• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    稀土元素對Ti0.26Zr0.07V0.24Mn0.1Ni0.33 貯氫合金微觀結(jié)構(gòu)和電化學(xué)性能的影響

    2013-08-20 00:51:48李書存趙敏壽焦體峰
    無機化學(xué)學(xué)報 2013年1期
    關(guān)鍵詞:燕山大學(xué)應(yīng)用化學(xué)秦皇島

    李書存 趙敏壽 劉 研 焦體峰

    (1 秦皇島燕山大學(xué)環(huán)境與化學(xué)工程學(xué)院,秦皇島 066004)

    (2 秦皇島燕山大學(xué)亞穩(wěn)材料制備技術(shù)與科學(xué)實驗室,秦皇島 066004)

    (3 中國科學(xué)院長春應(yīng)用化學(xué)研究所稀土化學(xué)與物理重點實驗室,長春 130022)

    Recently, nickel-metal hydride (Ni-MH)secondary batteries are competing with the Li-ion batteries as power sources for HEV, electric tools etc.Many performances of hydrogen storage alloys used as the negative electrode materials for the Ni-MH batteries have been widely and extensively studied[1-6],including their discharge capacity, high-rate discharge ability (HRD), cycle stability, fade mechanism and environmental compatibility. Several types of hydrogen storage alloys have been investigated, for example,rare earth-based AB5-type alloys[7], Ti, Zr-based or AB2-type alloys[8-9], Mg-based alloys[10]and V-based solid solutions[11]. Among the hydrogen storage alloys mentioned above, the discharge capacity of the AB5-type alloy electrodes is comparatively low, the activation of the AB2-type laves phase alloy electrodes is very difficult and the cycle stability of the Mgbased alloy electrodes is extremely poor. V-based solid solutions have larger discharge capacity, V can form two types of hydride, monohydride (VH1) and dihydride (VH2), the equilibrium pressure of hydrogenation between V and VH1is too low at room temperature for utilization. But the equilibrium pressure of hydrogenation between VH1and VH2is appropriate for various applications and the theoretical capacity of protium per mass of alloy during this reaction is higher than that of LaNi5transforming with LaNi5H6[12-13]. So vanadium-based solid solution hydrides have attracted significant attention for various applications such as hydrogen storage,hydrogen compressor and heat pump[14]. However, Vbased solid solution phase alone has very low electrochemical discharge capacity in the KOH electrolyte due to the lack of electrochemical catalytic activity in decomposing water into hydrogen atoms and OH-ions. Yet it could be activated to absorb and desorb a large amount of hydrogen with the presence of a secondary phase, such as Ti-Ni phase or C14 Laves phase, which is considered to act both as a micro-current collector and as an electrochemical catalyst. After Laves phase undergoing easy activation treatment, it may be possible that the activation of BCC phase will be easier if the alloys contain such Laves phase. The approach to improve the hydrogen absorbing properties by forming Laves phase in Vbased BCC alloys can make it become more promising materials for electrodes of Ni-MH batteries.

    Following the idea mentioned above, in this work, we select Ti0.26Zr0.07V0.24Mn0.1Ni0.33hydrogen storage alloys as norm alloy for investigation.Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01)alloys are obtained. The effect of rare earth elements substitution on microstructures and electrochemical properties of Ti0.26Zr0.07V0.24Mn0.1Ni0.33alloy is studied.

    1 Experimental

    All samples were prepared by arc melting the constituent metals or master alloy on a water-cooled cuprum hearth under an argon atmosphere. The purity of all the metal, i.e., Ti, V, Mn, Zr ,Ni and rare earth elements Ce, Nd and Gd was higher than 99.9 mass%,respectively. In order to obtain homogeneous alloys,the ingots of alloys were turned over and remelted at least three times. Then the as-cast alloys were divided into two parts. One part was crushed mechanically into particles with the average size of 74 μm (200 mesh) for electrochemical measurement. Another part was crushed mechanically into particles with the average size of 37 μm (400 mesh) for X-ray diffraction analysis.

    The crystal structures of the hydrogen storage alloys were determined by X-ray diffraction (XRD)analysis on a Rigaku D/Max 2500PC X-ray diffractometer with Cu Kα radiation after Kα2 stripping (λ=0.154 06 nm ) at 40 kV and 200 mA(Bragg-Brentano geometry, 2θ range 20°~90°, step size 0.02°, backscattered rear graphite monochromator).The XRD patterns were analyzed using RIETAN97 software. Scanning electron microscopy (SEM) was used to study the microstructures of the alloy electrodes.

