• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Volumetric and Transport Properties of Aqueous NaB(OH)4Solutions*

    2013-07-31 22:43:56ZHOUYongquan周永全FANGChunhui房春暉FANGYan房艷andZHUFayan朱發(fā)巖
    關(guān)鍵詞:春暉

    ZHOU Yongquan (周永全), FANG Chunhui (房春暉)*, FANG Yan (房艷) and ZHU Fayan (朱發(fā)巖)

    1CAS Key Laboratory of Salt lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai 810008, China

    2Graduate School of Chinese Academy of Social Sciences, Beijing 100039, China

    Volumetric and Transport Properties of Aqueous NaB(OH)4Solutions*

    ZHOU Yongquan (周永全)1,2, FANG Chunhui (房春暉)1,*, FANG Yan (房艷)1, and ZHU Fayan (朱發(fā)巖)1,2

    1CAS Key Laboratory of Salt lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai 810008, China

    2Graduate School of Chinese Academy of Social Sciences, Beijing 100039, China

    Density, pH, viscosity, conductivity and the Raman spectra of aqueous NaB(OH)4solutions precisely measured as functions of concentration at different temperatures (293.15, 298.15, 303.15, 313.15 and 323.15 K) are presented. Polyborate distributions in aqueous NaB(OH)4solution were calculated, covering all the concentrationrange,is the most dominant species, other polyborate anions are less than 5.0%. The volumetric and thetransport properties were discussed in detail, both of these properties indicate thatbehaves as a structure-disordered anion.

    aqueous NaB(OH)4solution, volumetric property, transport property, polyborate distribution

    1INTRODUCTION

    Hydroxy-hydrated borates constitute the bulk of the mineral and optical ma?terial kingdom. Especially the tetrahy?dridoborate (BH4), as the reduction product of B(OH)4, are versatile reducing agents in various organic and inorganic processes [1]. The percentage of hydrogen presented in NaBH4and released by hydrolysis are 10.6% and 10.8%, respectively. Therefore, NaBH4is the most attractive chemical hydride for H2generation and storage in automotive fuel cell applications [2, 3]. However, the extensive use of NaBH4fuel would require the disposal of large quantities of the product NaB(OH)4. NaBH4can be regenerated from NaB(OH)4chemically [4-7]. Unfortunately, most chemical regeneration syntheses proposed so far involve several reaction steps with high cost. Furthermore, the by-products, wastes, and greenhouse gas emissions have already aroused the growing concern from the public. Luckily, the use of an electrolytic cell to reduce NaB(OH)4would not create large quantities of by-products, wastes, or emissions. There are a number of patents indicating the possibility ofelectroreductionciency and 20% to 80% yield on electrocatalytic hydrogenation cathodes [8-10]. However, reproduction of these claims was facing a number of difficulties, some researchers even got the conclusion that direct electroreduction of NaB(OH)4into NaBH4was impossible [11].

    Physicochemical properties such as density, electrical conductivity, viscosity, and acidity at moderate temperatures, affect the H2generation and storage system as well as the electrochemical recyclability of sodium metaborate. The density of NaB(OH)4solutions has been measured at moderate temperatures by Ward et al. [12], Corti et al. [13] and Ganopolsky et al [14]. The conductivity and viscosity have been studied by Corti et al. [13, 15], and Cloutier et al. [16] reported the properties (pH, density, conductivity and viscosity) of saturated NaB(OH)4in aqueous alkaline solutions. However, all those studies were under the concentration of 1.0 mol·L?1or a saturated single point. In the present paper, the density, electrical conductivity, viscosity, acidity and Raman spectra of aqueous NaB(OH)4solutions were assembled systematically. Not only the volumetric and transport properties of aqueous NaB(OH)4solution were deliberated, but also the chemical species distribution was given for the first time.

    2EXPERIMENTAL

    Commercially available metaborate [NaB(OH)4·2H2O, Sinopharm Chemical Reagent Co., AR] was recrystallized twice from double-distilled water [17] (electrical conductivity, κ<1.0 μS·cm?1). The entire sample solutions were prepared by mass using double-distilled water, and the overall relative uncertainty in the solution preparation was 0.1%. The borate solutions were carefully protected from atmospheric CO2and can be used about one week without concentration changes.

    Densities, ρ, of all the solutions were determined using a DMA4500 apparatus (Anton Paar, Austria) with an uncertainty of 0.00003 g·cm?3and temperature was controlled to ±0.03 K. The instrument was calibrated prior to initiation of each series of measurements, using air and double-distilled water as reference substances. Electrical conductivity, κ, was measured with an YSI 3200 conductivity meter (YSI, USA) using black-platinized electrode with a reproducibility of 0.3%. The constant of electrode was calibrated using six NaCl standard solutions (0.0001, 0.001, 0.01, 0.1, 0.5 and 1.0 mol·kg?1). A standard solution was measured every five measurements, the constant recalibrated if the deviation ≥0.3%. Acidity, pH, of all the solutions was measured using an Orion 310P-01 pH meter(Thermo, USA) with a reproducibility of 0.5%. The pH electrode was calibrated using three pH standard solutions (4.003, 6.864 and 9.182), a standard solution was used for checkup after every five measurements, the electrode recalibrated if the deviation ≥0.5%. In all the pH and conductivity measurements, a thermostat (GDH-1015W, Sayfo Analytical Instrument Factory, Ningbo, China) was used to maintain the temperature of the solutions within ±0.01 K uncertainty. Viscosity, η, was measured with a single Ubbelohde viscometer (Jingliang Precise Instrument Co., Shanghai, China), which was placed in a well-stirred constant temperature water bath and the temperature of the solutions was kept within ±0.05K uncertainty. The flow time was measured with an accurate 0.01 s stopwatch and the double-distilled was used for calibration. Measurements were repeated at least 4 times for each solution and temperature. The uncertainty of the viscosity measurements was estimated to be 0.5%. Raman spectra of solid and liquid samples were recorded in the ranges of 300-4000 cm?1, respectively, with a Nicolet Almega Dispersive Raman spectrometer (laser: 532 nm, exposure time: 8 s) at room temperature. The solid samples were put in the microscope slide (number of exposures: 1). The liquid samples were held in a quartz glass tube (number of exposures: 32).

