• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      灌木年輪學(xué)研究進(jìn)展

      2013-09-11 08:38:48蘆曉明梁爾源
      生態(tài)學(xué)報(bào) 2013年5期
      關(guān)鍵詞:樹(shù)輪年輪灌木

      蘆曉明,梁爾源

      (1.中國(guó)科學(xué)院環(huán)境變化與地表過(guò)程重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)院青藏高原研究所,北京 100101;2.中國(guó)科學(xué)院大學(xué),北京 100049)

      樹(shù)木年代學(xué)創(chuàng)立于20世紀(jì)20年代[1],其早期研究對(duì)象均為喬木樹(shù)種。直至20世紀(jì)五六十年代,F(xiàn)erguson將三齒蒿(Artemisia tridentata)作為研究對(duì)象,才開(kāi)啟了灌木年輪研究的先河[2-3]。灌木年輪普遍較窄,不少種類存在年輪界限不清的現(xiàn)象。尤其是,較高比率的缺失輪、霜輪和偽年輪出現(xiàn),以及莖干不同部分形成層活動(dòng)和生長(zhǎng)不同步等問(wèn)題為灌木年輪的交叉定年帶來(lái)很大的困難[4-10]。鑒于以上原因,20世紀(jì)90年代前灌木的年輪研究發(fā)展相對(duì)緩慢。近十年來(lái),越來(lái)越多的生態(tài)學(xué)者把灌木的生長(zhǎng)和分布范圍的變化作為對(duì)全球氣候變化響應(yīng)的敏感性生態(tài)指標(biāo)。尤其是,灌木年輪在拓展傳統(tǒng)喬木樹(shù)輪網(wǎng)絡(luò)方面的巨大潛力被越來(lái)越多的樹(shù)輪研究學(xué)者所認(rèn)同。因此,有關(guān)灌木的年輪研究也受到日益關(guān)注[11]。然而,據(jù)不完全統(tǒng)計(jì),在目前已被用于樹(shù)木年代學(xué)研究的約700多個(gè)樹(shù)種中(Dendrochronology species database),僅有30種灌木種類,且多集中于環(huán)北極苔原帶(圖1,表1)。

      本文擬圍繞過(guò)去幾十年來(lái)的研究,對(duì)灌木年輪研究方法和已取得的成果作簡(jiǎn)要介紹,旨在強(qiáng)調(diào)開(kāi)展青藏高原寒區(qū)旱區(qū)灌木年輪研究的必要性。需要指出的是,本文探討的是超出了喬木生長(zhǎng)范圍,主要以灌木生長(zhǎng)型存在的灌木種類。生長(zhǎng)在樹(shù)線之上或以北,以灌木生長(zhǎng)型存在的喬木樹(shù)種,如高緯度地區(qū)的黑云杉[12],并不包含于本文討論范圍中。此外,考慮到寒區(qū)、旱區(qū)灌木種類在擴(kuò)展目前樹(shù)輪研究網(wǎng)絡(luò)方面的潛力,以及目前國(guó)內(nèi)外所開(kāi)展的灌木年輪研究的主要地區(qū),本文將分環(huán)北極高緯度,干旱、半干旱以及高海拔區(qū)3個(gè)主要區(qū)域來(lái)綜述灌木年輪研究的主要進(jìn)展。另外,還簡(jiǎn)要介紹了灌木與喬木年輪研究方法的主要不同點(diǎn)。

      圖1 世界范圍內(nèi)灌木年輪氣候研究主要樣點(diǎn)分布圖Fig.1 Map showing dendrochronological sites for shrub species

      1 灌木年輪研究方法

      灌木年輪研究遵循樹(shù)木年代學(xué)的基本原理與方法[13-15]。這里只強(qiáng)調(diào)灌木與喬木年輪研究方法上的幾點(diǎn)不同之處。灌木年輪較窄,存在高頻率的缺失輪,交叉定年的難度較大。目前,大多數(shù)灌木年輪研究都是采集灌木莖干基部的圓盤(pán)樣本來(lái)進(jìn)行研究。在極端環(huán)境條件下,灌木的莖干從基部至頂端,一些部分的維管形成層的活動(dòng)可能會(huì)逐漸停止,因此只采集莖干基部或其它部分的樣本無(wú)法準(zhǔn)確地進(jìn)行交叉定年。鑒于這一問(wèn)題,灌木年輪研究中需要采用系列莖干取樣法(series section),即沿著灌木莖干從基部至頂端每隔幾厘米至幾十厘米采集圓盤(pán)[8]。最終通過(guò)對(duì)灌木個(gè)體不同部位以及不同灌木個(gè)體之間莖干基部圓盤(pán)分別進(jìn)行的交叉定年,建立連續(xù)可靠的年輪寬度時(shí)間序列。需要說(shuō)明的是,由于大多數(shù)灌木匍匐生長(zhǎng),莖干為硬壓木或伸張木,實(shí)驗(yàn)中一般選擇與硬壓木或伸張木垂直的兩個(gè)方向?qū)ζ溥M(jìn)行交叉定年,以避免硬壓木與伸張木對(duì)定年的影響[16]。另外,與喬木的年輪寬度時(shí)間序列相比,有些灌木年輪寬度的年齡變化趨勢(shì)不明顯[17]。