    The alloy electrodes were prepared by mixing the alloy powders with carbonyl nickel powders in a weight ratio of 1∶5 and then cold-pressing the mixture to form pellets of 10 mm in diameter and thickness of 1mm under a pressure of 14 MPa. Prior to electrochemical testing, all alloy electrodes were activated by immersion in 6 mol·L-1KOH aqueous solution for 24 h. The positive electrode was a sintered Ni(OH)2/NiOOH with excessive capacity.

    The charge/discharge tests were carried out with DC-5 battery testing instrument under a computer control. Each alloy electrode was charged with a current density of 60 mA·g-1and discharged with a current density of 60 mA·g-1to a cut-off voltage of 0.8V at different temperatures (303, 313, 333, and 343 K, respectively).

    To evaluate the HRD (in the range of 60~600 mA·g-1), the charging current density was kept a constant of 60 mA·g-1and the obtained discharge capacity was denoted as Cn(with n=30, 60, 180, 360,and 600 mA·g-1, respectively). HRD is generally defined as Cn×100/(Cn+C30).

    2 Results and discussion

    2.1 Structure characteristic

    The X-ray diffraction patterns of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloys are shown in Fig.1. It is found that these alloys are all composed of V-based solid solution phase with BCC structure and C14 Laves phase with hexagonal structure. Compared to the different X-ray diffraction patterns, we can find that the diffraction peaks of BCC phase and C14 Laves phase shift toward higher angle with rare earth elements substitution. This phenomenon shows that the lattice parameters of alloys are different with different rare earth elements substitution.

    Fig.1 XRD patterns of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy

    Table 1 Lattice parameter and cell volume of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy

    The lattice parameters and cell volumes of alloys are shown in Table 1. It can be seen that with rare earth elements substitution, the cell volumes of the BCC phases are increased and the cell volumes of C14 phase with rare earth elements substitution are larger than norm alloy. It is obvious that with rare earth elements substitution, the cell volumes of BCC phase and C14 phase are increased at the same time.

    Fig.2. gives the scanning electron micrographs of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01)alloys. It is obvious that all the alloy samples are mainly composed of two distinct crystallographic phases: one is C14 Laves phase, and the other is Vbased solid solution phase as confirmed by EDS analysis, which is in agreement with the XRD results.It can be easily seen that, with rare earth elements substitution, the BCC phase increases and finally forms a three-dimensional phase structure, and a little third phase appears.

    Fig.2 FESEM images of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy

    It also can be seen from Fig.2 that there are some white particles with irregular edges distributed near the grain boundaries of BCC phase, which is proved to be Ce-rich particles by energy dispersive Xray spectroscopy (EDS), as indicated by Qiao et al.[15]

    2.2 Electrochemical property

    The curves of the discharge capacity vs. the cycle number at 303 K for Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy electrodes are shown in Fig.3. Compared with the alloy electrode without rare earth elements substitution which requires 2 ~3 cycles to be activated, the ones with rare earth elements substitution can reach their maximum capacity in the first cycle, which means that activation of the alloy electrodes is easy and rare earth elements substitution is benefit for the activation property of the alloy electrode. These phenomena may be attributed to the electro-catalytic activity improved by adding the rare earth elements[16]. The rare earth elements have certain effect on the maximum discharge capacity of the alloy. With Ce substitution, the maximum discharge capacity of the alloy increases distinctly,but the cyclic stability decreases; Nd and Gd substitution has little effect on the maximum discharge capacity of the alloy, whereas the cyclic stability increases a little; and with Nd and Gd substitution,maximum discharge capacity decreases distinctly.

    Fig.3 Discharge capacity as a function of cycle number for Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd;x=0.01) alloy electrode

    Alloys used as negative electrode material in Ni-MH battery should be capable of working at wide temperature range. In order to investigate the temperature-related properties of the hydrogen storage electrodes, the alloys electrodes are fully charged at room temperature and discharged at various temperatures. Discharge capacity as a function of temperature of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce,Nd, Gd; x=0.01) alloy electrodes is shown in Fig.4.

    Fig.4 Effect of temperature on the discharge capacity of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd;x=0.01) alloy electrode

    The discharge capacity of the alloy electrodes is sensitive to temperature. With increasing temperature,the discharge capacity of the alloy electrodes with the rare earth element substitution increases first and then decreases. The discharge capacity of the alloy electrodes is up to maximum at 333 K except the norm alloy electrode.

