• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以1-萘乙酸、5,5′-二甲基-2,2′-聯(lián)吡啶構(gòu)筑的雙核釤配合物的晶體結(jié)構(gòu)和熒光性質(zhì)

    2013-08-20 00:57:24黃德乾盛良全蔣雪月劉昭第徐華杰
    無機(jī)化學(xué)學(xué)報 2013年5期
    關(guān)鍵詞:聯(lián)吡啶萘乙酸化工學(xué)院

    黃德乾 張 宏 盛良全 蔣雪月 劉昭第 徐華杰

    (阜陽師范學(xué)院化學(xué)化工學(xué)院,阜陽 236037)

    0 Introduction

    The study of luminescent lanthanide metal complexes has gained great recognition over the last decade due to their superior functional properties and various potential applications[1-6]. Compared to first-row transition metals, lanthanide ions have a larger coordination sphere and more flexible coordination geometry, which makes it even more difficult to control the structures. Thus, to be able to rationally design and construct lanthanide coordination polymers with predicted geometries is still a great challenge, as many factors can affect the overall structural formation[7].It has proved that the selection of ligands containing appropriate coordination sites is crucial to build lanthanide complexes. Fortunately, the lanthanide ions have a strong preference to bond to the O-donor atoms to form, e.g., lanthanide carboxylate subunits. This provides a handle that can be utilized in the construction of new lanthanide complexes with unusual useful physical-chemical properties and intriguing structural topologies. A variety of fascinating lanthanide complexes have been constructed by carboxylate ligands and/or Ncontaining ligands as the auxiliary ligands[8-11]. 1-naphthaleneacetate (1-npac) is interesting in the field of coordination complexes due to its strong and various coordination modes. For example, Liu et al.[12]obtained two dinuclear lanthanide complexes based on 1-npac and 1,10-phenanthroline ligands. Chen also synthesized one dinuclear copper(Ⅱ)complex involving 1-npac and dimethylsulfoxide ligands[13]. As part of an on-going study related to lanthanide metal carboxylates, we report here the preparation and structural characterization of a new dinuclear lanthanide complex, Sm2(1-npac)6(dmpy)2·(H2O)3(1).The luminescent properties of 1 were also studied.

    1 Experimental

    1.1 Materials and measurements

    All chemicals purchased were of reagent grade and used without further purification. All syntheses were carried out in 23 mL Teflon-lined autoclaves under autogenous pressure. Elemental analyses (C, H and N) were performed on a Perkin-Elmer 240 CHN elemental analyzer. Infrared spectra were recorded (4 000 ~400 cm-1) as KBr disks on Shimadzu IR-440 spectrometer. Powder XRD investigations were carried out on a Bruker AXS D8-Advanced diffractometer at 40 kV and 40 mA with Cu Kα (λ=0.154 06 nm)radiation. UV-Vis spectra were recorded at room temperature on a Shimadzu UV-160A spectrophotometer in barium sulfate based paint. Luminescence spectra for crystal solid samples were recorded at room temperature on an Edinburgh FLS920 phosphorimeter. Thermogravimetry analyses (TGA)were performed on an automatic simultaneous thermal analyzer (DTG-60, Shimadzu) under a flow of N2at a heating rate of 10 ℃·min-1between ambient temperature and 800 ℃.

    1.2 Synthesis of complex 1

    Complex 1 was prepared by the addition of stoichiometric amounts of Sm(NO3)3·6H2O (0.222 g,0.5 mmol) and 5,5′-Dimethyl-2,2′-bipyridine (dmpy,0.092 g, 0. 5 mmol) to a hot aqueous solution (15 mL)of 1-naphthaleneacetic acid (0.279 g, 1.5 mmol) where the pH value was adjusted to 8~9 with NaOH (0.016 g, 0.4 mmol). The resulting solution was sealed in a 23 mL Teflon-lined stainless steel autoclave and heated at 150 ℃ for 3 days under autogenous pressure. Colorless single crystals were obtained(yield: 43%, based on dmpy) upon cooling the solution to room temperature at 5 ℃·h-1. Anal. Calcd.(%) for C96H84N4O15Sm2: C, 62.19; H, 4.64; N, 3.02. Found(%):C, 62.24; H, 4.60; N, 3.05. IR (KBr, cm-1): 3 423(vs),3 043(m),2 919(m),1 597(vs),1 551(m),1 508(w),1 478(w),1 408(vs),1 381(vs),1 289(m),1 257(m),1 234(m),1 160(w), 1 041(s), 1 018(w), 982(w), 929(m), 874(w),855(w),832(s),778(vs),735(m),708(s),681(w).