      表1 應(yīng)用于灌木年輪研究主要灌木種類、作者及發(fā)表年份(按倒序排列)一覽表Table 1 A list of shrub species for dendrochronological studies as well as their publication years and authors

      除年輪寬度外,灌木作為控制實(shí)驗(yàn)的對(duì)象在近期也受到越來(lái)越多的關(guān)注。尤其在模擬增溫對(duì)環(huán)北極灌木生長(zhǎng)發(fā)育的影響方面,目前已取得了一系列成果[18-19]。這類研究將從生理機(jī)制上揭示灌木生長(zhǎng)對(duì)氣候變化的響應(yīng)特征。此外,灌木年輪中碳氧同位素的研究也得到廣泛應(yīng)用。灌木年輪寬度、同位素、木材解剖結(jié)構(gòu)等多種方法相結(jié)合將是探討灌木對(duì)極端環(huán)境適應(yīng)機(jī)制的主要途徑[20-21]。

      2 灌木年輪研究進(jìn)展

      2.1 環(huán)北極高緯度地區(qū)灌木年輪研究

      全球變暖已對(duì)陸地生態(tài)系統(tǒng)造成了顯著影響,其中環(huán)北極苔原生態(tài)系統(tǒng)是對(duì)全球變暖響應(yīng)最敏感的地區(qū)之一[22]。環(huán)北極樹(shù)線之外的苔原帶,氣候條件嚴(yán)酷,超出了喬木生長(zhǎng)的所耐受的生理閾值條件,但是卻分布著一些灌木和矮灌木。這些灌木和矮灌木的生長(zhǎng)輪(年輪)是了解環(huán)北極苔原帶過(guò)去高分辨率氣候變化歷史的重要代用指標(biāo)。此外,高緯度灌木生長(zhǎng)對(duì)氣候變化的適應(yīng)機(jī)制以及全球變化對(duì)灌木分布和生長(zhǎng)的影響都已成為環(huán)北極地區(qū)備受關(guān)注的生態(tài)問(wèn)題。目前,已有約14種生長(zhǎng)于環(huán)北極高緯度區(qū)的灌木用于年輪氣候?qū)W研究。這些灌木都有生長(zhǎng)輪的形成,且大部分可進(jìn)行交叉定年,展示出良好的樹(shù)木年代學(xué)研究潛力[4,7,9]。

      環(huán)北極一帶灌木年輪研究重點(diǎn)主要包括3個(gè)方面。第一,揭示影響極地地區(qū)灌木生長(zhǎng)的環(huán)境因子和生理生態(tài)特性[7,9,20,23-27]?;谀贻喬卣鞯姆治?,初夏溫度是環(huán)北極灌木Salix pulchra和Betula nana生長(zhǎng)的主要限制因子[28];而灌木Juniperus nana的生長(zhǎng)則指示了當(dāng)?shù)?—7月份的溫度和冬季積雪的變化[10]。此外,環(huán)北極四棱巖須(Cassiope tetragona)的生長(zhǎng)則主要指示了極地7月的溫度變化,這種氣候-生長(zhǎng)關(guān)系在持續(xù)了7年時(shí)間的溫度控制實(shí)驗(yàn)中也得到了證實(shí)[19,29]。第二,利用灌木重建區(qū)域性的溫度[5,19-20,30-31]降水變化[4-6,30-31]和氣候極端事件的發(fā)生歷史[4,32]。例如,Weijers等利用環(huán)北極矮灌木四棱巖須的莖干每年生長(zhǎng)長(zhǎng)度的變化重建了過(guò)去169a來(lái)當(dāng)?shù)?月份溫度的變化歷史,這也是目前為止利用矮灌木所重建的環(huán)北極最長(zhǎng)的氣候序列[29]。Woodcock和Bradley以及Hantemirov等通過(guò)高緯度地區(qū)灌木年輪中霜輪的出現(xiàn)推測(cè)過(guò)去的火山噴發(fā)及其造成的低溫事件[4,32]。第三,了解近幾十年全球變化是否對(duì)環(huán)北極一帶灌木種群的分布范圍產(chǎn)生了影響[10,28,33-34]。有研究表明,近幾十年來(lái),北極地區(qū)溫度上升的幅度已超過(guò)全球平均水平[35],并造成了灌木種群分布范圍的擴(kuò)張[10,33,36-39]和物種豐富度的增加[40];相應(yīng)地,環(huán)北極一帶灌木生長(zhǎng)高度增加與分布范圍的擴(kuò)張則會(huì)促使土壤溫度升高,破壞凍土層,從而加深土壤活動(dòng)層,進(jìn)一步加劇區(qū)域升溫[41]。環(huán)北極地區(qū)的控制實(shí)驗(yàn)也證明,溫度上升有利于落葉灌木的生長(zhǎng)[18]。然而,也有學(xué)者認(rèn)為高緯度苔原生態(tài)系統(tǒng)中灌木覆蓋度的增加會(huì)減少灌木冠層下物種的多樣性[42]。Macias-Fauria等通過(guò)對(duì)環(huán)北極灌木Salix lanata與Alnus fruticosa近50年的生長(zhǎng)變化研究,揭示了灌木的生產(chǎn)力與春季晚期海冰變化和大空間尺度上大氣環(huán)流的關(guān)系[43]。此外,Tape等發(fā)現(xiàn)Alnusviridis ssp.Fruticosa分布范圍的擴(kuò)張與景觀異質(zhì)性有關(guān),處于擴(kuò)張的群落具有較穩(wěn)定的斑塊和較寬的年輪,且對(duì)春夏溫度變化的響應(yīng)也更為敏感[36];隨后的一些研究則進(jìn)一步證實(shí)了灌木擴(kuò)張的景觀異質(zhì)性[44-46]?;陂L(zhǎng)期的樣地調(diào)查數(shù)據(jù)以及全球苔原生態(tài)系統(tǒng)61個(gè)控制實(shí)驗(yàn)結(jié)果的整合分析,Elmendorf等得出以下結(jié)論:近二十年來(lái)在全球變暖背景下,植被對(duì)變暖響應(yīng)與研究區(qū)的夏季溫度、土壤濕度和實(shí)驗(yàn)周期有關(guān),且處于環(huán)境溫度相對(duì)較高區(qū)域的維管植物,其高度、豐富度會(huì)顯著增加[38,47]。在未來(lái)的幾十年中,高緯度地區(qū)溫度還可能將持續(xù)上升[35],因此灌木年輪學(xué)將在未來(lái)環(huán)北極地區(qū)灌木生長(zhǎng)變化、種群擴(kuò)張等方面的研究中繼續(xù)發(fā)揮重要作用。