    It is very important to restrain the decrease of the discharge capacity even at the high charge/discharge current density for practical application of metal hydride electrode. The effect of the discharge current density (60~600 mA·g-1) on the discharge capacity of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01)alloy electrodes is shown in Fig.5. It can be observed that the HRD of the alloy electrodes decreases with increasing discharge current density. The different rare earth elements substitution has the different effect on the high rate dischargebility of the alloy.

    Nd substitution can improve the HRD of the alloy. Especially, when the discharge current density is 600 mA·g-1, the HRD of the alloy with Nd substitution is higher than that of the norm alloy. Gd substitution is not beneficial to the high rate discharge ability of the alloy when the discharge current density is small. However, with increasing the discharge current density, the HRD of the alloy can be improved. Ce substitution can not improve the HRD of the alloy.

    Fig.5 HRD of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd,Gd; x=0.01) alloy electrode at 303 K

    Fig.6 Impedance response for Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce,Nd, Gd; x=0.01) alloy electrode

    Fig.6 shows the EIS for Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy electrodes at 50%depth of discharge (DOD). It can be found that all the electrochemical impedance spectroscopy (EIS) curves consist of two semicircles followed with a straight line.According to the analysis model proposed by Kuriyama et al.[17], the smaller semicircle in the highfrequency region represents the resistance and capacitance between the alloy particles and the current collector, the larger semicircle region represents the charge transfer resistance for electrochemical reaction at the surface, while the straight line is attributed to the Warburg impedance.On the basis of the circuit the charge-transfer resistances Rctare obtained by means of fitting program Z-VIEW. The exchange current density I0is calculated using the following formula when an overpotential is very small and trends to zero, and the results are listed in Table 2.

    I0= RT/(FRct)

    where R is the gas constant, T is the absolute temperature and F is the Faraday constant.

    It is obvious that the radius of the larger semicircle decreases with Nd substitution, which indicate that the charge-transfer resistance for the alloy electrode decreases, Accordingly, the I0increases from 169.5 mA·g-1(x=0.0) to 251.0 mA·g-1(x=0.10), which explains why the HRD of the alloy electrode decreases with Nd substitution.

    With different rare earth element substitutions,the performances of the hydrogen storage alloys vary,some improve and some decrease. Because the reasons are complex, it is still difficult to draw a definite law at present, it needs further in-depth and systematic research.

    Table 2 Electrochemical kinetic parameter of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy electrode

    3 Conclusions

    In order to im prove the electrochemical properties of Ti-V-based hydrogen storage alloy, the nonstoichiometric composition with different rare earth elements substitution to Ti-Zr-V-Ni-Mn system alloys have been studied. Norm alloy and Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloys are consisted of V-based solid solution with bcc structure and C14 Laves phase with hexagonal structure. The lattice parameter and the cell volume of BCC phase monotonically increase with rare earth element Ce substitution, which is mainly attributed to the fact that the atomic radius of Ce is larger than that of other elements.

    Rare-earth elements substitution can improve the activation characteristics of Ti0.26Zr0.07V0.24Mn0.1Ni0.33alloy electrode and the alloys can reach their maximum discharge capacity in the first cycle with rare earth element Ce substitution. The discharge capacity of the alloys is quite sensitive to temperature.The discharge capacity is up to maximum at 333 K with Rare-earth elements Nd and Gd substitution. And the excessively high temperature makes the capacity of the alloy electrodes degraded. Nd substitution improved the high-rate dischargeability of the alloy electrode and the effect on the high-rate dischargeability of Ti0.26Zr0.07V0.24Mn0.1Ni0.33alloy electrode is the most obvious with the discharge current density of 600 mA·g-1. The EIS results show that the exchange current density I0increases to 251.0 mA·g-1with Nd substitution. Gd and Ce substitution is not beneficial for the HRD of the alloy electrode.

    Acknowledgements: This work was financially supported by the Hebei natural science foundation (Grant No.B2010001132) and National Natural Science Foundation of China (Grant No. 20903078).

