaaa片日本免费| 国产精品日韩av在线免费观看| 亚洲av电影不卡..在线观看| 在线免费观看不下载黄p国产| 少妇熟女aⅴ在线视频| 国产探花在线观看一区二区| 国产熟女欧美一区二区| 午夜福利18| 99在线视频只有这里精品首页| 小蜜桃在线观看免费完整版高清| 久久精品夜夜夜夜夜久久蜜豆| 久久久久九九精品影院| 男女那种视频在线观看| 夜夜爽天天搞| 日韩,欧美,国产一区二区三区 | 国产乱人视频| 国产精品国产三级国产av玫瑰| 午夜激情福利司机影院| 婷婷精品国产亚洲av| 国产伦精品一区二区三区视频9| 成人亚洲精品av一区二区| 国产三级中文精品| 午夜亚洲福利在线播放| 亚洲av不卡在线观看| 三级国产精品欧美在线观看| 91在线精品国自产拍蜜月| 国产精品永久免费网站| 国产免费男女视频| 天堂动漫精品| 一级黄片播放器| 日韩,欧美,国产一区二区三区 | 亚洲不卡免费看| 国产 一区精品| 午夜福利在线观看吧| 国产视频内射| 成人毛片a级毛片在线播放|