      2.2 干旱、半干旱區(qū)的灌木年輪研究

      水分是控制干旱、半干旱區(qū)生態(tài)系統(tǒng)結(jié)構(gòu)與功能的主要環(huán)境因子。早在20世紀(jì)90年代,Milton等在南非的Karoo地區(qū)通過(guò)對(duì)Pteronia pallens年輪寬度變化和基徑變化的比較,揭示其每年都有單一的年輪形成,并證實(shí)了輪寬變化可以指示降雨變化[48]。Biondi等利用北美大盆地地區(qū)三齒蒿年輪中放射性14C的變化,結(jié)合對(duì)樣本的交叉定年,證實(shí)其年輪中14C的峰值年與1963—1964年原子彈爆炸高峰期具有很好一致性。這說(shuō)明三齒蒿每年都有年輪的形成,為今后利用三齒蒿年輪重建當(dāng)?shù)貧夂蜃兓峁┝肆己玫幕A(chǔ)[49]。Rayback等對(duì)美國(guó)雷尼爾山國(guó)家公園(Mt.Rainier National Park)的白石南巖須(Cassiope mertensiana)的生長(zhǎng)和繁殖狀況(1963—2004)的分析,揭示了上年4和6月份的最高溫對(duì)生長(zhǎng)的影響,而當(dāng)年7月份最高溫對(duì)于繁殖有顯著影響[50]。南美巴塔哥尼亞草原上有大范圍的灌木分布,其中一些灌木種類形成清晰的年輪[51];在沿阿根廷的南北緯度帶上,Srur等通過(guò)灌木Anarthrophyllum rigidum的年輪分析,證實(shí)了過(guò)去20—30a的區(qū)域氣候變化對(duì)灌木徑向生長(zhǎng)的影響[52]。而地中海地區(qū)偽年輪和缺失輪發(fā)生的頻率較高[53]。例如,Copenheaver等通過(guò)對(duì)草莓樹(shù)(Arbutus unedo)灌木木材解剖和年輪生長(zhǎng)特征的分析,探討偽年輪的形成機(jī)制,揭示了夏季干旱是導(dǎo)致灌木偽年輪形成的主要原因;另外,與老樹(shù)相比,幼樹(shù)根系相對(duì)較淺,水分利用狀況較差,更易產(chǎn)生偽年輪[54]。此外,Battipaglia等也以草莓樹(shù)灌木為研究對(duì)象,通過(guò)偽年輪的發(fā)生來(lái)重建地中海厄爾巴島地區(qū)季節(jié)氣候變化,尤其是降水變化歷史[21]。另外,學(xué)者們利用樹(shù)木年代學(xué)的研究手段,分析了北美地區(qū)日本小蘗(Berberis thunbergii)的入侵機(jī)制和其對(duì)氣候變化的響應(yīng)[55],以及當(dāng)?shù)貧夂蜃兓退奶卣鲗?duì)入侵種檉柳(Tamarix)更新和生長(zhǎng)的影響[56],擴(kuò)展了灌木年輪研究的范疇。