    1.3 Crystal structure determination

    A single crystal with dimension of 0.30 mm×0.28 mm×0.23 mm was mounted on a glass fiber for data collection on a Bruker Apex ⅡCCD diffractometer operating at 50 kV and 30 mA using MoKα radiation(λ=0.07 1073 nm) at room temperature. In the range of 1.64°<θ<27.49°, a total of 33 797 reflections were collected, of which 9 258 were unique (Rint=0.033 8)and 8 063 observed ones (I>2σ(I)) were used in the succeeding structure calculations. Data collection and reduction were performed using the APEX Ⅱsoftware[14]. Multi-scan absorption corrections were applied for all the data sets using the SADABS[14]. The structure was solved by direct methods and refined by full matrix least squares on F2using the SHELXTL program package[15]. All non-hydrogen atoms were refined with anisotropic displacement parameters.Hydrogen atoms attached to carbon were placed in geometrically idealized positions and refined using a riding model. O2W is disordered and it is split into two sets of positions, with occupancy ratios of 0.5∶0.5.Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O-H 0.082 nm and H …H 0.139 nm, with an standard deviation of 0.001 nm, and with Uiso(H)=1.5 Ueq(O). The final R=0.0291 and wR=0.0684 (w=1/[σ2(Fo2)+(0.0400P)2+0.9700P], where P=(Fo2+2Fc2)/3) for 8063 observed reflections with I>2σ (I). S=1.057, (Δ/σ)max=0.000. Crystal parameters and details of the data collection and refinement are given in Table 1.Selected bond lengths and angles are given in Table 2. H-bonding parameters are given in Table 3.

    CCDC: 898378.

    Table 1 Crystal data and structure refinements of the title complex

    Table 2 Selected bond lengths (nm) and angles (°) for the title complex

    Table 3 Hydrogen bond lengths(nm) and angles (°) for the title complex

    2 Results and discussion

    2.1 IR spectra

    The IR spectra of complex 1 (Fig.1) shows broad band at 3 423 cm-1, which may be assigned to the ν (O-H) stretching vibrations of the free water molecules. The moderate absorption band observed at 3 043 and 2 919 cm-1are attributed to the ν(Cmethyl-H)vibration of dmpy ligand. The features at 1 597 and 1 408, 1 381 cm-1are associated with the asymmetric(COO) and symmetric (COO) stretching vibrations.

    Fig.1 IR spectra of 1

    2.2 Structure description

    Fig.2 (a) View of the asymmetric unit of complex 1. Non-H atoms are shown as 30% probability displacement ellipsoids.(b) Tricapped trigonal prismatic (TTP) geometry surronding a Sm(Ⅲ)atom of complex 1

    Single-crystal X-ray diffraction analysis reveals that complex 1 is a centrosymmetric dinuclear structure and crystallizes in triclinic system withspace group. A thermal ellipsoid plot of 1 is shown in Fig.2a. In the asymmetric unit of 1, there are one Sm(Ⅲ)ion, three 1-npac ligands, one dmpy ligand and one and a half water molecules. The structure consists of a centrosymmetric dimers Sm (Ⅲ)ions bridged by two bidentate and two terdentate corboxylato groups.The Sm(Ⅲ)is nine-coordinated by seven oxygen atoms from five different 1-npac ligands and two nitrogen atoms from one dmpy ligand. The Sm1 center can be described as having a distorted tricapped trigonal prismatic (TTP) geometry (Fig.2b). O1i, O5, O6i, O2,O3, N2 atoms form the prism and O4, O1 and N1 atoms cap the rectangular faces (symmetry code:i1-x,1-y, -z). Dihedral angles between the rectangular faces are 53.4°, 58.5° and 69.0°, respectively. The Sm-O, Sm-N bond distance and O-Sm-O, O-Sm-N bond angle ranging from 0.237 9(2) to 0.261 5(2) nm and 51.02(6)° to 151.57(7)°, respectively, all of which are within the range of those observed for other ninecoordinate Sm(Ⅲ)complexes with nitrogen and oxygen donors ligands[16-17]. The 1-npac ligands display three types of coordination (Scheme 1). One acts as a conventional bidentate bridging ligand, bonding to Sm1 through O5 and Sm1ithrough O6i. The second one is chelated to Sm1 through O2, and O1i, with O1ialso linked to Sm1i. The third one acts as a bidentate chelate, bonding to Sm1 through O3 and O4. The structure has three distinct Sm-O distances involving 1-npac ligands depending on three coordination modes; average bond length of Sm-Obridging, Sm-Ochelateand Sm-Oterdentateis 0.240 5, 0.249 0 and 0.249 2 nm,respectively. This indicates that the order of ring strain is terdentate >chelating >bridging[18]. Compared with [SmTb(1-npac)6(phen)2]2·2C3H7NO[19], average bond length is nearly the same (0.2377, 0.2466 and 0.2466 nm, respectively), which shows that different carboxylato groups with the same mode of coordination with Ln (Ⅲ) ion have essentially the same bond requirements. The separation of Sm…Sm (0.392 5 nm)in the dimer just exceeds the sum of the two ionic radii and is significantly shorter than in [SmTb(1-npac)6(phen)2]2·2C3H7NO(0.3953 nm)[19].The short separation,therefore, may be attributed to the simultaneous appearance of four-membered and eight-membered rings between the two samarium atoms. The average Sm-N bond distance is 0.260 2 nm. Structures,including the complex 1 and [SmTb(1-npac)6(phen)2]2·2C3H7NO suggest strongly that N-bidentate heterocyclic amines as ligands have stronger coordination ability for lanthanide ions than N-unidentate which are hard, and much less common. The centrosymmetric dinuclear molecules are further connected into a supramolecular structure through intermolecular O-H…O, C-H…O hydrogen bonding interactions(Fig.3,Table 3).