    3RESULTS AND DISCUSSION

    3.1Chemical species in solutions

    Measured pH of aqueous NaB(OH)4solutions were collected in Table 1 as functions of molality (m), at 298.15 and 323.15 K.

    pH of aqueous NaB(OH)4solutions raises with concentration increasing, but at different concentration range different increasing rate can be found. In extreme low concentration (m<0.07 mol·kg?1), pH rises sharply with concentration increase. This maybe because the polyborates do not show any significant extent of polymerization, and the dominant species are B(OH)?4and B(OH)3in the extremely dilute solution. The dehydration and polymerization make pH changes complicated with concentration increase in moderate concentration (0.07<m<1.46 mol·kg?1). A good linear relationship between pH and concentration can be seen in high concentration (m>1.46 mol·kg?1), which may be due to the low acidity makes B(OH)?4become the dominant borate.

    Raman spectrum is an effective method for polyborate study [18]. In order to get a clear picture of the main polyborates and their equilibria in aqueous NaB(OH)4solutions, Raman spectra of the labeled solutions in Table 1 were recorded and displayed in Fig. 1. Range of 500-1200 cm?1is the most favorable zone for the investigation of borate solution, which might be considered as the characteristic absorption bands of polyborates [19-21]. The only obvious band near 741 cm?1in Raman spectra of aqueous NaB(OH)4solutions is the characteristic peak of the

    Table 1pH of aqueous NaB(OH)4solutions as functions of concentration at 298.15 and 323.15 K

    Figure 1microcrystals; ● characteristic peak

    Polyborate distributions in aqueous NaB(OH)4solution at 298.15 and 323.15 K were calculated using measured pH values and the literature equilibrium constants [22-24] by Newton iteration algorithm, as Fig. 2 shown. δ is the moles of boron for individual polyborate divided by the moles of total boron. As Fig. 2 shown, the dominating borate anions is B(OH)?4, the other polyborates (H3BO3, B3O3(OH)?4, B3O3(OH)52?, B4O5(OH)24?and B5O6(OH)?4are less than 5% in NaB(OH)4solution.

    Figure 2Variation in the distribution of boron species with concentration in aqueous NaB(OH)4solutions at 298.15 and■ H3BO3;

    Table 2Density and φvof aqueous NaB(OH)4solutions at various temperatures

    So the sodium metaborate [NaB(OH)4·2H2O] was assumed to dissociate in aqueous NaB(OH)4solution as follows:

    Therefore, all our results reported for sodium metaborate were denoted as NaB(OH)4 which dissoci

    3.2Volumetric properties

    3.2.1Density

    The densities of aqueous NaB(OH)4solutions were measured at 293.15, 298.15, 303.15, 313.15 and 323.15 K. The density and apparent molar volume of the solution, as a function of concentration and temperature are shown in Table 2.

    The apparent molar volumes φvfor these solutions, given in Table 2 were calculated from the equation

    where ρ0is the density of water at corresponding temperatures, ρ0=0.99823, 0.99707, 0.99568, 0.99225 and 0.98807 g·cm?3at 293.15, 298.15, 303.15, 313.15 and 323.15 K, respectively; m is the molality (mol·kg?1) of solution and M2is the molecular weight of the compounds, 101.828 for NaB(OH)4here.

    Most of the equations reported in the literature [25] with only two variables, i.e. the density and theconcentration or temperature. Here we proposed a new expression, Eq. (3), which takes the density as a function of both concentration and temperature.

    ρ=A+Bm+Cmt+Dmt2+Em1.5+Fm1.5t+Gm1.5t2(3) where A, B, C, D, E, F, G are empirical constant determined by least-squares fit; m is the concentration in units of mol·kg?1; t is the temperature in units of °C. Herein, for the aqueous NaB(OH)4solution, an empirical equation

    with R2=0.9988 was deduced in temperature range from 20 to 50 °C. Fig. 3 displays the measurements and the empirical density correlation of aqueous NaB(OH)4solutions vs. concentration at 293.15, 298.15, 303.15, 313.15 and 323.15 K. As shown in Fig. 3, our experimental data are also in good agreement with the literature [12].

    Figure 3Density vs. concentration plots for aqueous NaB(OH)4solutions at various temperatures○ experimental values; ▲ literature data for NaB(OH)4[12]; calculated data from nonlinear fitting

    3.2.2Apparent molar volumes

    The concentration dependence of the φvof NaB(OH)4is shown in Fig. 4. Correspondingly, we fi tted the experimental data to a three constant polynomial of concentration (mol·kg?1)

    Figure 4Plot of apparent molar volume (φv) against molality of aqueous NaB(OH)4solutions at different temperatures■ 313.15 K; ● 323.15 K; ▲ 303.15 K; ▼ 298.15 K;293.15 K

    The temperature dependence of theof NaB(OH)4, shown in Fig. 5, can be expressed by the equation

    Table 3Least-squares parameters of Eq.for aqueous NaB(OH) solutions4

    Table 3Least-squares parameters of Eq.for aqueous NaB(OH) solutions4

    T/K A1(v∞) A2A3R20Eφ 2??( )/vT 2 2 2∞293.15 20.50 8.7662 ?0.6211 0.9965 0.2250 ?0.00461 298.15 21.63 9.2237 ?0.9703 0.9986 0.2020 ?0.00696 303.15 22.53 8.3561 ?0.6493 0.9984 0.1555 ?0.00616 313.15 23.85 8.5864 ?0.9613 0.9900 0.1253 ?0.00185 323.15 25.03 10.037 ?1.8221 0.9661 0.1185 ?0.000673

    Figure 5Partial molar volumes at infinite dilution of NaB(OH)4as a function of temperature■ present work; ● Ward et al.; ▲ Corit et al.