      迄今,我國(guó)灌木年輪研究主要集中于干旱、半干旱區(qū)。肖生春等分析了沙漠檉柳灌木的生長(zhǎng)特征,并利用內(nèi)蒙古額濟(jì)納西居延海檉柳年輪寬度的變化,重建了過(guò)去100年來(lái)居延海5—8月份的湖泊水位的變化歷史[57-58]。另外,肖生春等還分析了不同坡向的荒漠紅砂對(duì)當(dāng)?shù)厮疅釛l件的響應(yīng),根據(jù)其年齡特征的分布格局,對(duì)黃土高原西部水土流失的防治提供了寶貴的指導(dǎo)意見(jiàn)[59]。楊理等、王煒等、和黃榮鳳等則分別分析了沙漠或沙地灌木四合木、梭梭和沙地柏灌木對(duì)降水和氣溫變化的響應(yīng)特征[60-62]。總之,在干旱、半干旱帶進(jìn)行灌木樹(shù)輪氣候的研究具有很大的潛力,灌木年輪不僅可以用來(lái)重建過(guò)去的氣候變化歷史,也可以根據(jù)灌木生長(zhǎng)對(duì)環(huán)境的適應(yīng)性特征為當(dāng)?shù)剡M(jìn)行生態(tài)屏障的建設(shè)提供有價(jià)值的信息。

      2.3 高山灌木的年輪研究

      高山灌木年輪氣候?qū)W研究主要集中于美洲山區(qū)和青藏高原地區(qū)。尤其值得提出的是,青藏高原的喬木森林主要分布于高原邊緣山地,過(guò)去的樹(shù)木年代學(xué)研究也只關(guān)注這些地區(qū)的樹(shù)輪氣候重建[63-71],而灌木在青藏高原的分布范圍則更為廣泛[17,72]。Xiao等通過(guò)沙棘 (Hippophae rhamnoides)灌木的年輪寬度重建了祁連山西部七一冰川1950至2003年的雪線變化。其原理是灌木的生長(zhǎng)和冰川的進(jìn)退都受到氣候變化的影響,從而可以通過(guò)灌木年輪的變化來(lái)了解到過(guò)去幾十年來(lái)氣候變化和雪線波動(dòng)歷史[73]。青藏高原東南部是國(guó)際上杜鵑花屬植物的分布中心之一,且往往分布在樹(shù)線之上,是青藏高原地區(qū)最值得開(kāi)展年輪研究的灌木種類[17]。我國(guó)學(xué)者以藏東南作求普冰舌前的杜鵑灌木為(海拔4450—4500m)研究材料,證實(shí)杜鵑灌木具有清晰的年輪結(jié)構(gòu),不同植株之間可以進(jìn)行交叉定年,且年輪寬度變化具有一定的敏感度,展示了樹(shù)木年代學(xué)研究潛力。進(jìn)一步的分析顯示,杜鵑灌木的生長(zhǎng)記錄了與藏東南林線急尖長(zhǎng)苞冷杉相似的氣候信號(hào),即受到上年11月和當(dāng)年夏季最低溫的影響[17];最近,Liang等在西藏納木錯(cuò)周邊對(duì)香柏灌木(海拔4740—4780m)進(jìn)行研究,建立了一條250a的灌木年輪寬度年表。此研究首次把青藏高原周邊的樹(shù)輪研究網(wǎng)絡(luò)擴(kuò)展到高原內(nèi)部。與環(huán)北極的矮灌木不同的是,納木錯(cuò)香柏灌木的生長(zhǎng)主要受5—6月份的土壤濕度限制,5—6月份的高溫由于可以增加土壤水分的蒸發(fā)而與香柏的年輪寬度序列之間呈現(xiàn)顯著的負(fù)相關(guān)關(guān)系[72]。智利中北部山區(qū)是樹(shù)輪氣候?qū)W研究的空白區(qū)域,Barichivich等利用灌木年輪寬度來(lái)指示過(guò)去兩個(gè)世紀(jì)以來(lái)厄爾尼諾(ENSO)和太平洋十年濤動(dòng)(PDO)的變化[74]。Poore等研究了氣候變化對(duì)北美高山地區(qū)三齒蒿的生長(zhǎng)及其種群的影響,并分別分析了1969至2007年溫度、降水和積雪厚度與三齒蒿年輪寬度變化之間的關(guān)系[75]。以上研究展示了高山灌木在指示過(guò)去氣候變化方面的優(yōu)勢(shì)與獨(dú)特性。然而,相比于環(huán)北極地區(qū),高山灌木的樹(shù)木年代學(xué)研究并沒(méi)有獲得足夠的重視。