    [1] Song D, Gao X, Zhang Y, et al. J. Alloys Compd., 1994,206:43-46

    [2] Willems J J G., Buschow K H J. J. Less-Commen Met.,1987,129:13-30

    [3] Sakai T, Miyamura H, Kuriyama N, et al. J. Electrochem.Soc., 1990,137:795-799

    [4] Notten P H L, Hokkeling P. J. Electrochem. Soc., 1991,138:1877-1883

    [5] Pan H, Chen Y, Wang C, et al. Electrochim. Acta, 1999,44:2263-2269

    [6] Wang C, Lei Y, Wang Q. Electrochim Acta, 1998,43:3193-3207

    [7] Pan H, Ma J, Wang C, et al. Electrochim Acta, 1999,44:3977-3987

    [8] Yu J S, Lee S M, Cho K, et al. J. Electrochem Soc., 2000,147:2013-2019

    [9] Kim D, Lee S, Jang K, et a. J. Alloys Compd., 1998,268:241-247

    [10]Iwakura C, Inoue H, Zhang S, et al. J Electrochem Soc.,1999,146:1659-1665

    [11]Tsukahara M, Kamiya T, Takahashi K, et al. J Electrochem.Soc., 2000,147:2941-2947

    [12]Iba. H. Ph. D. Dissertation, Tohoku Univ., Japan, 1997.

    [13]Tsukahara M, Takahashi K, Mishima T, et al. J. Alloys Compd., 1995,226:203-207

    [14]Libowitz G G, Mealand A J. J. Less-common Met., 1987,131:275-282

    [15]Qiao Y,Zhao M,Zhu X,et al.J.Rare Earths,2007,25:341-347

    [16]Iwakura C, Kajiya Y, Yoneyama H, et al. J. Electrochem.Soc., 1989,136:1351-1357

