• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以1-萘乙酸、5,5′-二甲基-2,2′-聯(lián)吡啶構(gòu)筑的雙核釤配合物的晶體結(jié)構(gòu)和熒光性質(zhì)

    2013-08-20 00:57:24黃德乾盛良全蔣雪月劉昭第徐華杰
    無機(jī)化學(xué)學(xué)報 2013年5期
    關(guān)鍵詞:聯(lián)吡啶萘乙酸化工學(xué)院

    黃德乾 張 宏 盛良全 蔣雪月 劉昭第 徐華杰

    (阜陽師范學(xué)院化學(xué)化工學(xué)院,阜陽 236037)

    0 Introduction

    The study of luminescent lanthanide metal complexes has gained great recognition over the last decade due to their superior functional properties and various potential applications[1-6]. Compared to first-row transition metals, lanthanide ions have a larger coordination sphere and more flexible coordination geometry, which makes it even more difficult to control the structures. Thus, to be able to rationally design and construct lanthanide coordination polymers with predicted geometries is still a great challenge, as many factors can affect the overall structural formation[7].It has proved that the selection of ligands containing appropriate coordination sites is crucial to build lanthanide complexes. Fortunately, the lanthanide ions have a strong preference to bond to the O-donor atoms to form, e.g., lanthanide carboxylate subunits. This provides a handle that can be utilized in the construction of new lanthanide complexes with unusual useful physical-chemical properties and intriguing structural topologies. A variety of fascinating lanthanide complexes have been constructed by carboxylate ligands and/or Ncontaining ligands as the auxiliary ligands[8-11]. 1-naphthaleneacetate (1-npac) is interesting in the field of coordination complexes due to its strong and various coordination modes. For example, Liu et al.[12]obtained two dinuclear lanthanide complexes based on 1-npac and 1,10-phenanthroline ligands. Chen also synthesized one dinuclear copper(Ⅱ)complex involving 1-npac and dimethylsulfoxide ligands[13]. As part of an on-going study related to lanthanide metal carboxylates, we report here the preparation and structural characterization of a new dinuclear lanthanide complex, Sm2(1-npac)6(dmpy)2·(H2O)3(1).The luminescent properties of 1 were also studied.

    1 Experimental

    1.1 Materials and measurements

    All chemicals purchased were of reagent grade and used without further purification. All syntheses were carried out in 23 mL Teflon-lined autoclaves under autogenous pressure. Elemental analyses (C, H and N) were performed on a Perkin-Elmer 240 CHN elemental analyzer. Infrared spectra were recorded (4 000 ~400 cm-1) as KBr disks on Shimadzu IR-440 spectrometer. Powder XRD investigations were carried out on a Bruker AXS D8-Advanced diffractometer at 40 kV and 40 mA with Cu Kα (λ=0.154 06 nm)radiation. UV-Vis spectra were recorded at room temperature on a Shimadzu UV-160A spectrophotometer in barium sulfate based paint. Luminescence spectra for crystal solid samples were recorded at room temperature on an Edinburgh FLS920 phosphorimeter. Thermogravimetry analyses (TGA)were performed on an automatic simultaneous thermal analyzer (DTG-60, Shimadzu) under a flow of N2at a heating rate of 10 ℃·min-1between ambient temperature and 800 ℃.

    1.2 Synthesis of complex 1

    Complex 1 was prepared by the addition of stoichiometric amounts of Sm(NO3)3·6H2O (0.222 g,0.5 mmol) and 5,5′-Dimethyl-2,2′-bipyridine (dmpy,0.092 g, 0. 5 mmol) to a hot aqueous solution (15 mL)of 1-naphthaleneacetic acid (0.279 g, 1.5 mmol) where the pH value was adjusted to 8~9 with NaOH (0.016 g, 0.4 mmol). The resulting solution was sealed in a 23 mL Teflon-lined stainless steel autoclave and heated at 150 ℃ for 3 days under autogenous pressure. Colorless single crystals were obtained(yield: 43%, based on dmpy) upon cooling the solution to room temperature at 5 ℃·h-1. Anal. Calcd.(%) for C96H84N4O15Sm2: C, 62.19; H, 4.64; N, 3.02. Found(%):C, 62.24; H, 4.60; N, 3.05. IR (KBr, cm-1): 3 423(vs),3 043(m),2 919(m),1 597(vs),1 551(m),1 508(w),1 478(w),1 408(vs),1 381(vs),1 289(m),1 257(m),1 234(m),1 160(w), 1 041(s), 1 018(w), 982(w), 929(m), 874(w),855(w),832(s),778(vs),735(m),708(s),681(w).