    As Fig. 5 shown, the agreement among the different data sources is satisfactory. Using Hepler’s [26] reasoning,would be classified as a “structure breaking” solute between 298.15 and 323.15 Kute has the hydrophilic character, while if the behaviorsolute has hydrophobic character) , this may due to the unique structure ofanion (four tetrahedrons OH groups) [27].

    3.3Transport properties

    3.3.1Viscosity

    Measured viscosities for aqueous NaB(OH)4solutions were collected in Table 4. The viscosity data are plotted in Fig. 6 at two temperatures. A semi-empirical equation [28-30]:

    has been shown to be useful for data fi tting over wide concentration range, where a0, b0, and c0are the adjustable temperature dependent parameters. Theleast-squares fitted parameters in Eq. (6) are summarized in Table 5.

    Table 4Viscosity of aqueous NaB(OH)4solutions at as functions of concentration at 298.15 and 323.15 K

    The viscosity data of concentration less than 0.1 mol·L?1were analyzed in terms of the extended Jones-Dole viscosity equation:

    Figure 6(a) Viscosity vs. concentration plots for solutions at 298.15 K and 333.15K and (b) relative viscosity vs. concentration (<0.01 mol·L?1)● experimental values at 298.15 K; ■ experimental values at 333.15 K

    Table 5Coefficients for Eqs. (6) and (7) and the hydration number

    where ηr=η/η0·ηr, η and η0are the relative viscosity, viscosity of the solution and viscosity of the solvent, respectively, and c is the molar concentration. Coefficient (Aη) is a measure of ion-ion interactions and may be calculated from equilibrium theory, as summed by Jenkins and Marcus [31]. Coefficient (Bη), also called the Jones-Dole coefficient, is an empirical constant, qualitatively correlating on the size of solute particle and on ion-solvent interaction characteristic for electrolyte and solvent [31]. Bηof B(OH)?4were calculated by subtracting the Bηof Na+ion [25] from the values of NaB(OH)4at 298.15 and 323.15 K, respectively, that is Bη,B(OH)?4,298.15=?0.452 L?mol?1and Bη,B(OH)?4,323.15=?0.339 L·mol?1, which are well consistent with the literature values of dilute aqueous NaB(OH)4solutions at 298.15 K [32]. The calculated Bηof B(OH)?4(Bη<0) indicated it behaves as a structure disordering ion between 298.15 to 323.15 K, which is consistent with our study on volumetric properties of aqueous NaB(OH)4solution.

    For a dilute solution of spherical colloidal suspensions, Einstein derived the relation

    where φ is the volume fraction of the solute. For 1︰1 type electrolyte, Eq. (9) becomes

    where Vhis the hydrodynamic volume. Where Vhisthe partial molar volumeof the unsolvated solute particle in a continuum solvent. Thus, the value of the hydration number (Hn) can be calculated as

    Hnlies between 0 and 2.5 for unsolvated species and has higher valu?es for solvated species. The calculated Hnof B(OH)4are 20.9 and?13.5 at 298.15 and 323.15 K indicated the B(OH)4are solvated in aqueous solution [33]. It’s maybe another evidence?for a tight hydration sphere is formed around B(OH)4in aqueous solutions.

    3.3.2Electrical conductivity

    The experimental electrical conductivities of aqueous NaB(OH)4solutions are listed in Table 6.

    Figure 7 (a) shows that a break can be found, the conductivity increases as concentration and temperature. The conductivity data over the whole concentration range studied were fi tted to the Casteel-Amisequation [30, 34]:

    Table 6 Electrical conductivity of aqueous NaB(OH)4solutions at as functions of concentration at 298.15 and 323.15 K

    where μ is the concentration corresponding to the maximum conductivity κmaxat a given temperature; a and b are empirical parameters; m is molality in units of mol·kg?1. In all the concentration range a function between conductivity and concentration can be given though nonlinear fitting.

    The decrease of molar conductivity with increasing concentration must be due to the increase of viscosity of the aqueous solution and polymerization. The polymerization makes charge carriers in unit volume decrease, and higher polyborate anions and their hydration also means the charge carriers are large in size, and the increasing viscosity make migration rateslower.In extremely dilute solution (smaller than 0.01to any significant e?xtent polymerization so the main species are B(OH)4and B(OH)3with an equilibrium as follows:

    Figure 7(a) Conductivity vs. concentration plots for solutions at 298.15 and 323.15 K and (b) molar conductivity vs. concentration (<0.01 mol·L?1) to zero● experimental values at 298.15 K; ■ experimental values at 323.15 K; calculated data from nonlinear fitting

    Table 7Values of kmax, u, a and b coefficients for Eq. (11) and the transport properties of aqueous NaB(OH)4solutions

    Limiting molar conductivity (mΛ∞) of NaB(OH)4can be gotten by extrapolate to c=0 mol·L?1through the Kohlrausch correlations. As Fig. 7 (b) shown, the plot ofmΛ against c1/2is a line withmΛ∞as intercept to slope A at concentration (c<0.01 mol·L?1) where Λ∞,298.15=86.02 and Λ∞,323.15=136.05 S·cm2·mol?1. The limiting ionic conductivities for the B(OH)?4ion were calculated by+subtracting the limiting ionic conductivities of Na ion [25] from the limiting molar conductivity of NaB(OH)4,well consistent with Corti’s conclusion at 298.15 K [15].