    [17]Kuriyama N, Sakai T, Miyamura H, et al. J. Alloys Compd.,1993,202:183-197

    猜你喜歡
    燕山大學(xué)應(yīng)用化學(xué)秦皇島
    《應(yīng)用化學(xué)》編委團隊介紹-陳義旺研究團隊
    應(yīng)用化學(xué)特色專題實驗群建設(shè)的探索與實踐
    化工管理(2022年14期)2022-12-02 11:43:26
    燕山大學(xué)
    燕山大學(xué)
    燕山大學(xué)
    燕山大學(xué)
    秦皇島煤炭價格行情
    秦皇島煤炭價格行情
    核化學(xué)與放射化學(xué)(2020年6期)2020-12-31 02:33:42
    2019《中華詩詞》第16屆秦皇島·金秋筆會在秦皇島舉行
    中華詩詞(2019年11期)2019-09-19 09:05:22
    三级国产精品欧美在线观看| 色噜噜av男人的天堂激情| 亚洲欧美精品自产自拍| 啦啦啦观看免费观看视频高清| 亚洲av中文字字幕乱码综合| 变态另类成人亚洲欧美熟女| 亚洲国产精品sss在线观看| 天堂动漫精品| 成人无遮挡网站| 国产单亲对白刺激| 国产伦在线观看视频一区| 国产乱人视频| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 秋霞在线观看毛片| 久久亚洲国产成人精品v| 国产免费一级a男人的天堂| 高清日韩中文字幕在线| 亚洲国产精品成人综合色| 成年免费大片在线观看| 日日摸夜夜添夜夜添av毛片| 人人妻人人澡欧美一区二区| 丰满的人妻完整版| 日韩强制内射视频| 最近中文字幕高清免费大全6| а√天堂www在线а√下载| 最近手机中文字幕大全| 国产成人aa在线观看| 乱系列少妇在线播放| 狂野欧美白嫩少妇大欣赏| 一级黄片播放器| 又爽又黄无遮挡网站| 精品久久久久久成人av| 丝袜喷水一区| 日本在线视频免费播放| 色吧在线观看| 国产黄a三级三级三级人| 久久久精品94久久精品| 国产精品日韩av在线免费观看| 一级毛片电影观看 | 午夜久久久久精精品| 老女人水多毛片| 欧美另类亚洲清纯唯美| 久久精品国产自在天天线| 日韩人妻高清精品专区| 色噜噜av男人的天堂激情| 国产一区二区在线av高清观看| 色播亚洲综合网| 男人和女人高潮做爰伦理| 桃色一区二区三区在线观看| 成人鲁丝片一二三区免费| 亚洲久久久久久中文字幕| 真实男女啪啪啪动态图| 国产欧美日韩精品一区二区| 亚洲av中文字字幕乱码综合| 亚洲色图av天堂| 日韩精品青青久久久久久| 九九久久精品国产亚洲av麻豆| 床上黄色一级片| av在线播放精品| 美女 人体艺术 gogo| 亚洲国产精品国产精品| 亚洲性久久影院| 国产精品综合久久久久久久免费| av免费在线看不卡| 日韩强制内射视频| 久久九九热精品免费| 欧美3d第一页| 久久久精品大字幕| h日本视频在线播放| 波多野结衣高清无吗| 长腿黑丝高跟| 中国美女看黄片| 秋霞在线观看毛片| 在线播放国产精品三级| 美女被艹到高潮喷水动态| 久久久久久久久久成人| 22中文网久久字幕| 亚洲欧美成人综合另类久久久 | 久久久久久久久久久丰满| 十八禁国产超污无遮挡网站| 中文字幕av在线有码专区| 三级经典国产精品| 两个人的视频大全免费| 精品人妻视频免费看| 国产精品,欧美在线| 露出奶头的视频| 亚洲欧美日韩卡通动漫| 99久久精品国产国产毛片| 热99re8久久精品国产| 晚上一个人看的免费电影| 老女人水多毛片| 中文资源天堂在线| av福利片在线观看| 成人亚洲欧美一区二区av| 亚洲人成网站在线播放欧美日韩| ponron亚洲| av国产免费在线观看| 国产精品免费一区二区三区在线| 我要搜黄色片| 日韩高清综合在线| 国产日本99.免费观看| 如何舔出高潮| 精品久久久久久久人妻蜜臀av| 网址你懂的国产日韩在线| 日韩一本色道免费dvd| 国产蜜桃级精品一区二区三区| 成年女人永久免费观看视频| 亚洲五月天丁香| 99热这里只有是精品在线观看| 成人综合一区亚洲| 白带黄色成豆腐渣| 久久久午夜欧美精品| 91av网一区二区| 国产高清视频在线观看网站| 欧美激情在线99| 夜夜夜夜夜久久久久| 欧洲精品卡2卡3卡4卡5卡区| 精品国内亚洲2022精品成人| 伦精品一区二区三区| 欧美最新免费一区二区三区| 91午夜精品亚洲一区二区三区| 国产不卡一卡二| 成人特级av手机在线观看| 99热6这里只有精品| 中文资源天堂在线| 亚洲av.av天堂| 在现免费观看毛片| 欧美人与善性xxx| 3wmmmm亚洲av在线观看| 99在线视频只有这里精品首页| 国产欧美日韩精品一区二区| 