    1.3 Crystal structure determination

    A single crystal with dimension of 0.30 mm×0.28 mm×0.23 mm was mounted on a glass fiber for data collection on a Bruker Apex ⅡCCD diffractometer operating at 50 kV and 30 mA using MoKα radiation(λ=0.07 1073 nm) at room temperature. In the range of 1.64°<θ<27.49°, a total of 33 797 reflections were collected, of which 9 258 were unique (Rint=0.033 8)and 8 063 observed ones (I>2σ(I)) were used in the succeeding structure calculations. Data collection and reduction were performed using the APEX Ⅱsoftware[14]. Multi-scan absorption corrections were applied for all the data sets using the SADABS[14]. The structure was solved by direct methods and refined by full matrix least squares on F2using the SHELXTL program package[15]. All non-hydrogen atoms were refined with anisotropic displacement parameters.Hydrogen atoms attached to carbon were placed in geometrically idealized positions and refined using a riding model. O2W is disordered and it is split into two sets of positions, with occupancy ratios of 0.5∶0.5.Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O-H 0.082 nm and H …H 0.139 nm, with an standard deviation of 0.001 nm, and with Uiso(H)=1.5 Ueq(O). The final R=0.0291 and wR=0.0684 (w=1/[σ2(Fo2)+(0.0400P)2+0.9700P], where P=(Fo2+2Fc2)/3) for 8063 observed reflections with I>2σ (I). S=1.057, (Δ/σ)max=0.000. Crystal parameters and details of the data collection and refinement are given in Table 1.Selected bond lengths and angles are given in Table 2. H-bonding parameters are given in Table 3.

    CCDC: 898378.

    Table 1 Crystal data and structure refinements of the title complex

    Table 2 Selected bond lengths (nm) and angles (°) for the title complex

    Table 3 Hydrogen bond lengths(nm) and angles (°) for the title complex

    2 Results and discussion

    2.1 IR spectra

    The IR spectra of complex 1 (Fig.1) shows broad band at 3 423 cm-1, which may be assigned to the ν (O-H) stretching vibrations of the free water molecules. The moderate absorption band observed at 3 043 and 2 919 cm-1are attributed to the ν(Cmethyl-H)vibration of dmpy ligand. The features at 1 597 and 1 408, 1 381 cm-1are associated with the asymmetric(COO) and symmetric (COO) stretching vibrations.

    Fig.1 IR spectra of 1

    2.2 Structure description

    Fig.2 (a) View of the asymmetric unit of complex 1. Non-H atoms are shown as 30% probability displacement ellipsoids.(b) Tricapped trigonal prismatic (TTP) geometry surronding a Sm(Ⅲ)atom of complex 1

    Single-crystal X-ray diffraction analysis reveals that complex 1 is a centrosymmetric dinuclear structure and crystallizes in triclinic system withspace group. A thermal ellipsoid plot of 1 is shown in Fig.2a. In the asymmetric unit of 1, there are one Sm(Ⅲ)ion, three 1-npac ligands, one dmpy ligand and one and a half water molecules. The structure consists of a centrosymmetric dimers Sm (Ⅲ)ions bridged by two bidentate and two terdentate corboxylato groups.The Sm(Ⅲ)is nine-coordinated by seven oxygen atoms from five different 1-npac ligands and two nitrogen atoms from one dmpy ligand. The Sm1 center can be described as having a distorted tricapped trigonal prismatic (TTP) geometry (Fig.2b). O1i, O5, O6i, O2,O3, N2 atoms form the prism and O4, O1 and N1 atoms cap the rectangular faces (symmetry code:i1-x,1-y, -z). Dihedral angles between the rectangular faces are 53.4°, 58.5° and 69.0°, respectively. The Sm-O, Sm-N bond distance and O-Sm-O, O-Sm-N bond angle ranging from 0.237 9(2) to 0.261 5(2) nm and 51.02(6)° to 151.57(7)°, respectively, all of which are within the range of those observed for other ninecoordinate Sm(Ⅲ)complexes with nitrogen and oxygen donors ligands[16-17]. The 1-npac ligands display three types of coordination (Scheme 1). One acts as a conventional bidentate bridging ligand, bonding to Sm1 through O5 and Sm1ithrough O6i. The second one is chelated to Sm1 through O2, and O1i, with O1ialso linked to Sm1i. The third one acts as a bidentate chelate, bonding to Sm1 through O3 and O4. The structure has three distinct Sm-O distances involving 1-npac ligands depending on three coordination modes; average bond length of Sm-Obridging, Sm-Ochelateand Sm-Oterdentateis 0.240 5, 0.249 0 and 0.249 2 nm,respectively. This indicates that the order of ring strain is terdentate >chelating >bridging[18]. Compared with [SmTb(1-npac)6(phen)2]2·2C3H7NO[19], average bond length is nearly the same (0.2377, 0.2466 and 0.2466 nm, respectively), which shows that different carboxylato groups with the same mode of coordination with Ln (Ⅲ) ion have essentially the same bond requirements. The separation of Sm…Sm (0.392 5 nm)in the dimer just exceeds the sum of the two ionic radii and is significantly shorter than in [SmTb(1-npac)6(phen)2]2·2C3H7NO(0.3953 nm)[19].The short separation,therefore, may be attributed to the simultaneous appearance of four-membered and eight-membered rings between the two samarium atoms. The average Sm-N bond distance is 0.260 2 nm. Structures,including the complex 1 and [SmTb(1-npac)6(phen)2]2·2C3H7NO suggest strongly that N-bidentate heterocyclic amines as ligands have stronger coordination ability for lanthanide ions than N-unidentate which are hard, and much less common. The centrosymmetric dinuclear molecules are further connected into a supramolecular structure through intermolecular O-H…O, C-H…O hydrogen bonding interactions(Fig.3,Table 3).