    4CONCLUSIONS

    pH of aqueous NaB(OH)4solutions were precisely measured as functions of concentration from dilute to saturation at 298.15 and 323.15 K. Coupling with Raman spectra of some concentrated samples, polyborate distribution calculated using measured pH values and literature equilibrium constants of aqueousNaB(OH)4solutions shows?that covering all the concentration range, B(OH)4is the most dominant species, other polyborate anions are less than 5.0%. Densities of aqueous sodium borate solutions as functions of concentration (from diluted to saturate) and temperatures (293.15, 298.15, 303.15, 313.15 and 323.15 K) were summed, and semi-empirical equations for those properties vs. concentration were also suggested. Apparent molar volumes (φv), limit partial molar volumesand apparent molar expansibilitiesof sodium metaborate have been determined from those precision density. Conductivity data were analyzed with a semi-empirical equation over range concentration, and the limiting molar conductivity of298.15 and 323.15 K by the Kohlrausch correlations. From those values, the ionic mobility, diffusion coefficients and transference number for the4B(OH)?anion were given. Viscosity data were analyzed with a semi-empirical equation over range concentration, and the ion-solvent and ion-ion interactions were analyzed with an extended Jones-Dole type correlation at the extremely dilute concentration. Values of ?0.452 and?0.339 L·mol?1were estimated for the4B(OH)?B-coefficient at 298.15 and 323.15 K, respectively. Both of the volumetric and transport properties of aqueous NaB(OH)4solutions indicate that the B(OH)?4behaves like “structure breakers” between 293.15 and 323.15 K.

    NOMENCLATURE

    m molality, mol·kg?1

    R universal gas constant, 8.314 J·mol?1·K?1rsstokes radius, m

    T absolute temperature, K

    t temperature, °C

    ηrrelative viscosity

    ρ density of solution, g·cm?3

    ρ0density of pure water, g·cm?3

    φvapparent molar volumes, cm3·mol?1

    REFERENCES

    1 Periasamy, M., Thirumalaikumar, P., “Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis”, J. Organomet. Chem.,609(1-2), 137-151 (2000).

    2 Li, H.W., Yan, Y.G., Orimo, S., Zuttel, A., Jensen, C.M., “Recent progress in metal borohydrides for hydrogen storage”, Energies,4(1), 185-214 (2011).

    3 Jain, I.P., Jain, P., Jain, A., “Novel hydrogen storage materials: A review of lightweight complex hydrides”, J. Alloys Compd.,503(2), 303-339 (2010).

    4 Ved, A.S., Miley, G.H., Seetaraman, T.S., “Recycling sodium metaborate to sodium borohydride using wind-solar energy system for direct borohydride fuel cell”, In: Proceedings of the ASME 8th International Conference on Fuel Cell Science, Engineering and Technology, USA, 139-141 (2010).

    5 Kong, L.Y., Cui, X.Y., Jin, H.Z., Wu, J., Du, H., Xiong, T.Y.,“Mechanochemical synthesis of sodium borohydride by recycling sodium metaborate”, Energy Fuels,23(10), 5049-5054 (2009).

    6 Kojima, Y., Haga, T., “Recycling process of sodium metaborate to sodium borohydride”, Int. J. Hydrogen Energy,28(9), 989-993 (2003).

    7 Cakanyildirim, C., Guru, M., “Processing of NaBH4from NaBO2with MgH2by ball milling and usage as hydrogen carrier”, Renew. Energy,35(9), 1895-1899 (2010).

    8 Amendola, S., “Borohydride ion generation/consumption system for electric vehicle, has electrochemical cell to electrochemically reduce aqueous solution of oxidized form of borohydride ions, at alkaline pH to form borohydride ions”, U.S. Pat., 6497973-B1 (2002)

    9 Sharifian, H., Dutcher, J. S. , “Quat. ammonium and quat. phosphonium borohydride(s) prepn. by electrolysis, useful in paper prodn., fuel cells, detection and tracing of organic cpds. in biological systems”, U.S. Pat., 4904357-A (1990).

    10 Jia, Y.Z., Li, J., Gao, S.Y., Xia, S.P., “Thermochemistry of dipotassium calcium octaborate dodecahydrate”, Thermochim. Acta,335(1-2), 1-4 (1999).

    11 Gyenge, E. L., Oloman, C. W., “Electrosynthesis attempts of tetrahydridoborates”, J. Appl. Electroch em.,28(10), 1147-1151 (1998).

    12 Ward, G.K., Millero, F.J., “The effect of pressure on the ionization of boric acid in aqueous solutions from molal volume data”, J. Solution Chem.,3(6), 417-430 (1974).

    13 Corti, H., Crovetto, R., Fernandezprini, R., “Properties of the borate ion in dilute aqueous-solutions”, J. Chem. Soc. Faraday Trans.,76, 2179-2186 (1980).

    14 Ganopolsky, J.G., Bianchi, H.L., Corti, H.R., “Volumetric properties of aqueous electrolytes at high temperature: II. B(OH)3and B(OH)3-NaB(OH)4-NaOH mixtures up to 523 K”, J. Solution Chem.,25(4), 377-389 (1996).

    15 Corti, H., Crovetto, R., Fernández-Prini, R., “Mobilities and ion-pairing in LiB(OH)4 and NaB(OH)4aqueous solutions: A conductivity study”, J. Solution Chem.,9(8), 617-625 (1980).

    16 Cloutier, C.R., Alfantazi, A., Gyenge, E., “Physicochemical properties of alkaline aqueous sodium metaborate solutions”, J. Fuel Cell Sci. Tech.,4(1), 88-98 (2007).