    Scheme 1 Coordination mode of 1-npac ligands in the structure of complex 1

    Fig.3 View of the 3D supramolecular structure of complex 1 formed by hydrogen bonds (dashed lines), C-H…π and π…π stacking interactions (dashed lines). Cg1-Cg6 are the centroid of the C5-C10 ring, C17-C22 ring,C1-C4/C9/C10 ring, C13-C16/C21/C22, C38-C41/N1, and C42-C46/N2, respectively. Symmetry codes:i 1-x,1-y,-z; ii 1-x,1-y,1-z; iii 2-x,1-y,-z.

    There are also stabilized by C-H…π and π…π stacking interactions. The H-to-centroid distances of H(19)…Cg(1)i=0.292(3) nm, H(28)…Cg(2)ii=0.295(4) nm and H (43) …Cg (3)iii=0.292 (2) nm, and the C-tocentroid distances of C(19)…Cg(1)i= 0.365(2) nm, H(28)…Cg(2)ii=0.387(3) nm and H(43)…Cg(3)iii=0.363(2) nm [Cg(1), Cg(2) and Cg(3) are the centroid of the C5-C10 ring, C17-C22 ring and C1-C4/C9/C10 ring,respectively. Symmetry codes:ii1-x,1-y,1-z;iii2-x,1-y,-z]. The centroid to centroid distances involving parallel pyridyl rings of neighboring dmpy ligands(Cg5 and Cg6 are the centroid of the C37-C41/N1 ring, and the C42-C46/N2 ring, respectively) and parallel benzene rings of neighboring 1-npac ligands(Cg4 is the centroid of the C13-C16/C21/C22 ring) are Cg5…Cg6iii=0.3744(5) and Cg4…Cg4iv=0.3738(5) nm,respectively. The dihedral angles of Cg5…Cg6iiiand Cg4…Cg4ivare 12.11 (2)° and 0.00 (3)°, respectively[Symmetry code:iv1-x,2-y,-z]. Moreover, intramolecular C37-H37…O6 hydrogen bonds are also observed.

    2.3 Thermal analysis

    The TG curve is depicted in Fig.4, which shows three weight loss steps. The first weight loss corresponding the release of two free water molecules is observed from 50 to 120 ℃ (Obsd. 3.95%, Calcd.3.89%). The second weight loss corresponding the escape of one dmpy ligand is observed from 180 to 300 ℃ (Obsd. 20.11 %, Calcd. 20.10%). The sharp weight loss above 300 ℃ corresponds to the decomposition of framework structure.

    2.4 Powder X-ray diffraction analysis

    As shown in Fig.5, the peak positions of the experimental patterns are in a good agreement with the simulated patterns, which clearly indicates the good purity of the complex.

    Fig.4 TG curve for complex 1

    Fig.5 PXRD patterns of complex 1

    2.5 UV-Vis absorption spectra

    Fig.6 illustrates the UV-Vis absorption spectra of 1 in solid state. In the studied wavelength domain from 200~450 nm, the B band of 1-npac and dmpy ligands attributed to the π-π*transition is observed with the most intense of absorption around 281 nm.The second-most intense absorption at 362 corresponds to the K band of the L →M (charge transfer) transition involving 1-npac, dmpy ligands and Nd3+ions[20].

    Fig.6 UV-Vis absorption spectroscopy of 1 in solid state

    2.6 Luminescent properties

    The excitation and emission spectra of complex 1 are shown in Fig.7. The excitation spectra of 1 show a broad band covering the 200 ~250 nm regions. The broad excitation band is assigned to the π-π electron transition of the ligands[21]. In the emission spectrum of 1, there are three characteristic fluorescence emission bands assigned with Sm3+ions, which are the characteristic peaks of the4G5/2→6HJtransitions (J=5/2,7/2, and 9/2)[22]. The peak at 562 nm corresponds to the4G5/2→6H5/2transition of Sm3+ions, the peak at 598 nm corresponds to the4G5/2→6H7/2transition of Sm3+ions, and the strongest peak at 642 nm corresponds to the4G5/2→6H9/2hypersensitive transition of Sm3+ions.The luminescent lifetime of solid complex 1 using an Edinburgh FLS920 phosphorimeter with 450 W xenon lamp as excitation source indicates a lifetime of 0.87 μs at 598 nm (Fig.8).