    Scheme 1 Coordination mode of 1-npac ligands in the structure of complex 1

    Fig.3 View of the 3D supramolecular structure of complex 1 formed by hydrogen bonds (dashed lines), C-H…π and π…π stacking interactions (dashed lines). Cg1-Cg6 are the centroid of the C5-C10 ring, C17-C22 ring,C1-C4/C9/C10 ring, C13-C16/C21/C22, C38-C41/N1, and C42-C46/N2, respectively. Symmetry codes:i 1-x,1-y,-z; ii 1-x,1-y,1-z; iii 2-x,1-y,-z.

    There are also stabilized by C-H…π and π…π stacking interactions. The H-to-centroid distances of H(19)…Cg(1)i=0.292(3) nm, H(28)…Cg(2)ii=0.295(4) nm and H (43) …Cg (3)iii=0.292 (2) nm, and the C-tocentroid distances of C(19)…Cg(1)i= 0.365(2) nm, H(28)…Cg(2)ii=0.387(3) nm and H(43)…Cg(3)iii=0.363(2) nm [Cg(1), Cg(2) and Cg(3) are the centroid of the C5-C10 ring, C17-C22 ring and C1-C4/C9/C10 ring,respectively. Symmetry codes:ii1-x,1-y,1-z;iii2-x,1-y,-z]. The centroid to centroid distances involving parallel pyridyl rings of neighboring dmpy ligands(Cg5 and Cg6 are the centroid of the C37-C41/N1 ring, and the C42-C46/N2 ring, respectively) and parallel benzene rings of neighboring 1-npac ligands(Cg4 is the centroid of the C13-C16/C21/C22 ring) are Cg5…Cg6iii=0.3744(5) and Cg4…Cg4iv=0.3738(5) nm,respectively. The dihedral angles of Cg5…Cg6iiiand Cg4…Cg4ivare 12.11 (2)° and 0.00 (3)°, respectively[Symmetry code:iv1-x,2-y,-z]. Moreover, intramolecular C37-H37…O6 hydrogen bonds are also observed.

    2.3 Thermal analysis

    The TG curve is depicted in Fig.4, which shows three weight loss steps. The first weight loss corresponding the release of two free water molecules is observed from 50 to 120 ℃ (Obsd. 3.95%, Calcd.3.89%). The second weight loss corresponding the escape of one dmpy ligand is observed from 180 to 300 ℃ (Obsd. 20.11 %, Calcd. 20.10%). The sharp weight loss above 300 ℃ corresponds to the decomposition of framework structure.

    2.4 Powder X-ray diffraction analysis

    As shown in Fig.5, the peak positions of the experimental patterns are in a good agreement with the simulated patterns, which clearly indicates the good purity of the complex.

    Fig.4 TG curve for complex 1

    Fig.5 PXRD patterns of complex 1

    2.5 UV-Vis absorption spectra

    Fig.6 illustrates the UV-Vis absorption spectra of 1 in solid state. In the studied wavelength domain from 200~450 nm, the B band of 1-npac and dmpy ligands attributed to the π-π*transition is observed with the most intense of absorption around 281 nm.The second-most intense absorption at 362 corresponds to the K band of the L →M (charge transfer) transition involving 1-npac, dmpy ligands and Nd3+ions[20].

    Fig.6 UV-Vis absorption spectroscopy of 1 in solid state

    2.6 Luminescent properties

    The excitation and emission spectra of complex 1 are shown in Fig.7. The excitation spectra of 1 show a broad band covering the 200 ~250 nm regions. The broad excitation band is assigned to the π-π electron transition of the ligands[21]. In the emission spectrum of 1, there are three characteristic fluorescence emission bands assigned with Sm3+ions, which are the characteristic peaks of the4G5/2→6HJtransitions (J=5/2,7/2, and 9/2)[22]. The peak at 562 nm corresponds to the4G5/2→6H5/2transition of Sm3+ions, the peak at 598 nm corresponds to the4G5/2→6H7/2transition of Sm3+ions, and the strongest peak at 642 nm corresponds to the4G5/2→6H9/2hypersensitive transition of Sm3+ions.The luminescent lifetime of solid complex 1 using an Edinburgh FLS920 phosphorimeter with 450 W xenon lamp as excitation source indicates a lifetime of 0.87 μs at 598 nm (Fig.8).