    17 Nies, N.P., Hulbert, R.W., “Solubility isotherms in the system sodium oxide-boric oxide-water. Revised solubility temperature curves of boric acid, borax, sodium pentaborate, and sodium metaborate”, J. Chem. Eng. Data,12(3), 303-313 (1967).

    18 Zhou, Y.Q., Fang, C.H., Fang, Y., Zhu, F.Y., “Polyborates in aqueous borate solution: A Raman and DFT theory investigation”, Spectrochim. Acta A,83(1), 82-87 (2011).

    19 Hirao, T., Kotaka, M., Kakihana, H., “Raman spectra of polyborate ions in aqueous solution”, J. Inorg. Nucl. Chem.,41(8), 1217-1220 (1979).

    20 Liu, Z.H., Gao, B., Hu, M.C., Li, S.N., Xia, S.P., “FT-IR and Raman spectroscopic analysis of hydrated cesium borates and their saturated aqueous solution”, Spectrochim. Acta. A,59(12), 2741-2745 (2003).

    21 Liu, Z.H., Gao, B., Li, S.N., Hu, M.C., Xia, S.P., “Raman spectroscopic analysis of supersaturated aqueous solution of MgO-B2O3-32%MgCl2-H2O during acidification and dilution”, Spectrochim. Acta. A,60(13),3125-3128 (2004).

    22 Mesmer, R.E., Baes, C.F., Sweeton, F.H., “Acidity measurements at elevated temperatures. VI. Boric acid equilibriums”, Inorg. Chem.,11(3), 537-543 (1972).

    23 Spessard, J.E., “Investigations of borate equilibria in neutral salt solutions”, J. Inorg. Nucl. Chem.,32(8), 2607-2613 (1970).

    24 Weres, O., “Vapor pressure, speciation, and chemical activities in highly concentrated sodium borate solutions at 277 and 317 °C”, J. Solution Ch em.,24(5), 409-438 (1995).

    25 Horvath, A.L., Handbook of Aquous Electralyte Solution: Pysical Properties, Estimation and Correlation Methods, Ellis Horwood, New York (1985).

    26 Hepler, L.G., “Thermal expansion and structure in water and aqueous solutions”, Can. J. Chem.,47(24), 4613-4617 (1969).

    27 Rajagopal, K., Jayabalakrishnan, S.S., “Volumetric and viscometric studies of 4-aminobutyric acid in aqueous solutions of salbutamol sulphate at 308.15, 313.15 and 318.15 K”, Chin. J. Chem. Eng.,17(5), 796-804 (2009).

    28 Mahiuddin, S., Ismail, K., “Concentration dependence of viscosity of aqueous electrolytes. A probe into the higher concentration”, J. Phys. Chem. A,87(25), 5241-5244 (1983).

    29 Wahab, A., Mahiuddin, S., Hefter, G., Kunz, W., “densities, ultrasonic velocities, viscosities, and electrical conductivities of aqueous solutions of Mg(OAc)2and Mg(NO3)2”, J. Chem. Eng. Data,51(5), 1609-1616 (2006).

    30 Wahab, A., Mahiuddin, S., “Density, ultrasonic velocity, electrical conductivity, viscosity, and raman spectra of methanolic Mg(ClO4)2, Mg(NO3)2, and Mg(OAc)2solutions”, J. Chem. Eng. Data,54(2), 436-443 (2009).

    31 Jenkins, H.D.B., Marcus, Y., “Viscosity B-coefficients of ions in solution”, Chem. Rev.,95(8), 2695-2724 (1995).

    32 Cloutier, C.R., Alfantazi, A., Gyenge, E., “Physicochemical transport properties of aqueous sodium metaborate solutions for sodium borohydride hydrogen generation and storage and fuel cell applications”, In: 5th International Conference on Processing and Manufacturing of Advanced Materials, Chandra, 267-274 (2007).

    33 Ali, A., Sabir, S., Shahjahan, H.S., “Physicochemical properties of amino acids in aqueous caffeine solution at 25, 30, 35 and 40 degrees °C”, Chin. J. Chem.,24(11), 1547-1553 (2006).

    34 Casteel, J.F., Amis, E.S., “Specific conductance of concentrated solutions of magnesium salts in water-ethanol system”, J. Ch em. En g. Data,17(1), 55-59 (1972).

    35 Mauerhofer, E., Zhernosekov, K., Rosch, F., “Limiting transport properties of lanthanide and actinide ions in pure water”, Radiochimica Acta,91(8), 473-477 (2003).

    36 Mauerhofer, E., Rosch, F., “Dependence of the mobility of tracer ions in aqueous perchlorate solutions on the hydrogen ion concentration”, Phys. Chem. Chem. Phys.,5(1), 117-126 (2003).

    10.1016/S1004-9541(13)60561-3

    2012-05-07, accepted 2012-09-13.

    * Supported by the National Natural Science Foundation of China (20873172) and Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (KZCX2-EW-307).