    Fig.7 Solid-state excitation and emission spectra of complex 1 at room temperature

    Fig.8 Luminescent lifetime for complex 1 in solid state at room temperaturef

    3 Conclusions

    In summary, a dinuclear samarium (Ⅲ)complex based on 1-npac and dmpy ligands has been synthesized and structurally characterized. The Sm3+ions are bridged by two bidentate and two terdentate carboxylato groups to give centrosymmetric dimers.Complex 1 emits intensive orange luminescence of Sm3+ion with fluorescence lifetime of 0.87 μs (598 nm) in the solid state at room temperature.

    [1] Ma D, Wang W, Li Y, et al. CrystEngComm., 2010,12:4372-4377

    [2] Tsukube H, Juanes S. Chem. Rev., 2002,102:2389-2403

    [3] Bünzli J C G. Chem. Rev., 2010,110:2729-2755

    [4] Smith P H, Brainard J R, Morris D E, et al. J. Am. Chem.Soc., 1989,111:7437-7443

    [5] Galdwell J P, Henderson W, Kim N D. J. Forensic Sci.,2001,46:1332-1341

    [6] Kido J, Okamoto Y. Chem. Rev., 2002,102:2357-2368

    [7] Liu J Q. J. Coord. Chem., 2011,64:1503-1512

    [8] Liang Y C, Cao R, Su W P, et al. Angew. Chem. Int. Ed.,2000,39:3304-3307

    [9] Mortl K P, Sutter J P, Golhen S, et al. Inorg. Chem., 2000,39:1626-1627

    [10]Li X, Sun H L, Wu X S, et al. Inorg. Chem., 2010,49:1865-1871

    [11]Seward C, Hu N X, Wang S. Dalton Trans., 2001:134-137

    [12]Liu Y F, Rong D F, Xia H T, et al. J. Coord. Chem., 2009,62:1835-1845

    [13]Chen L F, Zhang J, Song L J, et al. Acta Cryst., 2004,E60:m1032-m1034

    [14]Bruker. APEXII Software, Version 6.3.1, Bruker AXS Inc,Madison, Wisconsin, USA(2004).

    [15]Sheldrick G M. Acta Cryst., 2008,A64:112-122

    [16]Jongen L, Bromant C, Hinz-Hubner D, et al. Z. Anorg. Allg.Chem., 2003,629:975-980