    Fig.7 Solid-state excitation and emission spectra of complex 1 at room temperature

    Fig.8 Luminescent lifetime for complex 1 in solid state at room temperaturef

    3 Conclusions

    In summary, a dinuclear samarium (Ⅲ)complex based on 1-npac and dmpy ligands has been synthesized and structurally characterized. The Sm3+ions are bridged by two bidentate and two terdentate carboxylato groups to give centrosymmetric dimers.Complex 1 emits intensive orange luminescence of Sm3+ion with fluorescence lifetime of 0.87 μs (598 nm) in the solid state at room temperature.

    [1] Ma D, Wang W, Li Y, et al. CrystEngComm., 2010,12:4372-4377

    [2] Tsukube H, Juanes S. Chem. Rev., 2002,102:2389-2403

    [3] Bünzli J C G. Chem. Rev., 2010,110:2729-2755

    [4] Smith P H, Brainard J R, Morris D E, et al. J. Am. Chem.Soc., 1989,111:7437-7443

    [5] Galdwell J P, Henderson W, Kim N D. J. Forensic Sci.,2001,46:1332-1341

    [6] Kido J, Okamoto Y. Chem. Rev., 2002,102:2357-2368

    [7] Liu J Q. J. Coord. Chem., 2011,64:1503-1512

    [8] Liang Y C, Cao R, Su W P, et al. Angew. Chem. Int. Ed.,2000,39:3304-3307

    [9] Mortl K P, Sutter J P, Golhen S, et al. Inorg. Chem., 2000,39:1626-1627

    [10]Li X, Sun H L, Wu X S, et al. Inorg. Chem., 2010,49:1865-1871

    [11]Seward C, Hu N X, Wang S. Dalton Trans., 2001:134-137

    [12]Liu Y F, Rong D F, Xia H T, et al. J. Coord. Chem., 2009,62:1835-1845

    [13]Chen L F, Zhang J, Song L J, et al. Acta Cryst., 2004,E60:m1032-m1034

    [14]Bruker. APEXII Software, Version 6.3.1, Bruker AXS Inc,Madison, Wisconsin, USA(2004).

    [15]Sheldrick G M. Acta Cryst., 2008,A64:112-122

    [16]Jongen L, Bromant C, Hinz-Hubner D, et al. Z. Anorg. Allg.Chem., 2003,629:975-980