一a级毛片在线观看| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 欧美一区二区精品小视频在线| 日韩强制内射视频| 久久久久精品国产欧美久久久| 亚洲国产高清在线一区二区三| АⅤ资源中文在线天堂| 久久草成人影院| 亚洲精品一卡2卡三卡4卡5卡| 国产精品国产三级国产av玫瑰| 简卡轻食公司| 免费无遮挡裸体视频| 日日撸夜夜添| 国产黄色视频一区二区在线观看 | 国产成人a∨麻豆精品| 欧美中文日本在线观看视频| 最近在线观看免费完整版| 国产真实乱freesex| 99热这里只有精品一区| 日韩国内少妇激情av| 精品一区二区三区视频在线观看免费| 日韩欧美精品v在线| 日韩三级伦理在线观看| 午夜亚洲福利在线播放| 在现免费观看毛片| 乱码一卡2卡4卡精品| av福利片在线观看| avwww免费| 九九热线精品视视频播放| 毛片女人毛片| 国产又黄又爽又无遮挡在线| 国语自产精品视频在线第100页| 国产免费一级a男人的天堂| 国产在线精品亚洲第一网站| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产av玫瑰| 男人的好看免费观看在线视频| 精品国内亚洲2022精品成人| 日本免费一区二区三区高清不卡| 综合色av麻豆| 最新在线观看一区二区三区| 久久久久免费精品人妻一区二区| av天堂在线播放| 丰满乱子伦码专区| 日本撒尿小便嘘嘘汇集6| 久久久久免费精品人妻一区二区| 成人三级黄色视频| 欧美激情在线99| 国产乱人偷精品视频| 国产精品一区二区三区四区免费观看 | 18禁裸乳无遮挡免费网站照片| 夜夜夜夜夜久久久久| 亚洲人成网站高清观看| 黄色一级大片看看| 亚洲成人精品中文字幕电影| 黑人高潮一二区| 一本久久中文字幕| 日本在线视频免费播放| 亚洲经典国产精华液单| 国产精品三级大全| 在线播放国产精品三级| 亚洲自拍偷在线| 国产成人影院久久av| 亚洲中文日韩欧美视频| 高清日韩中文字幕在线| 国产v大片淫在线免费观看| 精品熟女少妇av免费看| 日韩欧美免费精品| 国产探花在线观看一区二区| 精华霜和精华液先用哪个| 99riav亚洲国产免费| 国产大屁股一区二区在线视频| 亚洲性久久影院| 搞女人的毛片| 日韩一区二区视频免费看| 天天躁夜夜躁狠狠久久av| 国产91av在线免费观看| 全区人妻精品视频| 国产精品三级大全| 欧美丝袜亚洲另类| 内射极品少妇av片p| 日本色播在线视频| 男女视频在线观看网站免费| 亚洲久久久久久中文字幕| 成人特级黄色片久久久久久久| 国产国拍精品亚洲av在线观看| 亚洲国产色片| 丝袜喷水一区| 欧美区成人在线视频| 男女做爰动态图高潮gif福利片| 日日干狠狠操夜夜爽| 啦啦啦啦在线视频资源| 久久久久免费精品人妻一区二区| 亚洲精品在线观看二区| 一个人免费在线观看电影| 国产人妻一区二区三区在| a级一级毛片免费在线观看| 欧美另类亚洲清纯唯美| 久久国内精品自在自线图片| 国产美女午夜福利| 天堂网av新在线| 久久久久国产精品人妻aⅴ院| 日韩欧美一区二区三区在线观看| 天天躁日日操中文字幕| 欧美另类亚洲清纯唯美| 国产高清不卡午夜福利| 亚洲美女视频黄频| 一级毛片电影观看 | 国产欧美日韩精品一区二区| 亚洲电影在线观看av| 日韩欧美三级三区| 非洲黑人性xxxx精品又粗又长| 亚洲专区国产一区二区| 午夜亚洲福利在线播放| 午夜日韩欧美国产| 久久人人爽人人爽人人片va| 国产av一区在线观看免费| av中文乱码字幕在线| 亚洲精品国产av成人精品 | 六月丁香七月| 日韩国内少妇激情av| 99在线人妻在线中文字幕| 亚洲欧美精品综合久久99| 色哟哟哟哟哟哟| 日韩av在线大香蕉| 午夜日韩欧美国产| 99在线人妻在线中文字幕| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| 九色成人免费人妻av| 精品久久久久久成人av| 国产 一区精品| 国产欧美日韩一区二区精品| 99久久九九国产精品国产免费| 97在线视频观看| 尤物成人国产欧美一区二区三区| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| 不卡一级毛片| 少妇猛男粗大的猛烈进出视频 | 欧美在线一区亚洲| 韩国av在线不卡| 欧美成人精品欧美一级黄| 亚洲精华国产精华液的使用体验 | 亚洲高清免费不卡视频| 看免费成人av毛片| 我要搜黄色片| 中文资源天堂在线| a级毛片a级免费在线| 老师上课跳d突然被开到最大视频| 国产男靠女视频免费网站| 国内精品宾馆在线| 成人特级黄色片久久久久久久| 狠狠狠狠99中文字幕| 99久久精品一区二区三区| 日韩制服骚丝袜av| 中出人妻视频一区二区| 国产三级在线视频| 51国产日韩欧美| 成人特级黄色片久久久久久久| 岛国在线免费视频观看| 欧美绝顶高潮抽搐喷水| 国产黄a三级三级三级人| 欧美高清性xxxxhd video| 国产熟女欧美一区二区| 日本熟妇午夜| .