    [17]Sun S J, Zhang D H, Zhang J J, et al. J. Mol. Struct.,2010,977:17-25

    [18]Lu Y Q, Lu W M, Wu B, et al. J. Coord. Chem., 2001,53:15-23

    [19]Xia H T, Liu Y F, Chen L, et al. Acta Cryst., 2008,E64:m1419-m1420

    [20]Yang Y, Zhang L, Liu L, et al. Inorg. Chim. Acta, 2007,360:2638-2646

    [21]Wen S, Zhang X, Hu S, et al. Polymer, 2009,50:3269-3274

    [22]Chen X Y, Jensen M P, Liu G K, et al. J. Phys. Chem. B,2005,109:13991-13999

    猜你喜歡
    聯(lián)吡啶萘乙酸化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    不同生根促進(jìn)劑對玉樹水培誘導(dǎo)的影響
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    乙酸溶液濃度對提高迎春硬枝扦插生根規(guī)律的影響
    紫外分光光度法測定氯化膽堿·萘乙酸可濕性粉劑中萘乙酸含量
    山西化工(2019年3期)2019-08-01 09:21:02
    復(fù)硝酚鈉與萘乙酸處理對紅花羊蹄甲扦插效果的影響
    《化工學(xué)報》贊助單位
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    国内久久婷婷六月综合欲色啪| 国产黄a三级三级三级人| 国产精品亚洲美女久久久| 老司机福利观看| 欧美激情在线99| 天堂√8在线中文| 亚洲av成人不卡在线观看播放网| 日本熟妇午夜| 欧美最黄视频在线播放免费| 成年免费大片在线观看| 91久久精品国产一区二区成人| 国产精品爽爽va在线观看网站| 久久99热这里只有精品18| 亚洲精品一区av在线观看| 成人毛片a级毛片在线播放| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久久中文| 级片在线观看| 亚洲人成网站在线播| 美女高潮的动态| 真人一进一出gif抽搐免费| 1000部很黄的大片| 人妻制服诱惑在线中文字幕| www.熟女人妻精品国产| 首页视频小说图片口味搜索| 一本一本综合久久| 久久亚洲真实| 免费大片18禁| 亚洲av日韩精品久久久久久密| 国产91精品成人一区二区三区| 无遮挡黄片免费观看| 少妇熟女aⅴ在线视频| 毛片一级片免费看久久久久 | 丰满的人妻完整版| 欧美xxxx性猛交bbbb| 精品久久国产蜜桃| av在线观看视频网站免费| 不卡一级毛片| 国产精品一区二区三区四区免费观看 | 亚洲精品亚洲一区二区| 麻豆一二三区av精品| 亚洲av电影不卡..在线观看| 日韩欧美精品免费久久 | 性欧美人与动物交配| 欧美色视频一区免费| 制服丝袜大香蕉在线| 精品久久国产蜜桃| 欧美午夜高清在线| 亚洲真实伦在线观看| 我的老师免费观看完整版| 757午夜福利合集在线观看| 麻豆一二三区av精品| 国产成人a区在线观看| 首页视频小说图片口味搜索| 俺也久久电影网| 最近中文字幕高清免费大全6 | 欧美+日韩+精品| 国产激情偷乱视频一区二区| 日韩欧美国产在线观看| 久久久久性生活片| 国产麻豆成人av免费视频| 久久九九热精品免费| 午夜福利在线观看吧| 色哟哟·www| 黄色女人牲交| 成人三级黄色视频| 91久久精品电影网| 一级黄色大片毛片| 成年女人看的毛片在线观看| 在线播放无遮挡| 免费在线观看日本一区| 内地一区二区视频在线| 免费在线观看成人毛片| 午夜老司机福利剧场| 69人妻影院| 有码 亚洲区| 久久精品国产清高在天天线| 一a级毛片在线观看| 久久人人精品亚洲av| 悠悠久久av| 国产白丝娇喘喷水9色精品| 中文资源天堂在线| 国产伦精品一区二区三区四那| 别揉我奶头 嗯啊视频| 久久99热6这里只有精品| 精品熟女少妇八av免费久了| 高清毛片免费观看视频网站| 91久久精品国产一区二区成人| 亚洲性夜色夜夜综合| 国产精品,欧美在线| 欧美bdsm另类| 2021天堂中文幕一二区在线观| 亚洲一区二区三区色噜噜| 久久香蕉精品热| 国产黄片美女视频| 色综合婷婷激情| 亚洲av中文字字幕乱码综合| 又黄又爽又刺激的免费视频.