      3 展望

      過(guò)去幾十年中,灌木年輪研究擴(kuò)展了以喬木為主的樹(shù)輪研究網(wǎng)絡(luò),尤其在重建北極、亞北極和高海拔等地區(qū)氣候變化方面取得了一系列研究成果。在全球變暖的背景下,灌木年輪研究將日益受到關(guān)注。然而,除了環(huán)北極地區(qū),其他地區(qū)尚未建立大空間尺度上的灌木年輪網(wǎng)絡(luò)。青藏高原作為地球的第三極,具有建立大空間尺度上灌木年輪網(wǎng)絡(luò)的潛力,但該地區(qū)高山灌木的年輪研究直到目前并未引起足夠的重視。青藏高原高山灌木的生長(zhǎng)是如何適應(yīng)極端環(huán)境條件的?全球變暖的背景下,青藏高原高山灌木的分布和生長(zhǎng)正在發(fā)生那些變化?這些都是值得深入研究的問(wèn)題。因此,今后的研究應(yīng)充分發(fā)揮高山灌木年輪研究的優(yōu)勢(shì),將目前的樹(shù)輪研究網(wǎng)絡(luò)擴(kuò)展至更高的海拔和高原內(nèi)部。

      [1] Douglass A E.Evidence or climatic effects in the annual rings of trees.Ecology,1920,1(1):24-32.

      [2] Ferguson C W.Growth rings in woody shrubs as potential aids in archaeological interpretation.Kiva,1959,25(2):24-30.

      [3] Ferguson C W.Annual rings in big sagebrush,Artemisia tridentata.Papers of the Laboratory of Tree-ring Research no.1.Tucson:University of Arizona Press,1964:1-103.

      [4] Woodcock H,Bradley R S.Salix arctica(Pall.):its potential for dendroclimatological studies in the high arctic.Dendrochronologia,1994,12(1):11-22.

      [5] Rayback S A,Henry G H R.Dendrochronological potential of the Arctic dwarf-shrub Cassiope tetragona.Tree-Ring Research,2005,61(1):43-53.

      [6] Zalatan R,Gajewski K.Dendrochronological potential of Salix alaxensis from the Kuujjua River area.Western Canadian Arctic Tree-Ring Research,2006,62(2):75-82.

      [7] Au R,Tardif J C.Allometric relationships and dendroecology of the dwarf shrub Dryas integrifolia near Churchill,subarctic Manitoba.Canadian Journal of Botany,2007,85(6):585-597.

      [8] Kolishchuk V G.Dendroclimatological study of prostrate woody plants//Cook E R,Kairiukstis L A,eds.Methods of dendrochronology:applications in the environmental sciences.Kluwer:London,1990:51-55.

      [9] B?r A,Br?uning A,L?ffler J.Dendroecology of dwarf shrubs in the high mountains of Norway methodological approach.Dendrochronologia,2006,24(1):17-27.

      [10] Hallinger M,Manthey M,Wilmking M.Establishing a missing link:warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia.New Phytologist,2010,186(1):890-899.

      [11] Naito A T,Cairns D M.Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics.Environmental Research Letters,2011,6(4):045506.doi:10.1088/1748-9326/6/4/045506.

      [12] Gamache I,Payette S.Height growth response of tree line black spruce to recent climate warming across the forest-tundra of eastern Canada.Journal of Ecology,2004,92(1):835-845.

      [13] Fritts H C.Tree rings and climate.London:Academic Press,1976.

      [14] Cook E R,Kairiukstis L A.Methods of dendrochronology:applications in the environmental sciences.Dordrecht:Kluwer,1990:97-104.

      [15] Schweingruber F H.Tree rings and environment,dendroeology.Berne:Paul Haupt,1996.

      [16] Stokes M A,Smiley T L.An introduction to tree-ring dating.Chicago:University of Chicago Press,1968.

      [17] Liang E Y,Eckstein D.Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau.Annals of Botany,2009,104(4):665-670.

      [18] Walker M D,Wahren C H,Hollister R D,Henry G H R,Ahlquist L E,Alatalo J M,Bret-Harte M S,Calef M P,Callaghan T V,Carroll A B,Epstein H E,Jonsdottir I S,Klein J A,Magnusson B,Molau U,Oberbauer S F,Rewa S P,Robinson C H,Shaver G R,Suding K N,Thompson C C,Tolvanen A,Totland O,Turner P L,Tweedie C E,Webber,P J,Wookey P A.Plant community responses to experimental warming across the tundra biome.Proceedings of the National Academy of Sciences of the United States of America,2006,103(5):1342-1346.

      [19] Weijers S,Alsos I G,Eidesen P B,Broekman R,Loonen M J J E,Rozema J.No divergence in Cassiope tetragona:persistence of growth response along a latitudinal temperature gradient and under multi-year experimental warming.Annals of Botany,2012,110(3):653-665.

      [20] Rayback S A,Henry G H R.Reconstruction of summer temperature for a Canadian High Arctic site from retrospective analysis of the dwarf shrub,Cassiope tetragona.Arctic,Antarctic and Alpine Research,2006,38(2):228-238.

      [21] Battipaglia G,Micco V D,Brand W A.Variations of vessel diameter and δ13C in false rings of Arbutus unedo L.reflect different environmental conditions.New Phytologist,2010,188(4):1099-1112.

      [22] ACIA.Arctic climate impact assessment.Cambridge:Cambridge University Press,2005.