    ** To whom correspondence should be addressed. E-mail: fangch@isl.ac.cn; fangy8@isl.ac.cn

    猜你喜歡
    春暉
    香辣牛展面
    美食(2024年3期)2024-03-17 17:59:01
    水木榮春暉
    中老年保健(2022年2期)2022-08-24 03:20:24
    給炎炎夏日加點(diǎn)“苦”與“甜”
    美食(2022年8期)2022-08-04 13:05:06
    春暉
    鴨綠江(2021年17期)2021-11-11 13:03:41
    馬春暉老師輔導(dǎo)的日記畫(huà)
    黃易致李衍孫《春暉札》再考
    誰(shuí)言寸草心,報(bào)得三春暉——唱給父母的贊歌
    郭春暉作品
    藝術(shù)家(2019年9期)2019-12-17 08:28:19
    謝自潔、陸春暉設(shè)計(jì)作品
    Special Focus(2018年8期)2018-08-31 05:58:00
    日韩欧美在线二视频| 中文在线观看免费www的网站| 国产高清激情床上av| 亚洲精品日韩av片在线观看| 日本与韩国留学比较| 亚洲 国产 在线| 伦理电影大哥的女人| 日韩 亚洲 欧美在线| 亚洲精品影视一区二区三区av| 亚洲综合色惰| 国产91精品成人一区二区三区| av天堂在线播放| 欧美高清成人免费视频www| 我的女老师完整版在线观看| 国产毛片a区久久久久| 国产精品免费一区二区三区在线| 国产精品一区二区三区四区免费观看 | 91在线观看av| 国内精品久久久久精免费| 中出人妻视频一区二区| 少妇人妻精品综合一区二区 | 国产成人aa在线观看| 国产精品久久视频播放| 国产高清有码在线观看视频| 99九九线精品视频在线观看视频| 久久中文看片网| 免费不卡的大黄色大毛片视频在线观看 | 长腿黑丝高跟| 亚洲av日韩精品久久久久久密| 免费高清视频大片| АⅤ资源中文在线天堂| 欧美日韩乱码在线| 观看美女的网站| 国产精品一区二区三区四区久久| 亚洲成人中文字幕在线播放| 成人国产一区最新在线观看| 日本-黄色视频高清免费观看| 亚洲va日本ⅴa欧美va伊人久久| 免费看日本二区| 成人性生交大片免费视频hd| 国产欧美日韩一区二区精品| www.www免费av| 俺也久久电影网| a在线观看视频网站| 99riav亚洲国产免费| 成年人黄色毛片网站| 亚洲av免费高清在线观看| 干丝袜人妻中文字幕| 亚洲欧美日韩高清专用| 别揉我奶头~嗯~啊~动态视频| 国产男人的电影天堂91| 波多野结衣高清作品| 亚洲精品色激情综合| 久久久久久伊人网av| 精品乱码久久久久久99久播| 深夜精品福利| 在线免费观看的www视频| 美女高潮喷水抽搐中文字幕| 美女高潮喷水抽搐中文字幕| 丰满人妻一区二区三区视频av| 大型黄色视频在线免费观看| 日本免费一区二区三区高清不卡| 三级男女做爰猛烈吃奶摸视频| 欧美日韩国产亚洲二区| 亚洲性久久影院| 亚洲最大成人中文| 99视频精品全部免费 在线| 成年女人看的毛片在线观看| 1000部很黄的大片| av在线观看视频网站免费| 无遮挡黄片免费观看| 亚洲精品一区av在线观看| 国产精品久久久久久亚洲av鲁大| 中文亚洲av片在线观看爽| 一区二区三区激情视频| 亚洲一区二区三区色噜噜| 国产精品亚洲一级av第二区| 国产精品久久久久久久电影| 欧美区成人在线视频| 两个人的视频大全免费| 亚洲专区中文字幕在线| 男女边吃奶边做爰视频| 色哟哟·www| 亚洲性夜色夜夜综合| 天美传媒精品一区二区| 欧美激情在线99| 18禁裸乳无遮挡免费网站照片| 88av欧美| 综合色av麻豆| 免费人成视频x8x8入口观看| 日韩欧美精品免费久久| 欧美高清成人免费视频www| 很黄的视频免费| 老司机福利观看| 亚洲av不卡在线观看| 观看免费一级毛片| 亚洲中文日韩欧美视频| 国产伦一二天堂av在线观看| 国产毛片a区久久久久| 全区人妻精品视频| 亚洲 国产 在线| 亚洲美女视频黄频| 精品久久久久久久久av| 精品免费久久久久久久清纯| 午夜福利在线观看吧| 久久久色成人| 久久久国产成人精品二区| 国产精品永久免费网站| 联通29元200g的流量卡| 中国美白少妇内射xxxbb| 伦理电影大哥的女人| 不卡一级毛片| 久久国产乱子免费精品| 五月玫瑰六月丁香| 欧美日韩乱码在线| 亚洲欧美清纯卡通| 欧美xxxx性猛交bbbb| 99热这里只有精品一区| 精品国内亚洲2022精品成人| 两性午夜刺激爽爽歪歪视频在线观看| av专区在线播放| 国产毛片a区久久久久| 欧美三级亚洲精品| 午夜影院日韩av| 草草在线视频免费看| 国国产精品蜜臀av免费| 亚洲七黄色美女视频| 午夜精品在线福利| 国产69精品久久久久777片| 国产高清三级在线| 欧美日韩国产亚洲二区| 国产熟女欧美一区二区| 91午夜精品亚洲一区二区三区 | 免费观看人在逋| 国产精品久久视频播放| 国产成人av教育| 亚洲国产欧美人成| av在线天堂中文字幕| 毛片一级片免费看久久久久 | 久久精品国产鲁丝片午夜精品 | 男女边吃奶边做爰视频| 18禁在线播放成人免费| 久久午夜福利片| 51国产日韩欧美| 在线播放国产精品三级| 中文字幕高清在线视频| 国内精品久久久久精免费| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷精品国产亚洲av| 