| 精品午夜福利视频在线观看一区| 很黄的视频免费| 99久国产av精品| 亚洲人成伊人成综合网2020| 亚洲自拍偷在线| 午夜两性在线视频| 亚洲中文字幕日韩| 99久久九九国产精品国产免费| 成人欧美大片| 级片在线观看| 欧美另类亚洲清纯唯美| 麻豆av噜噜一区二区三区| 成人性生交大片免费视频hd| 成年人黄色毛片网站| 性色avwww在线观看| 欧美zozozo另类| 国产精品爽爽va在线观看网站| 国产三级黄色录像| 黄片小视频在线播放| 在线观看一区二区三区| 亚洲真实伦在线观看| 色哟哟哟哟哟哟| 一个人看的www免费观看视频| 一个人看视频在线观看www免费| 老司机深夜福利视频在线观看| 亚洲一区二区三区不卡视频| 搡老熟女国产l中国老女人| 亚洲av中文字字幕乱码综合| 十八禁国产超污无遮挡网站| www.熟女人妻精品国产| 欧美成人免费av一区二区三区| 18禁黄网站禁片午夜丰满| 欧美黑人巨大hd| 观看美女的网站| 综合色av麻豆| 长腿黑丝高跟| 国产高清视频在线观看网站| 搡老岳熟女国产| 麻豆久久精品国产亚洲av| 麻豆成人av在线观看| 国产伦在线观看视频一区| 成人一区二区视频在线观看| 久久精品国产亚洲av天美| 国内精品久久久久久久电影| 日韩av在线大香蕉| 成人特级av手机在线观看| 久久中文看片网| 一级a爱片免费观看的视频| 成人毛片a级毛片在线播放| 精品国产亚洲在线| 99久久九九国产精品国产免费| 内射极品少妇av片p| a级一级毛片免费在线观看| 国产在线精品亚洲第一网站| 欧美国产日韩亚洲一区| 精品日产1卡2卡| 性欧美人与动物交配| 99热6这里只有精品| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久com| 久久午夜福利片| а√天堂www在线а√下载| 一个人免费在线观看的高清视频| 深夜精品福利| 久久久久久大精品| 亚洲av免费在线观看| 国产成年人精品一区二区| 色吧在线观看| 他把我摸到了高潮在线观看| 亚州av有码| 亚洲激情在线av| 国产私拍福利视频在线观看| 亚洲熟妇熟女久久| 狠狠狠狠99中文字幕| 久久午夜福利片| 亚洲黑人精品在线| 久久精品影院6| 欧美bdsm另类| 丁香欧美五月| 在线a可以看的网站| 免费看光身美女| 国产成人a区在线观看| 99久久精品一区二区三区| 成人精品一区二区免费| 欧美潮喷喷水| 国产成人a区在线观看| 国产精品爽爽va在线观看网站| 综合色av麻豆| 天美传媒精品一区二区| 日本 欧美在线| 亚洲最大成人手机在线| 国产美女午夜福利| 狂野欧美白嫩少妇大欣赏| 亚洲精品456在线播放app | 女生性感内裤真人,穿戴方法视频| 国产一区二区亚洲精品在线观看| 淫秽高清视频在线观看| 欧美一区二区国产精品久久精品| 男女床上黄色一级片免费看| 亚洲无线在线观看| 99国产精品一区二区蜜桃av| 夜夜爽天天搞| 毛片女人毛片| 亚洲欧美激情综合另类| 成人亚洲精品av一区二区| 最近最新中文字幕大全电影3| 乱码一卡2卡4卡精品| 国产久久久一区二区三区| 九色国产91popny在线| a级一级毛片免费在线观看| 欧美乱色亚洲激情| 黄色一级大片看看| 亚洲专区国产一区二区| 精品不卡国产一区二区三区| 久久久久久九九精品二区国产| 又粗又爽又猛毛片免费看| 国产高清视频在线播放一区| 不卡一级毛片| 少妇人妻一区二区三区视频| 亚洲综合色惰| 丰满乱子伦码专区| 亚洲av日韩精品久久久久久密| 国产伦人伦偷精品视频| 国产成人影院久久av| 简卡轻食公司| 久久久色成人| 麻豆av噜噜一区二区三区| 国产成人啪精品午夜网站| 成人一区二区视频在线观看| 内射极品少妇av片p| 两个人的视频大全免费| 日本五十路高清| 亚洲激情在线av| av在线天堂中文字幕| 一边摸一边抽搐一进一小说| 精品一区二区三区视频在线| 国产日本99.免费观看| 又爽又黄a免费视频| 日韩欧美在线乱码| 国产毛片a区久久久久| 午夜福利在线观看免费完整高清在 | 国产精品爽爽va在线观看网站| 国产精品久久久久久人妻精品电影| 亚洲成av人片免费观看| xxxwww97欧美| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 天堂av国产一区二区熟女人妻| 精品久久久久久久人妻蜜臀av| 成人永久免费在线观看视频| 亚洲欧美日韩东京热| 国产白丝娇喘喷水9色精品| 全区人妻精品视频| 熟女电影av网| 亚洲乱码一区二区免费版| 日本 av在线| 十八禁网站免费在线| 精品久久国产蜜桃| 乱人视频在线观看| 欧美激情在线99| 99在线视频只有这里精品首页| 美女高潮的动态| 亚洲中文日韩欧美视频| 精品一区二区三区人妻视频| 精华霜和精华液先用哪个| 国产主播在线观看一区二区| 美女高潮喷水抽搐中文字幕| av在线天堂中文字幕| 日本 欧美在线| xxxwww97欧美| 欧洲精品卡2卡3卡4卡5卡区| 日日夜夜操网爽| 国产免费男女视频| 国产探花极品一区二区| 中文亚洲av片在线观看爽| 91在线观看av| 国产免费男女视频| 午夜精品一区二区三区免费看| 国产探花极品一区二区| 在线观看免费视频日本深夜| 国产三级在线视频| 国产精品免费一区二区三区在线| 欧美一区二区亚洲| 亚洲最大成人手机在线| 内地一区二区视频在线| 看免费av毛片| 国产精品99久久久久久久久| 午夜两性在线视频| 美女黄网站色视频| 成人午夜高清在线视频| 久久久久性生活片| 亚洲在线观看片| .