      [23] Walker D A.Height and growth rings of Salix lanata ssp.richardsonii along the coastal temperature gradient of northern Alaska.Canadian Journal of Botany,1987,65(5):988-993.

      [24] B?r A,Br?uning A,L?ffler J.Climate-growth relationships of the dwarf shrub species Empetrum hermaphroditum in the Norwegian Scandes.Trace-Tree Rings in Archaeology,Climatology and Ecology,2007,5:156-160.

      [25] B?r A,Br?uning A,L?ffler J.Ring-width chronologies of the alpine dwarf shrub Empetrum hermaphroditum from the Norwegian Mountains.International Association of Wood Anatomists Journal,2007,28(3):325-338.

      [26] B?r A,Pape R,Br?uning A,L?ffler J.Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences.Journal of Biogeography,2008,35(4):625-636.

      [27] Schmidt N M,Baittinger C,Kollmann J,F(xiàn)orchhammer M C.Consistent dendrochronological response of the dioecious Salix arctica to variation in local snow precipitation across gender and vegetation types.Arctic,Antarctic,and Alpine Research,2010,42(4):471-475.

      [28] Blok D,Sass-Klaassen U,Schaepman-Strub G,Heijmans M M P D,Sauren P,Berendse F.What are the main climate drivers for shrub growth in Northeastern Siberian tundra?Biogeosciences,2011,8(1):771-799.

      [29] Weijers S,Broekman R,Rozema J.Dendrochronology in the High Arctic:July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona.Quaternary Science Reviews,2010,29(27/28):3831-3842.

      [30] Kuivinen K C,Lawson M P.Dendroclimatic analysis of birch in South Greenland.Arctic and Alpine Research,1982,14(3):243-250.

      [31] Rayback S A,Henry G H R,Lini A.Multiproxy reconstructions of climate for three sites in the Canadian High Arctic using Cassiope tetragona.Climate Change,2012a,114(3/4):593-619.

      [32] Hantemirov R M,Gorlanova L A,Shiyatov S G.Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings.Palaeogeography,Palaeoclimatology,Palaeoecology,2004,209(1/4):155-164.

      [33] Forbes B C,F(xiàn)auria M M,Zetterberg P.Russian Arctic warming and‘greening’are closely tracked by tundra shrub willows.Global Change Biology,2010,16(5):1542-1554.

      [34] Rundqvist S,Hedenas H,Sandstrom A,Emanuelsson U,Eriksson H,Jonasson C,Callaghan T V.Tree and shrub expansion over the past 34 years at the Tree-Line near Abisko.Sweden.Ambio,2011,40(6):683-692.

      [35] IPCC.Climate Change 2007:Impacts,Adaptation and Vulnerability.Cambridge:Cambridge University Press,2007.

      [36] Tape K,Sturm M,Racine C.The evidence for shrub expansion in Northern Alaska and the Pan-Arctic.Global Change Biology,2006,12(4),686-702.

      [37] Tape K,Hallinger M,Ruess R W,Welker J M.Landscape heterogeneity of shrub expansion in Arctic Alaska.Ecosystems,2012,15(5):711-724.

      [38] Elmendorf S C,Henry G H R,Hollister R D,Bj?rk R G,Bjorkman A D,Callaghan T V,Collier L S,Cooper E J,Cornelissen J H C.Global assessment of experimental climate warming on tundra vegetation:heterogeneity over space and time.Ecology Letters,2012,15(2):164-175.

      [39] Epstein H E,Raynolds M K,Walker D A,Bhatt U S,Tucker C J,Pinzon J E.Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades.Environmental Research Letters,2012,7(1):015506.doi:10.1088/1748-9326/7/1/015506.

      [40] Sturm M,Racine C,Tape K.Increasing shrub abundance in the Arctic.Nature,2001,411:546-547.

      [41] Bonfils C J W,Phillips1 T J,Lawrence D M,Cameron-Smith P,Riley W J,Subin Z M.On the influence of shrub height and expansion on northern high latitude climate.Environmental Research Letters,2012,7(1):015503.doi:10.1088/1748-9326/7/1/015503.

      [42] Pajunen A M,Oksanen J,Virtanen R.Impact of shrub canopies on understorey vegetation in western eurasian tundra.Journal:Journal of Vegetation Science,2011,22(5):837-846.

      [43] Macias-Fauria M,F(xiàn)orbes B C,Zetterberg P,Kumpula T.Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems.Nature Climate Change,2012,2(8):613-618.

      [44] Myers-Smith I H,F(xiàn)orbes B C,Wilmking M,Hallinger M,Lantz T,Blok D,Tape K D,Macias-Fauria M.Shrub expansion in tundra ecosystems:dynamics,impacts and research priorities.Environmental Research Letters,2011,6(4):045509.doi:10.1088/1748-9326/6/4/045509.

      [45] Naito A T,Cairns D M.Patterns and processes of global shrub expansion.Progress in Physical Geography,2011,35(4):423-442.