    [17]Sun S J, Zhang D H, Zhang J J, et al. J. Mol. Struct.,2010,977:17-25

    [18]Lu Y Q, Lu W M, Wu B, et al. J. Coord. Chem., 2001,53:15-23

    [19]Xia H T, Liu Y F, Chen L, et al. Acta Cryst., 2008,E64:m1419-m1420

    [20]Yang Y, Zhang L, Liu L, et al. Inorg. Chim. Acta, 2007,360:2638-2646

    [21]Wen S, Zhang X, Hu S, et al. Polymer, 2009,50:3269-3274

    [22]Chen X Y, Jensen M P, Liu G K, et al. J. Phys. Chem. B,2005,109:13991-13999

    猜你喜歡
    聯(lián)吡啶萘乙酸化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    不同生根促進(jìn)劑對玉樹水培誘導(dǎo)的影響
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    乙酸溶液濃度對提高迎春硬枝扦插生根規(guī)律的影響
    紫外分光光度法測定氯化膽堿·萘乙酸可濕性粉劑中萘乙酸含量
    山西化工(2019年3期)2019-08-01 09:21:02
    復(fù)硝酚鈉與萘乙酸處理對紅花羊蹄甲扦插效果的影響
    《化工學(xué)報》贊助單位
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    一区二区三区激情视频| 丝袜人妻中文字幕| 欧美中文综合在线视频| 久久久久网色| 成年动漫av网址| 亚洲性夜色夜夜综合| a在线观看视频网站| 国产精品免费大片| 成年版毛片免费区| 久久久国产欧美日韩av| 免费观看人在逋| 热99re8久久精品国产| 午夜久久久在线观看| 搡老熟女国产l中国老女人| 成人永久免费在线观看视频 | av超薄肉色丝袜交足视频| 久久久久国内视频| 正在播放国产对白刺激| 日韩中文字幕欧美一区二区| 欧美黑人欧美精品刺激| 欧美成狂野欧美在线观看| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久精品电影小说| 亚洲少妇的诱惑av| 国产有黄有色有爽视频| 欧美一级毛片孕妇| 国产精品久久久久成人av| 纯流量卡能插随身wifi吗| 狠狠精品人妻久久久久久综合| 热re99久久精品国产66热6| 日韩欧美国产一区二区入口| 国产精品九九99| 欧美日韩视频精品一区| 国精品久久久久久国模美| 超碰97精品在线观看| a级片在线免费高清观看视频| a级毛片在线看网站| 欧美另类亚洲清纯唯美| 欧美成人午夜精品| 天堂动漫精品| 18禁黄网站禁片午夜丰满| 怎么达到女性高潮| 狠狠精品人妻久久久久久综合| 国产欧美亚洲国产| 精品久久久久久电影网| 日韩免费高清中文字幕av| 搡老岳熟女国产| 老汉色av国产亚洲站长工具| 国产国语露脸激情在线看| 一级毛片精品| 自线自在国产av| 久久久国产精品麻豆| 日韩有码中文字幕| 91精品国产国语对白视频| 悠悠久久av| 老汉色av国产亚洲站长工具| 一本大道久久a久久精品| 久久久久久免费高清国产稀缺| 国产精品国产av在线观看| 人成视频在线观看免费观看| 高清在线国产一区| 亚洲精品在线美女| 美女高潮到喷水免费观看| 亚洲天堂av无毛| 亚洲欧美日韩高清在线视频 | 欧美人与性动交α欧美精品济南到| 久久国产精品人妻蜜桃| 少妇粗大呻吟视频| 亚洲人成77777在线视频| 久久久精品国产亚洲av高清涩受| 日韩免费高清中文字幕av| 国产一区有黄有色的免费视频| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 热re99久久国产66热| 纯流量卡能插随身wifi吗| 国产三级黄色录像| 久久久久视频综合| 在线观看66精品国产| 久久天堂一区二区三区四区| 在线观看免费午夜福利视频| 精品少妇内射三级| 丁香欧美五月| 又大又爽又粗| 精品国内亚洲2022精品成人 | 91成人精品电影| 国产一区二区激情短视频| 国产精品秋霞免费鲁丝片| 日日夜夜操网爽| 嫩草影视91久久| videosex国产| 色综合欧美亚洲国产小说| 欧美乱码精品一区二区三区| 久久精品国产亚洲av香蕉五月 | 法律面前人人平等表现在哪些方面| 九色亚洲精品在线播放| 热99久久久久精品小说推荐| 操出白浆在线播放| 免费在线观看视频国产中文字幕亚洲| 国产av一区二区精品久久| 视频在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 国产精品99久久99久久久不卡| 两个人免费观看高清视频| 