男女啪啪激烈高潮av片| 亚洲美女视频黄频| 天堂√8在线中文| 色播亚洲综合网| 国产欧美日韩一区二区精品| 中文字幕免费在线视频6| 午夜免费男女啪啪视频观看 | 国产精品不卡视频一区二区| 中文亚洲av片在线观看爽| av国产免费在线观看| 国产一区二区在线av高清观看| 露出奶头的视频| 国产女主播在线喷水免费视频网站 | 日日啪夜夜撸| 日本 av在线| 日韩欧美精品v在线| 深夜精品福利| 欧美在线一区亚洲| bbb黄色大片| 国产综合懂色| 少妇的逼好多水| 乱人视频在线观看| 男插女下体视频免费在线播放| 日本一二三区视频观看| 麻豆精品久久久久久蜜桃| 级片在线观看| 国产精品乱码一区二三区的特点| 亚洲精品一卡2卡三卡4卡5卡| 老熟妇乱子伦视频在线观看| 欧美一区二区精品小视频在线| 18禁黄网站禁片免费观看直播| 五月玫瑰六月丁香| 欧美在线一区亚洲| 51国产日韩欧美| 中文在线观看免费www的网站| 免费人成在线观看视频色| 免费看光身美女| 免费观看精品视频网站| 国产伦一二天堂av在线观看| 亚洲人成网站在线播放欧美日韩| 久久香蕉精品热| 男人舔奶头视频| 欧美黑人欧美精品刺激| 亚洲av一区综合| 午夜精品久久久久久毛片777| 啦啦啦啦在线视频资源| 国产色婷婷99| 一级黄色大片毛片| 午夜免费成人在线视频| 国产精品一及| 99九九线精品视频在线观看视频| 岛国在线免费视频观看| 午夜精品久久久久久毛片777| 色视频www国产| 国内精品久久久久精免费| 亚洲va日本ⅴa欧美va伊人久久| 又紧又爽又黄一区二区| 男人舔奶头视频| 亚洲精品色激情综合| 国产黄色小视频在线观看| 真人一进一出gif抽搐免费| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久亚洲中文字幕| 日本熟妇午夜| 男人舔奶头视频| 一进一出好大好爽视频| 欧美区成人在线视频| 两个人的视频大全免费| 国产精品久久久久久亚洲av鲁大| 亚洲成人精品中文字幕电影| 色吧在线观看| 国产伦人伦偷精品视频| 国产人妻一区二区三区在| 日本在线视频免费播放| 欧美高清成人免费视频www| 国产精品久久久久久久电影| 一a级毛片在线观看| a级毛片a级免费在线| 日韩高清综合在线| 久久久国产成人精品二区| 免费一级毛片在线播放高清视频| 99久久九九国产精品国产免费| 色哟哟哟哟哟哟| 国产一区二区在线观看日韩| 日韩强制内射视频| 国产麻豆成人av免费视频| 乱码一卡2卡4卡精品| 黄色日韩在线| www日本黄色视频网| 舔av片在线| 国产麻豆成人av免费视频| 可以在线观看毛片的网站| 两个人的视频大全免费| 美女大奶头视频| 嫩草影院精品99| 精品人妻熟女av久视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲 国产 在线| 国产亚洲91精品色在线| 在线观看午夜福利视频| 人妻久久中文字幕网| 亚洲,欧美,日韩| 国产精品久久久久久亚洲av鲁大| 久久久久久久久大av| 亚洲黑人精品在线| 久久草成人影院| 国产成人一区二区在线| 欧美+亚洲+日韩+国产| 国产私拍福利视频在线观看| 成人午夜高清在线视频| 又爽又黄无遮挡网站| 国产精品不卡视频一区二区| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 女人十人毛片免费观看3o分钟| 熟女人妻精品中文字幕| 国产精品电影一区二区三区| 在线观看免费视频日本深夜| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 在线看三级毛片| 大又大粗又爽又黄少妇毛片口| 欧美精品啪啪一区二区三区| 3wmmmm亚洲av在线观看| 午夜影院日韩av| 亚洲av一区综合| aaaaa片日本免费| 在线国产一区二区在线| 久久精品91蜜桃| 男女做爰动态图高潮gif福利片| 久久精品综合一区二区三区| 欧美色视频一区免费| 免费人成在线观看视频色| 老熟妇仑乱视频hdxx| 色吧在线观看| 99久久精品国产国产毛片| 亚洲第一电影网av| av福利片在线观看| 99久久精品热视频| 日韩欧美精品免费久久| 国产在视频线在精品| 亚洲中文字幕日韩| 深夜精品福利| 真人一进一出gif抽搐免费| 久久久久久久亚洲中文字幕| 欧美区成人在线视频| 亚州av有码| 国内精品宾馆在线| 亚洲欧美日韩高清在线视频| 午夜福利在线观看免费完整高清在 | 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av涩爱 | 成年女人毛片免费观看观看9| 日韩欧美在线乱码| 午夜福利在线在线| 国产一区二区三区在线臀色熟女| 俺也久久电影网| 最近最新中文字幕大全电影3| 精品不卡国产一区二区三区| 免费av毛片视频| 国模一区二区三区四区视频| 又爽又黄a免费视频| 国产熟女欧美一区二区| 他把我摸到了高潮在线观看| www.www免费av| 国产色爽女视频免费观看| 欧美日韩黄片免| 久久精品影院6| 99精品久久久久人妻精品| 日韩欧美在线乱码| 美女大奶头视频| 91久久精品国产一区二区成人| 亚洲人成伊人成综合网2020| 一个人看视频在线观看www免费| 精品久久久久久,| 欧美在线一区亚洲| 国产aⅴ精品一区二区三区波| 国产精品亚洲一级av第二区| 精品久久久久久久久av| 免费看av在线观看网站| 亚洲色图av天堂| 色吧在线观看| 熟女人妻精品中文字幕| 伦精品一区二区三区| 