国产精品久久| 国产真实伦视频高清在线观看| 成人特级av手机在线观看| 在线看三级毛片| 久久久久久久久中文| 欧美潮喷喷水| 国产探花极品一区二区| 精华霜和精华液先用哪个| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 一进一出抽搐gif免费好疼| 成人美女网站在线观看视频| 亚洲电影在线观看av| 国产一区二区亚洲精品在线观看| 国产日本99.免费观看| 亚洲欧美日韩东京热| 久久精品久久久久久噜噜老黄 | 又爽又黄无遮挡网站| 国产伦一二天堂av在线观看| 亚洲精品成人久久久久久| 国产黄色小视频在线观看| 欧美xxxx性猛交bbbb| 欧美日本视频| 亚洲美女视频黄频| 亚洲欧美成人综合另类久久久 | 日韩av在线大香蕉| 国产又黄又爽又无遮挡在线| 国产精品综合久久久久久久免费| 男女边吃奶边做爰视频| 综合色丁香网| 人妻丰满熟妇av一区二区三区| 熟女电影av网| 成人国产麻豆网| 国产成人影院久久av| 午夜日韩欧美国产| 草草在线视频免费看| 欧美激情在线99| 久久人妻av系列| 小说图片视频综合网站| 日本与韩国留学比较| 亚洲国产精品成人综合色| 欧美极品一区二区三区四区| 亚洲国产高清在线一区二区三| 日日撸夜夜添| 1024手机看黄色片| 欧美高清性xxxxhd video| 亚洲,欧美,日韩| 国内揄拍国产精品人妻在线| 国产片特级美女逼逼视频| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 国产视频一区二区在线看| 毛片一级片免费看久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 乱人视频在线观看| 欧美人与善性xxx| av在线天堂中文字幕| 亚洲中文日韩欧美视频| 激情 狠狠 欧美| 国产精品野战在线观看| 97在线视频观看| 亚洲丝袜综合中文字幕| 国产精品三级大全| 午夜日韩欧美国产| 美女xxoo啪啪120秒动态图| 日韩在线高清观看一区二区三区| 听说在线观看完整版免费高清| 淫妇啪啪啪对白视频| 亚洲一级一片aⅴ在线观看| 中文在线观看免费www的网站| 热99在线观看视频| 日本在线视频免费播放| 高清日韩中文字幕在线| 日本一本二区三区精品| 亚洲av成人av| 午夜视频国产福利| 嫩草影院精品99| 午夜免费男女啪啪视频观看 | 精品久久久噜噜| 欧美日韩精品成人综合77777| 日韩 亚洲 欧美在线| 亚洲电影在线观看av| av视频在线观看入口| 国产伦精品一区二区三区四那| avwww免费| 精品欧美国产一区二区三| 男人和女人高潮做爰伦理| 99九九线精品视频在线观看视频| 亚洲国产精品国产精品| 男人舔奶头视频| 免费搜索国产男女视频| 亚洲丝袜综合中文字幕| 久久精品国产亚洲av香蕉五月| 三级毛片av免费| 成人特级黄色片久久久久久久| 亚洲av第一区精品v没综合| 国产成人freesex在线 | 成人综合一区亚洲| 久久久精品94久久精品| 伦精品一区二区三区| 男女之事视频高清在线观看| 白带黄色成豆腐渣| 插阴视频在线观看视频| av在线蜜桃| 欧美激情在线99| 欧美最黄视频在线播放免费| 九九热线精品视视频播放| 久久久欧美国产精品| 成人漫画全彩无遮挡| 国产成人一区二区在线| 免费高清视频大片| 老司机福利观看| 日本五十路高清| videossex国产| 国产精品人妻久久久久久| eeuss影院久久| 高清毛片免费观看视频网站| 亚洲,欧美,日韩| 国产男人的电影天堂91| 欧美中文日本在线观看视频| 国产高潮美女av| 久久午夜福利片| 国产探花在线观看一区二区| 亚洲无线观看免费| 国产私拍福利视频在线观看| 又爽又黄无遮挡网站| 国内久久婷婷六月综合欲色啪| av专区在线播放| 成人三级黄色视频| 亚洲av免费高清在线观看| 天天一区二区日本电影三级| 久久久精品94久久精品| 国产精品av视频在线免费观看| 性插视频无遮挡在线免费观看| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 久久人妻av系列| 一进一出好大好爽视频| 国产v大片淫在线免费观看| 国产精品亚洲一级av第二区| 我要看日韩黄色一级片| 免费人成在线观看视频色| 国产av在哪里看| 日本与韩国留学比较| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 日韩欧美三级三区| 久久天躁狠狠躁夜夜2o2o| 午夜免费激情av| 日韩,欧美,国产一区二区三区 | 国产亚洲精品av在线| 