亚洲精华国产精华精| av天堂久久9| 激情视频va一区二区三区| 天堂动漫精品| 国产成人一区二区三区免费视频网站| 欧美国产精品va在线观看不卡| 日韩 欧美 亚洲 中文字幕| 男女下面插进去视频免费观看| √禁漫天堂资源中文www| 变态另类成人亚洲欧美熟女 | 91精品国产国语对白视频| 18禁观看日本| 免费观看av网站的网址| 制服人妻中文乱码| 精品亚洲成a人片在线观看| 丝袜美腿诱惑在线| 高清在线国产一区| 日韩欧美国产一区二区入口| 免费观看av网站的网址| 国产aⅴ精品一区二区三区波| 热re99久久精品国产66热6| 久久中文看片网| 成人黄色视频免费在线看| 99国产精品99久久久久| 午夜福利乱码中文字幕| 午夜精品久久久久久毛片777| 亚洲成人手机| 巨乳人妻的诱惑在线观看| 精品福利永久在线观看| 人人妻人人添人人爽欧美一区卜| 久久久国产欧美日韩av| 两性夫妻黄色片| 中文字幕高清在线视频| 亚洲精品中文字幕在线视频| 国产主播在线观看一区二区| 久久久久久久久久久久大奶| 黄色怎么调成土黄色| 自线自在国产av| 中文字幕人妻丝袜制服| 亚洲欧洲日产国产| 超碰97精品在线观看| 在线天堂中文资源库| 日本vs欧美在线观看视频| 丝袜美足系列| 精品视频人人做人人爽| 精品熟女少妇八av免费久了| 99国产精品一区二区三区| 99re在线观看精品视频| 国产色视频综合| av天堂久久9| 狠狠精品人妻久久久久久综合| 肉色欧美久久久久久久蜜桃| 亚洲情色 制服丝袜| 亚洲国产欧美日韩在线播放| 99精国产麻豆久久婷婷| 欧美另类亚洲清纯唯美| 淫妇啪啪啪对白视频| 老司机在亚洲福利影院| 丁香六月天网| 久久精品国产亚洲av高清一级| 久久久久精品国产欧美久久久| 精品国产亚洲在线| 性色av乱码一区二区三区2| 一级片'在线观看视频| 亚洲五月色婷婷综合| 99精品欧美一区二区三区四区| 女警被强在线播放| 高清欧美精品videossex| 亚洲视频免费观看视频| 精品熟女少妇八av免费久了| 女性被躁到高潮视频| 亚洲第一青青草原| 成人国产av品久久久| 日本a在线网址| 亚洲精品国产色婷婷电影| 亚洲国产成人一精品久久久| 亚洲国产精品一区二区三区在线| 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| 亚洲av日韩在线播放| 久久久精品94久久精品| 嫩草影视91久久| av网站免费在线观看视频| 夫妻午夜视频| 极品少妇高潮喷水抽搐| a级毛片在线看网站| 黄色毛片三级朝国网站| 国产精品国产av在线观看| 无人区码免费观看不卡 | 国产男靠女视频免费网站| 欧美在线一区亚洲| 精品卡一卡二卡四卡免费| 免费黄频网站在线观看国产| 久久精品成人免费网站| 欧美日韩国产mv在线观看视频| 国产又色又爽无遮挡免费看| 日韩一卡2卡3卡4卡2021年| 99国产精品一区二区三区| 免费在线观看完整版高清| 亚洲人成电影观看| 老司机亚洲免费影院| 亚洲,欧美精品.| 日本撒尿小便嘘嘘汇集6| 亚洲欧美精品综合一区二区三区| 欧美激情高清一区二区三区| 亚洲 欧美一区二区三区| 丝袜喷水一区| 99香蕉大伊视频| 岛国在线观看网站| 精品久久久久久久毛片微露脸| 夫妻午夜视频| 精品亚洲成a人片在线观看| 欧美亚洲 丝袜 人妻 在线| 精品少妇内射三级| 精品少妇黑人巨大在线播放| 性少妇av在线| 侵犯人妻中文字幕一二三四区| 新久久久久国产一级毛片| 丝袜人妻中文字幕| 色婷婷久久久亚洲欧美| 久久精品人人爽人人爽视色| 亚洲欧美日韩高清在线视频 | 天堂8中文在线网| 一个人免费看片子| 国产精品偷伦视频观看了| 一本久久精品| 国产精品.久久久| 精品欧美一区二区三区在线| av天堂在线播放| 高清毛片免费观看视频网站 | 国产黄色免费在线视频| av电影中文网址| 人妻一区二区av| 精品久久蜜臀av无| 日韩欧美国产一区二区入口| 免费观看a级毛片全部| 757午夜福利合集在线观看| 日本黄色日本黄色录像| 久久久久精品国产欧美久久久| 女人高潮潮喷娇喘18禁视频| 日韩有码中文字幕| 国产一区二区三区视频了| 男女下面插进去视频免费观看| 国产免费视频播放在线视频| 91麻豆精品激情在线观看国产 | 欧美人与性动交α欧美精品济南到| 一边摸一边抽搐一进一出视频| videosex国产| 国产精品电影一区二区三区 | 丝袜人妻中文字幕| 老司机深夜福利视频在线观看| 十八禁网站网址无遮挡| 伦理电影免费视频| 久久狼人影院| 久久久精品国产亚洲av高清涩受| 黄色 视频免费看| 啪啪无遮挡十八禁网站| 久久精品亚洲熟妇少妇任你| 免费高清在线观看日韩| 青青草视频在线视频观看| 国产真人三级小视频在线观看| 国产精品美女特级片免费视频播放器 | tube8黄色片| 99精品久久久久人妻精品| 水蜜桃什么品种好| 亚洲精品中文字幕一二三四区 | 国产免费福利视频在线观看| 精品国产国语对白av| 99精品欧美一区二区三区四区| 久久久国产一区二区| 999久久久精品免费观看国产| 亚洲一码二码三码区别大吗| 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 久久人人爽av亚洲精品天堂| 他把我摸到了高潮在线观看 | 高清视频免费观看一区二区| 大片电影免费在线观看免费| 免费少妇av软件| 麻豆国产av国片精品| 变态另类成人亚洲欧美熟女 | 国产亚洲一区二区精品| 欧美精品人与动牲交sv欧美| 美女福利国产在线| 美女高潮喷水抽搐中文字幕| 国产高清国产精品国产三级| 精品国产一区二区三区四区第35| 在线av久久热| 91成人精品电影| 国产欧美日韩综合在线一区二区| 婷婷成人精品国产| 日本av免费视频播放| 9热在线视频观看99| 国产一区二区三区在线臀色熟女 | www.