      [46] Ropars P,Boudreau S.Shrub expansion at the forest-tundra ecotone:spatial heterogeneity linked to local topography.Environmental Research Letters,2012,7(1):015501.doi:10.1088/1748-9326/7/1/015501.

      [47] Elmendorf S C,Henry G H R,Hollister R D,Bj?rk R G,Boulanger-Lapointe N,Cooper E J,Cornelissen J H C,Day T A.Plot-scale evidence of tundra vegetation change and links to recent summer warming.Nature Climate Change,2012,2(8):453-457.

      [48] Milton S J,Gourlay I D,Dean W R.Shrub growth and demography in arid Karoo,South Africa:inference from wood rings.Journal of Arid Environments,1997,37(3):487-496.

      [49] Biondi F,Strachan S D J,Mensing S,Piovesan G.Radiocarbon analysis confirms the annual nature of sagebrush growth rings.The Arizona Board of Regents on behalf of the University of Arizona,2007,49(3):1231-1240.

      [50] Rayback S A,Lini A,Berg D L.The dendroclimatological potential of an alpine shrub Cassiope Mertensiana,from Mount Rainier,WA,USA.Geografiska Annaler:Serises A,Physical Geography,2012,94(3):413-427.

      [51] Golluscio R A,Sala O E.Plant functional types and ecological strategies in Patagonian forbs.Journal of Vegetation Sciences,1993,4(6):839-846.

      [52] Srur A M,Villalba R.Annual growth rings of the shrub Anarthrophyllum rigidum across Patagonia:Interannual variations and relationships with climate.Journal of Arid Environments,2009,73(12):1074-1083.

      [53] Cherubini P,Gartner B L,Tognetti R,Braker O,Schoch W,Innes J.Identification,measurement and interpretation of tree rings in woody species from mediterranean climates.Cambridge Philosophical Society,2003,78(1):119-148.

      [54] Copenheaver C A,G?rtner H,Sch?fer I,Vaccari F P,Cherubini P.Drought-triggered false ring formation in a medeterranean shrub.Botany,2010,88(6):545-555.

      [55] Li J B,Xu C Y,Griffin K L,William S F.Dendrochonological potential of Japanese Barberry(Berberis thunbergii):a case study in the Black Rock Forest,New York.Tree-Ring Research,2008,64(2):115-124.

      [56] Mortenson S G,Weisberg P J,Stevens L E.The influence of floods and precipitation on Tamarix establishment in Grand Canyon,Arizona:consequences for flow regime restoration.Biological Invasions,2012,14(5):1061-1076.

      [57] Xiao S C,Xiao H L,Zhou M X,Si J H,Zhang X Y.Water level change of the west Juyan Lake in the past 100 years recorded in the tree ring of the shrubs in the lake banks.Journal of Glaciology and Geocryology,2004,26(5):557-562.

      [58] Xiao S C,Xiao H L,Si J H,Liu F M.Growth characteristics of Tamarix ramosissima in arid regions of China.Acta Botanica Boreali-occidentalia Sinica,2005,25(5):1012-1016.

      [59] Xiao S C,Xiao H L,Song Y X,Duan Z H,Lu M F.Dendrochronology study on response of Reaumurta soongorica.Journal of desert research,2006,26(4):547-552.

      [60] Yang L,Yang C,Yang M C,Zhang H R.The study on relationship between Tetraena mongolica maxim growth and precipitation,temperature.Acta Scienriarum Naturialium Unverisitatia Neimenggol,1996,27(6):816-820.

      [61] Wang W,Liang C Z,Zhu Z Y,Liu L F.Studies on the measuring method of growth rings of Haloxylon ammodendron and its growing dynamics.Journal of Arid Land Resources and Environment,2001,15(1):67-74.

      [62] Huang R F,Zhang G S,Wang L H,Zhang Z S.Analysis on main climatic factors affecting ring-width variance of Sabina vulgaris grown in Mu US Sandland.Journal of Arid Land Resources and Environment,2004,18(6):164-169.

      [63] Zhang Q B,Cheng G D,Yao T D,Kang X C,Huang J G.A 2326 year tree ring record of climate variability on the northeastern Qinghai Tibetan Plateau.Geophysical Research Letter,2003,30(14):1739.

      [64] Shao X M,Huang L,Liu H B,Liang E Y,F(xiàn)ang X Q,Wang L L.Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha,Qinghai.Science in China Series D-Earth Sciences,2005,48(7):939-949.

      [65] Liu Y,An Z S,Ma H Z,Cai Q F,Liu Z Y,Kutzbach J K,Shi J F,Song H M,Sun J Y,Yi L.Precipitation variation in the northeastern Tibetan Plateau recorded by the tree rings since 850 AD and its relevance to the Northern Hemisphere temperature.Science in China Series D-Earth Sciences,2006,49(4):408-420.

      [66] Gou X H,Peng J F,Chen F H,Yang M X,Levia D F,Li J B.A dendrochronological analysis of maximum summer half-year temperature variations over the past 700 years on the northeastern Tibetan Plateau.Theoretical and Applied Climatology,2008,93(3/4):195-206.