国产精品久久| 国产精品综合久久久久久久免费| avwww免费| 美女xxoo啪啪120秒动态图 | 激情在线观看视频在线高清| 午夜福利在线在线| 香蕉av资源在线| 欧美激情在线99| 国产精品伦人一区二区| 色综合婷婷激情| 亚洲中文字幕日韩| 热99re8久久精品国产| 亚洲第一电影网av| 国产毛片a区久久久久| 免费看a级黄色片| 亚洲熟妇熟女久久| 青草久久国产| 欧洲精品卡2卡3卡4卡5卡区| 久久久久免费精品人妻一区二区| 免费在线观看影片大全网站| 国产精品免费一区二区三区在线| 成人午夜高清在线视频| 一级黄片播放器| 怎么达到女性高潮| 国产精品久久久久久久电影| 午夜福利欧美成人| 欧美性猛交╳xxx乱大交人| 99久久精品国产亚洲精品| 啦啦啦观看免费观看视频高清| 亚洲人成网站在线播放欧美日韩| 国内揄拍国产精品人妻在线| 天美传媒精品一区二区| 久久99热6这里只有精品| 99精品在免费线老司机午夜| .国产精品久久| 亚洲片人在线观看| 在线观看美女被高潮喷水网站 | 久久草成人影院| 人人妻人人看人人澡| 老熟妇仑乱视频hdxx| 国产伦精品一区二区三区视频9| 成人三级黄色视频| 日韩高清综合在线| 久久国产精品人妻蜜桃| 国产精品电影一区二区三区| 床上黄色一级片| 亚洲欧美日韩卡通动漫| 成人性生交大片免费视频hd| 观看免费一级毛片| 亚洲av二区三区四区| 久久精品国产自在天天线| 综合色av麻豆| 在现免费观看毛片| 国产 一区 欧美 日韩| 99国产精品一区二区三区| 人妻夜夜爽99麻豆av| 国产精品免费一区二区三区在线| 夜夜爽天天搞| 欧美成人免费av一区二区三区| 久久久久久久久久成人| 国产爱豆传媒在线观看| 久久久久久久久久黄片| 久久久久国内视频| 在线播放国产精品三级| 欧美精品啪啪一区二区三区| 国产真实伦视频高清在线观看 | 日韩中字成人| 精品免费久久久久久久清纯| 国产成人aa在线观看| 怎么达到女性高潮| 国产午夜福利久久久久久| 丰满的人妻完整版| 久久久久国内视频| 中文在线观看免费www的网站| 亚洲av二区三区四区| eeuss影院久久| 亚洲av熟女| 女人被狂操c到高潮| 精品久久久久久久人妻蜜臀av| 国产精品综合久久久久久久免费| 久久精品夜夜夜夜夜久久蜜豆| 日本a在线网址| 91麻豆av在线| 成人特级黄色片久久久久久久| 欧美午夜高清在线| 欧美日韩乱码在线| 午夜激情福利司机影院| 99热这里只有是精品50| 午夜两性在线视频| 97超视频在线观看视频| 亚洲av免费高清在线观看| 久久国产精品人妻蜜桃| 久久久久久九九精品二区国产| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 欧美绝顶高潮抽搐喷水| 国产精品av视频在线免费观看| 一个人观看的视频www高清免费观看| 99久久成人亚洲精品观看| 国内精品美女久久久久久| 99在线人妻在线中文字幕| 99在线视频只有这里精品首页| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 露出奶头的视频| 又爽又黄无遮挡网站| 一个人看的www免费观看视频| 久久久久久久久久黄片| 国产淫片久久久久久久久 | 久久精品91蜜桃| 丰满的人妻完整版| 久久九九热精品免费| 免费av观看视频| 国产三级在线视频| 69av精品久久久久久| 久久伊人香网站| 亚洲人成网站在线播放欧美日韩| 国产av不卡久久| 国产中年淑女户外野战色| 国产精品乱码一区二三区的特点| 亚洲综合色惰| 国产美女午夜福利| 欧美绝顶高潮抽搐喷水| 精华霜和精华液先用哪个| 18美女黄网站色大片免费观看| 国产成人a区在线观看| 国产三级中文精品| 69人妻影院| 观看免费一级毛片| 欧美一区二区精品小视频在线| 18禁在线播放成人免费| 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费| 国产精品一区二区三区四区久久| 亚洲五月婷婷丁香| netflix在线观看网站| 丰满的人妻完整版| 国产淫片久久久久久久久 | 午夜福利成人在线免费观看| 特级一级黄色大片| 日韩中字成人| 国产精华一区二区三区| 99久久精品一区二区三区| 午夜福利18| 69av精品久久久久久| 尤物成人国产欧美一区二区三区| 国产一级毛片七仙女欲春2| 国产一区二区三区在线臀色熟女| 婷婷丁香在线五月| 午夜两性在线视频| 色哟哟·www| 亚洲第一欧美日韩一区二区三区| av福利片在线观看| 亚洲熟妇熟女久久| 色视频www国产| 九九在线视频观看精品| 琪琪午夜伦伦电影理论片6080| 极品教师在线视频| 亚洲中文字幕日韩| 露出奶头的视频| 欧美另类亚洲清纯唯美| 午夜精品一区二区三区免费看| 伦理电影大哥的女人| 国产av不卡久久| 欧美丝袜亚洲另类 | 亚洲第一电影网av| 亚洲成人精品中文字幕电影| 