精华液| 飞空精品影院首页| 免费观看a级毛片全部| 日韩一区二区三区影片| 久久久久久久久久久久大奶| 手机成人av网站| 久久中文字幕人妻熟女| 丝袜美足系列| 午夜福利在线免费观看网站| 午夜福利视频精品| 亚洲,欧美精品.| 多毛熟女@视频| 日韩成人在线观看一区二区三区| 日本vs欧美在线观看视频| 久久久久久人人人人人| 男人操女人黄网站| 欧美日韩黄片免| 这个男人来自地球电影免费观看| 亚洲色图av天堂| 久久久国产精品麻豆| xxxhd国产人妻xxx| 国产在线视频一区二区| 亚洲 欧美一区二区三区| 蜜桃在线观看..| 欧美一级毛片孕妇| 精品国产一区二区三区四区第35| 大片电影免费在线观看免费| 国产淫语在线视频| 高清av免费在线| 丁香欧美五月| 老司机福利观看| 国产野战对白在线观看| 桃花免费在线播放| 涩涩av久久男人的天堂| 99热网站在线观看| 精品亚洲成a人片在线观看| 99久久国产精品久久久| 亚洲av成人不卡在线观看播放网| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久人人人人人| bbb黄色大片| 亚洲国产欧美日韩在线播放| 久久久国产成人免费| 久久久久久免费高清国产稀缺| 亚洲人成电影观看| 亚洲精品在线美女| 亚洲熟女精品中文字幕| 亚洲国产成人一精品久久久| 无人区码免费观看不卡 | 亚洲国产欧美在线一区| 国产xxxxx性猛交| 性少妇av在线| tube8黄色片| 国产精品亚洲av一区麻豆| 在线观看免费视频日本深夜| 亚洲黑人精品在线| 下体分泌物呈黄色| 午夜福利在线观看吧| 亚洲午夜精品一区,二区,三区| 狠狠狠狠99中文字幕| 天天躁日日躁夜夜躁夜夜| 国产精品一区二区在线观看99| 精品高清国产在线一区| 岛国毛片在线播放| 免费一级毛片在线播放高清视频 | 色播在线永久视频| 黑丝袜美女国产一区| 精品国产国语对白av| 免费高清在线观看日韩| 国产成+人综合+亚洲专区| 国产精品自产拍在线观看55亚洲 | 三上悠亚av全集在线观看| 久久午夜亚洲精品久久| 老汉色∧v一级毛片| 一区二区三区精品91| 在线观看免费视频日本深夜| 欧美成狂野欧美在线观看| 亚洲欧美精品综合一区二区三区| 久久久久久久久久久久大奶| 欧美成人午夜精品| 99riav亚洲国产免费| 黄网站色视频无遮挡免费观看| 嫁个100分男人电影在线观看| 9热在线视频观看99| av网站免费在线观看视频| 黄色视频在线播放观看不卡| 久久精品成人免费网站| 麻豆乱淫一区二区| 久久久久国内视频| 超碰97精品在线观看| 亚洲天堂av无毛| 日本黄色视频三级网站网址 | 国产精品自产拍在线观看55亚洲 | 日韩成人在线观看一区二区三区| 色综合欧美亚洲国产小说| 男女无遮挡免费网站观看| 成人三级做爰电影| 热99久久久久精品小说推荐| 精品第一国产精品| 黄色视频不卡| 亚洲午夜理论影院| 久久精品国产亚洲av高清一级| 国产精品熟女久久久久浪| 男女下面插进去视频免费观看| 精品福利观看| 超色免费av| 亚洲精品在线美女| 99久久国产精品久久久| 少妇精品久久久久久久| 亚洲精品乱久久久久久| 日韩欧美一区视频在线观看| 久久久久久久久免费视频了| 在线天堂中文资源库| 中文字幕高清在线视频| 性色av乱码一区二区三区2| a级毛片黄视频| 男女边摸边吃奶| 精品福利观看| 成年人黄色毛片网站| 在线观看66精品国产| 亚洲一码二码三码区别大吗| 搡老熟女国产l中国老女人| 亚洲av日韩精品久久久久久密| 最新美女视频免费是黄的| 人妻 亚洲 视频| 可以免费在线观看a视频的电影网站| 午夜视频精品福利| 嫁个100分男人电影在线观看| 成年版毛片免费区| 久久99一区二区三区| 国产成人精品久久二区二区免费| 亚洲av美国av| 亚洲成a人片在线一区二区| 悠悠久久av| 狠狠狠狠99中文字幕| 丁香六月欧美| 少妇被粗大的猛进出69影院| av片东京热男人的天堂| 亚洲熟女毛片儿| av网站免费在线观看视频| 丰满少妇做爰视频| 国产欧美亚洲国产| 淫妇啪啪啪对白视频| 热99久久久久精品小说推荐| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播| 中国美女看黄片| 亚洲专区字幕在线| 亚洲人成电影观看| 亚洲国产欧美一区二区综合| 99九九在线精品视频| 