欧美一区二区国产精品久久精品| av黄色大香蕉| 日韩在线高清观看一区二区三区| 老司机影院成人| 99精品在免费线老司机午夜| 九九久久精品国产亚洲av麻豆| 成年女人毛片免费观看观看9| 日韩人妻高清精品专区| 99在线视频只有这里精品首页| av福利片在线观看| av在线播放精品| 国产亚洲精品av在线| 精品久久国产蜜桃| 国产精品一区二区免费欧美| 国产精品,欧美在线| 欧美极品一区二区三区四区| 人人妻人人澡欧美一区二区| 51国产日韩欧美| 成人毛片a级毛片在线播放| 亚洲精品久久国产高清桃花| 又黄又爽又免费观看的视频| 免费大片18禁| 亚洲国产日韩欧美精品在线观看| 丰满乱子伦码专区| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 极品教师在线视频| av中文乱码字幕在线| 午夜激情欧美在线| 熟女电影av网| 欧美日韩精品成人综合77777| 国产单亲对白刺激| 欧美日本亚洲视频在线播放| 亚洲美女视频黄频| 国产aⅴ精品一区二区三区波| 日韩精品有码人妻一区| 亚洲av不卡在线观看| av国产免费在线观看| 亚洲精品456在线播放app| 美女大奶头视频| 国产精品伦人一区二区| 国产人妻一区二区三区在| 欧美区成人在线视频| 色综合站精品国产| 18禁裸乳无遮挡免费网站照片| 欧美日韩国产亚洲二区| 亚洲内射少妇av| 成人一区二区视频在线观看| 国产精品不卡视频一区二区| 亚洲av免费在线观看| 男女那种视频在线观看| 国产亚洲91精品色在线| 一级毛片aaaaaa免费看小| 久久人人爽人人爽人人片va| 国产色婷婷99| 欧美一区二区国产精品久久精品| 国产亚洲精品综合一区在线观看| 免费看美女性在线毛片视频| 国产成人freesex在线 | 看片在线看免费视频| 噜噜噜噜噜久久久久久91| 91在线观看av| 国产精品精品国产色婷婷| 日韩成人伦理影院| 免费观看人在逋| 国产毛片a区久久久久| 欧美成人a在线观看| 亚洲色图av天堂| 在线观看午夜福利视频| 国产午夜福利久久久久久| 日韩 亚洲 欧美在线| 亚洲美女黄片视频| 老司机福利观看| 久久婷婷人人爽人人干人人爱| 亚洲av成人精品一区久久| 精品乱码久久久久久99久播| 日日摸夜夜添夜夜添小说| 激情 狠狠 欧美| 又黄又爽又免费观看的视频| 国产精品久久视频播放| 国产午夜福利久久久久久| 乱系列少妇在线播放| 亚洲乱码一区二区免费版| 欧美中文日本在线观看视频| 色噜噜av男人的天堂激情| 亚洲图色成人| 亚洲av美国av| 啦啦啦观看免费观看视频高清| 少妇的逼好多水| 赤兔流量卡办理| 听说在线观看完整版免费高清| 大又大粗又爽又黄少妇毛片口| 欧美潮喷喷水| 精品午夜福利在线看| 亚洲美女搞黄在线观看 | 亚洲精品国产av成人精品 | 最近的中文字幕免费完整| 蜜臀久久99精品久久宅男| 女人被狂操c到高潮| 五月伊人婷婷丁香| 在线看三级毛片| 国产三级中文精品| 啦啦啦啦在线视频资源| 亚洲成人中文字幕在线播放| 久久久久久久久久久丰满| 中国美白少妇内射xxxbb| 久久久精品94久久精品| 在线国产一区二区在线| 国产一区二区在线av高清观看| 老女人水多毛片| 久久久久久久久久黄片| 尤物成人国产欧美一区二区三区| 99热网站在线观看| 亚洲在线自拍视频| 国产亚洲91精品色在线| 免费一级毛片在线播放高清视频| 中文字幕熟女人妻在线| 少妇熟女aⅴ在线视频| 国产成人a∨麻豆精品| 夜夜看夜夜爽夜夜摸| 国产淫片久久久久久久久| 国产精品久久久久久亚洲av鲁大| 麻豆av噜噜一区二区三区| 日韩中字成人| 国产av一区在线观看免费| 国产精品一区二区三区四区久久| 一级毛片aaaaaa免费看小| 国产精品精品国产色婷婷| 又黄又爽又免费观看的视频| 久久久久国内视频| 成人av一区二区三区在线看| 99热6这里只有精品| 少妇被粗大猛烈的视频| 国内久久婷婷六月综合欲色啪| 91麻豆精品激情在线观看国产| 精品久久久久久久久久免费视频| 久久精品综合一区二区三区| 免费av观看视频| 天美传媒精品一区二区| 精品福利观看| 99久国产av精品国产电影| 久久精品人妻少妇| 久久久国产成人精品二区| 国产精品av视频在线免费观看| 日本一本二区三区精品| 成人特级av手机在线观看| 精品少妇黑人巨大在线播放 | 亚洲美女黄片视频| 午夜久久久久精精品| 精品免费久久久久久久清纯| 国产高清视频在线播放一区| 久久久久精品国产欧美久久久| 在线观看美女被高潮喷水网站| 国产精品一区二区性色av| 国产久久久一区二区三区| 深爱激情五月婷婷| 全区人妻精品视频| 午夜激情欧美在线| 国产一区二区在线观看日韩| 老女人水多毛片| 丰满人妻一区二区三区视频av| 亚洲av成人精品一区久久| 亚洲熟妇熟女久久| 免费一级毛片在线播放高清视频| 我要搜黄色片|