      [67] Liang E Y,Shao X M,Qin N S.Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau.Global and Planetary Change,2008,61(3/4):313-320.

      [68] Liu X H,Qin D H,Shao X M,Chen T,Ren J W.Temperature variations recovered from tree-rings in the middle Qilian Mountain over the last millennium.Science in China Series D-Earth Sciences,2005,48(4):521-529.

      [69] Wang L,Duan J,Chen J,Huang L,Shao X.Temperature reconstruction from tree-ring maximum density of Balfour spruce in eastern Tibet,China.International Journal of Climatology,2009,30(7):972-979

      [70] Yang B,Kang X C,Liu J J,Br?uning A,Qin C.Annual temperature history in Southwest Tibet during the last 400 years recorded by tree rings.International Journal of Climatology,2010,30(7):962-971.

      [71] Zhu H F,Zheng Y H,Shao X M,Liu X H,Xu Y,Liang E Y.Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan,Qinghai Province,China.Chinese Science Bulletin,2008,53(24):3914-3920.

      [72] Liang E Y,Lu X M,Ren P,Li X X,Zhu L P,Eckstein D.Annual increment of juniper dwarf shrubs above the tree line on the central Tibetan Plateau:a useful climatic proxy.Annuals of Botany,2012,109(4):721-728.

      [73] Xiao S C,Xiao H L,Kobayashi O,Liu P X.Dendroclimatological investigations of sea buckthorn(Hippophaer hamnoides)and reconstruction of the equilibrium line altitude of the July First Glacier in the western Qilian Mountains,Northwestern China.Tree-Ring Research,2007,63(1):15-26.

      [74] Barichivich J,Sauchyn D J,Lara A.Climate signals in high elevation tree-rings from the semiarid Andes of North-central Chile:responses to regional and large-scale variability.Palaeogeography,Palaeoclimatology,Palaeoecology,2008,281(3/4):320-333.

      [75] Poore R E,Lamanna C A,Ebersole J J,Enquist B J.Controls on radial growth of mountain big sagebrush and implications for climate change.Western North American Naturalist,2009,69(4):556-562.

      參考文獻(xiàn):

      [57] 肖生春,肖洪浪,周茂先,司建華,張小由.近百年來(lái)西居延海湖泊水位變化的湖岸林樹(shù)輪記錄.冰川凍土,2004,26(5):557-562.

      [58] 肖生春,肖洪浪,司建華,劉發(fā)明.干旱區(qū)多枝檉柳的生長(zhǎng)特性.西北植物學(xué)報(bào),2005,25(5):1012-1016.

      [59] 肖生春,肖洪浪,宋耀選,段爭(zhēng)虎,陸明峰.荒漠植被紅砂 (Reaumurta soongorica)水熱響應(yīng)的年輪學(xué)研究.中國(guó)沙漠,2006,26(4):547-552.

      [60] 楊理,楊持,楊春明,張慧榮.四合木(Tetraena mongolica)營(yíng)養(yǎng)生長(zhǎng)和降水、氣溫的關(guān)系.內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版),1996,27(6):816-820.

      [61] 王煒,梁存柱,朱宗元,劉鐘齡,張麗芳.梭梭年輪測(cè)定方法及生長(zhǎng)動(dòng)態(tài)的研究.干旱區(qū)資源與環(huán)境,2001,15(1):67-74.

      [62] 黃榮鳳,張國(guó)盛,王林和,張中山.影響毛烏素沙地臭柏年輪寬度變化的主要?dú)夂蛞蜃臃治觯珊祬^(qū)資源與環(huán)境,2004,18(6):164-169.

      猜你喜歡
      樹(shù)輪年輪灌木
      年輪
      樹(shù)輪研究方法與進(jìn)展
      天山南北坡樹(shù)輪穩(wěn)定碳同位素對(duì)氣候的響應(yīng)差異
      年輪
      漯河市常見(jiàn)灌木類苗木的整形與修剪要點(diǎn)
      心事
      滇池(2017年5期)2017-05-19 03:22:18
      與世隔絕的人世
      詩(shī)潮(2017年2期)2017-03-16 10:42:30
      杜鵑等 5 種灌木對(duì)PM 2.5 的凈化作用初探
      樹(shù)木年輪對(duì)生態(tài)環(huán)境變化的響應(yīng)及應(yīng)用研究
      為什么樹(shù)有年輪
      三原县| 富川| 穆棱市| 屏边| 霍林郭勒市| 无棣县| 洛阳市| 师宗县| 桃园市| 柘荣县| 连州市| 贡嘎县| 和政县| 板桥市| 哈密市| 咸阳市| 卢龙县| 河东区| 五家渠市| 嘉峪关市| 洛扎县| 卢湾区| 台山市| 宁国市| 都安| 南丰县| 达拉特旗| 昌都县| 安阳市| 普兰店市| 通渭县| 祁东县| 鞍山市| 新兴县| 抚顺县| 德化县| 林州市| 屯留县| 巴东县| 开鲁县| 贵港市|