欧美激情极品国产一区二区三区| 国产片内射在线| 国产xxxxx性猛交| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 无人区码免费观看不卡 | 亚洲七黄色美女视频| 午夜日韩欧美国产| 美女高潮喷水抽搐中文字幕| 丰满人妻熟妇乱又伦精品不卡| 精品视频人人做人人爽| 多毛熟女@视频| 国产真人三级小视频在线观看| av网站在线播放免费| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 国产精品香港三级国产av潘金莲| 亚洲综合色网址| 国产精品麻豆人妻色哟哟久久| 夜夜夜夜夜久久久久| 精品亚洲成国产av| 中亚洲国语对白在线视频| 曰老女人黄片| 精品福利永久在线观看| 九色亚洲精品在线播放| 国产亚洲精品久久久久5区| 欧美国产精品va在线观看不卡| 日本a在线网址| 国产老妇伦熟女老妇高清| 极品教师在线免费播放| 丝袜美足系列| 肉色欧美久久久久久久蜜桃| 久久精品亚洲熟妇少妇任你| 性色av乱码一区二区三区2| 老司机深夜福利视频在线观看| 欧美激情高清一区二区三区| 欧美日韩国产mv在线观看视频| 人人妻人人澡人人爽人人夜夜| 午夜91福利影院| 99国产综合亚洲精品| 亚洲专区字幕在线| 亚洲九九香蕉| 亚洲va日本ⅴa欧美va伊人久久| 99精国产麻豆久久婷婷| 99久久99久久久精品蜜桃| 久热这里只有精品99| 美女主播在线视频| 婷婷成人精品国产| 欧美日韩视频精品一区| 国产无遮挡羞羞视频在线观看| 亚洲五月婷婷丁香| 在线观看免费视频日本深夜| 国产黄色免费在线视频| 国产精品1区2区在线观看. | 高清视频免费观看一区二区| 久久久久久久久免费视频了| 99re6热这里在线精品视频| 国产日韩一区二区三区精品不卡| 国产91精品成人一区二区三区 | 欧美老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久| 午夜福利一区二区在线看| 国产精品免费大片| 午夜福利一区二区在线看| www.熟女人妻精品国产| 久久久欧美国产精品| 伦理电影免费视频| 久久av网站| 亚洲精品久久午夜乱码| 亚洲视频免费观看视频| 黄色a级毛片大全视频| 欧美激情高清一区二区三区| videosex国产| 97人妻天天添夜夜摸| 日韩有码中文字幕| h视频一区二区三区| 精品国内亚洲2022精品成人 | 大香蕉久久成人网| 亚洲精品在线观看二区| 久久久久精品国产欧美久久久| 90打野战视频偷拍视频| 侵犯人妻中文字幕一二三四区| 热99re8久久精品国产| 久久精品国产亚洲av香蕉五月 | 精品亚洲乱码少妇综合久久| 亚洲精品国产色婷婷电影| 人人妻人人澡人人爽人人夜夜| 国产精品98久久久久久宅男小说| 无人区码免费观看不卡 | 国产免费视频播放在线视频| 老鸭窝网址在线观看| 亚洲全国av大片| 夫妻午夜视频| 午夜福利在线免费观看网站| 国产视频一区二区在线看| 日本wwww免费看| 久热这里只有精品99| 精品高清国产在线一区| 亚洲精品自拍成人| 国产精品影院久久| 最近最新中文字幕大全电影3 | 中国美女看黄片| 亚洲精品在线观看二区| 欧美大码av| 俄罗斯特黄特色一大片| 亚洲欧美激情在线| 亚洲成国产人片在线观看| 免费在线观看完整版高清| 又黄又粗又硬又大视频| 国产欧美日韩一区二区精品| av欧美777| 热re99久久国产66热| 国产黄色免费在线视频| 在线观看人妻少妇| 国产在线精品亚洲第一网站| 国产免费福利视频在线观看| 在线亚洲精品国产二区图片欧美| 夫妻午夜视频| 大陆偷拍与自拍| 国产日韩欧美视频二区| 国产单亲对白刺激| 亚洲精品美女久久av网站| 9热在线视频观看99| 日本wwww免费看| 国产精品免费一区二区三区在线 | 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 欧美黑人欧美精品刺激| 国产精品国产高清国产av | 亚洲午夜理论影院| 国产黄频视频在线观看| 亚洲欧美色中文字幕在线| 啦啦啦在线免费观看视频4| 一级,二级,三级黄色视频| 涩涩av久久男人的天堂| 色视频在线一区二区三区| 久久99一区二区三区| 伊人久久大香线蕉亚洲五| 久久久精品94久久精品| 久久人妻福利社区极品人妻图片| 欧美亚洲日本最大视频资源| 国产成人啪精品午夜网站| 黑丝袜美女国产一区| 国产一区二区三区视频了| 国产精品免费大片| 成在线人永久免费视频| 一区二区三区激情视频| 成人三级做爰电影| 人人妻人人澡人人爽人人夜夜| 建设人人有责人人尽责人人享有的| 首页视频小说图片口味搜索| 十八禁网站网址无遮挡| 亚洲精品一卡2卡三卡4卡5卡| 国产97色在线日韩免费| 亚洲熟妇熟女久久| 亚洲五月色婷婷综合| 日韩中文字幕视频在线看片| 性高湖久久久久久久久免费观看| 亚洲欧美日韩另类电影网站| 精品久久蜜臀av无| 成人亚洲精品一区在线观看| 久久久精品区二区三区| 美女扒开内裤让男人捅视频| 免费高清在线观看日韩| 老汉色∧v一级毛片| 在线播放国产精品三级|