亚洲精品久久国产高清桃花| 日日夜夜操网爽| 美女大奶头视频| 欧美成狂野欧美在线观看| 韩国av一区二区三区四区| 精品一区二区免费观看| 在线免费观看不下载黄p国产 | 国产又黄又爽又无遮挡在线| 97碰自拍视频| 欧美xxxx黑人xx丫x性爽| 欧美最黄视频在线播放免费| 麻豆久久精品国产亚洲av| 精品国产亚洲在线| 极品教师在线免费播放| 久久草成人影院| 99久久久亚洲精品蜜臀av| 我要搜黄色片| 久久久久久久亚洲中文字幕 | 男人和女人高潮做爰伦理| 搞女人的毛片| 国产高清视频在线观看网站| 一级黄片播放器| 成人特级黄色片久久久久久久| 欧美一区二区亚洲| 久久国产精品人妻蜜桃| 亚洲真实伦在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲天堂国产精品一区在线| 亚洲美女黄片视频| 久久午夜亚洲精品久久| 欧美+日韩+精品| 97超视频在线观看视频| 久久精品国产99精品国产亚洲性色| 亚洲第一区二区三区不卡| 两个人视频免费观看高清| 久久久久久久亚洲中文字幕 | 极品教师在线视频| 久久精品人妻少妇| 亚洲五月婷婷丁香| 亚洲最大成人中文| 亚洲国产欧美人成| 最近最新中文字幕大全电影3| 精品久久久久久,| 日韩亚洲欧美综合| 变态另类成人亚洲欧美熟女| 午夜福利免费观看在线| 日本一本二区三区精品| 午夜福利欧美成人| 午夜激情福利司机影院| 亚洲 欧美 日韩 在线 免费| 91在线精品国自产拍蜜月| a级一级毛片免费在线观看| 免费电影在线观看免费观看| 国产亚洲欧美98| 91久久精品电影网| 国产成人影院久久av| 亚洲国产精品合色在线| 国产av不卡久久| 又黄又爽又刺激的免费视频.| 午夜福利欧美成人| 99热6这里只有精品| 欧美三级亚洲精品| 中亚洲国语对白在线视频| 高清毛片免费观看视频网站| 欧美不卡视频在线免费观看| 欧美性猛交╳xxx乱大交人| 国产av麻豆久久久久久久| 欧美午夜高清在线| 久久精品国产亚洲av天美| 人人妻人人澡欧美一区二区| 午夜免费激情av| 亚洲精品一卡2卡三卡4卡5卡| 免费大片18禁| 波多野结衣巨乳人妻| 欧美精品国产亚洲| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av欧美777| 国产精品亚洲av一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 十八禁人妻一区二区| 亚洲av五月六月丁香网| 亚洲av一区综合| 久久久久久久久中文| 哪里可以看免费的av片| 真实男女啪啪啪动态图| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久久久免 | 哪里可以看免费的av片| 九色国产91popny在线| 久久99热这里只有精品18| 中文字幕免费在线视频6| 少妇人妻一区二区三区视频| 狂野欧美白嫩少妇大欣赏| 成人特级黄色片久久久久久久| 日韩av在线大香蕉| 国产探花极品一区二区| av在线天堂中文字幕| 少妇的逼水好多| 国产精品日韩av在线免费观看| 亚洲人成网站高清观看| 国产私拍福利视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品久久久久久一区二区三区 | 97超视频在线观看视频| 亚洲第一欧美日韩一区二区三区| 日韩欧美 国产精品| 久久久久九九精品影院| 少妇熟女aⅴ在线视频| 我要搜黄色片| 国产亚洲精品综合一区在线观看| 精品久久国产蜜桃| 高潮久久久久久久久久久不卡| 国产精品一及| 精品久久久久久久久久久久久| 少妇被粗大猛烈的视频| 麻豆av噜噜一区二区三区| 最好的美女福利视频网| 熟女人妻精品中文字幕| 亚洲一区二区三区色噜噜| 免费观看的影片在线观看| 精品不卡国产一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 日韩国内少妇激情av| 性色av乱码一区二区三区2| 内射极品少妇av片p| 乱人视频在线观看| 精品久久久久久久人妻蜜臀av| 有码 亚洲区| 成人一区二区视频在线观看| 久久精品影院6| 窝窝影院91人妻| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| 亚洲在线自拍视频| 国产欧美日韩精品亚洲av| 成人一区二区视频在线观看| 长腿黑丝高跟| 99久久精品一区二区三区| 欧美一区二区国产精品久久精品| 国产色婷婷99| 精品久久久久久久久av| 可以在线观看毛片的网站| 亚洲精品粉嫩美女一区| 赤兔流量卡办理| 欧美性猛交╳xxx乱大交人| 国产伦一二天堂av在线观看| 一个人免费在线观看的高清视频| av专区在线播放| or卡值多少钱| 在线国产一区二区在线| 国产一区二区三区在线臀色熟女| 国产在线男女| av在线天堂中文字幕| 内射极品少妇av片p| 99国产精品一区二区蜜桃av| av天堂中文字幕网| 美女cb高潮喷水在线观看| 人妻夜夜爽99麻豆av|