国产免费av片在线观看野外av| 两个人视频免费观看高清| 欧美日韩亚洲国产一区二区在线观看| 成人高潮视频无遮挡免费网站| 久久人人精品亚洲av| 丝袜美腿在线中文| 精品人妻一区二区三区麻豆 | 国产又黄又爽又无遮挡在线| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 九九爱精品视频在线观看| 国产精品久久久久久久电影| or卡值多少钱| 老司机午夜福利在线观看视频| 黄色一级大片看看| 久久精品国产清高在天天线| 久9热在线精品视频| 国产伦一二天堂av在线观看| 久久精品国产亚洲av香蕉五月| 国模一区二区三区四区视频| 亚洲欧美日韩高清在线视频| 精品人妻1区二区| 亚洲精品久久国产高清桃花| 国内精品久久久久精免费| 大型黄色视频在线免费观看| 91在线精品国自产拍蜜月| 亚洲天堂国产精品一区在线| 我的老师免费观看完整版| 美女xxoo啪啪120秒动态图| 99久久成人亚洲精品观看| 悠悠久久av| 少妇裸体淫交视频免费看高清| 国产精品伦人一区二区| 精品不卡国产一区二区三区| 亚洲精品国产成人久久av| 亚洲精品456在线播放app | 精品国产三级普通话版| 亚洲欧美清纯卡通| 18+在线观看网站| 久久这里只有精品中国| 国产真实乱freesex| 国产免费男女视频| 他把我摸到了高潮在线观看| 能在线免费观看的黄片| 国产伦在线观看视频一区| www.色视频.com| 午夜爱爱视频在线播放| 看免费成人av毛片| 十八禁网站免费在线| 性欧美人与动物交配| 欧美三级亚洲精品| av在线天堂中文字幕| 国产久久久一区二区三区| 91午夜精品亚洲一区二区三区 | 久久久久久久亚洲中文字幕| 日韩欧美国产一区二区入口| 久久6这里有精品| 国内精品久久久久精免费| 亚洲精品日韩av片在线观看| 最近在线观看免费完整版| 两性午夜刺激爽爽歪歪视频在线观看| 国产午夜精品久久久久久一区二区三区 | 欧美日本视频| 亚洲av.av天堂| 免费在线观看成人毛片| 亚洲电影在线观看av| 国产伦精品一区二区三区视频9| 极品教师在线免费播放| 一卡2卡三卡四卡精品乱码亚洲| 久久香蕉精品热| 国产一区二区亚洲精品在线观看| 又爽又黄无遮挡网站| 日本-黄色视频高清免费观看| 亚洲国产欧洲综合997久久,| 精品一区二区三区视频在线| 日韩,欧美,国产一区二区三区 | 九色成人免费人妻av| 欧美另类亚洲清纯唯美| 1000部很黄的大片| 嫩草影院入口| 18+在线观看网站| 免费不卡的大黄色大毛片视频在线观看 | 日韩精品中文字幕看吧| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式| 久久精品91蜜桃| 在线观看美女被高潮喷水网站| 亚洲美女搞黄在线观看 | 久久香蕉精品热| 国产精品女同一区二区软件 | 在线观看一区二区三区| 久久久色成人| 中文资源天堂在线| 久久99热这里只有精品18| 最近在线观看免费完整版| 免费av不卡在线播放| 亚洲av日韩精品久久久久久密| 免费看av在线观看网站| 久久精品91蜜桃| 女人十人毛片免费观看3o分钟| av在线老鸭窝| 久久国产乱子免费精品| 美女cb高潮喷水在线观看| 国产综合懂色| 美女免费视频网站| 国内精品久久久久久久电影| 国产亚洲精品久久久久久毛片| 欧美精品国产亚洲| 成人二区视频| 悠悠久久av| 成人无遮挡网站| 国产精品乱码一区二三区的特点| 国产精品国产三级国产av玫瑰| 美女 人体艺术 gogo| 精品不卡国产一区二区三区| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 天堂网av新在线| 欧美国产日韩亚洲一区| 成年女人看的毛片在线观看| 男女边吃奶边做爰视频| 干丝袜人妻中文字幕| 伊人久久精品亚洲午夜| 日本色播在线视频| 俄罗斯特黄特色一大片| 乱系列少妇在线播放| 中文字幕精品亚洲无线码一区| 香蕉av资源在线| 亚洲欧美日韩高清专用| 久久精品国产亚洲av涩爱 | 国产精品一区二区免费欧美| 美女免费视频网站| 热99re8久久精品国产| 国国产精品蜜臀av免费| www.色视频.com| 成人亚洲精品av一区二区| 99国产极品粉嫩在线观看| 一本一本综合久久| h日本视频在线播放| 偷拍熟女少妇极品色| 精品久久久久久久人妻蜜臀av| 婷婷色综合大香蕉| 一级黄片播放器| 三级国产精品欧美在线观看| 少妇裸体淫交视频免费看高清| 尤物成人国产欧美一区二区三区| 不卡一级毛片| 精品久久久久久久末码| 亚洲va日本ⅴa欧美va伊人久久| 色吧在线观看| 色5月婷婷丁香| 综合色av麻豆| 天堂av国产一区二区熟女人妻| 最新中文字幕久久久久| 成人鲁丝片一二三区免费| 色哟哟哟哟哟哟| 中国美女看黄片| 国产精品乱码一区二三区的特点| 国产亚洲91精品色在线| 在线播放国产精品三级| 精品久久久久久,| 精品无人区乱码1区二区| 亚洲第一区二区三区不卡| 性插视频无遮挡在线免费观看| 成人欧美大片| 免费电影在线观看免费观看| 精品久久久久久成人av| 精品久久久久久,| 真人一进一出gif抽搐免费| 国产毛片a区久久久久| 亚洲av第一区精品v没综合| 日韩在线高清观看一区二区三区 | 欧美成人一区二区免费高清观看| 日韩欧美在线乱码| 亚洲av日韩精品久久久久久密| 又爽又黄a免费视频| 成人国产麻豆网| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| 很黄的视频免费| 久久精品人妻少妇| 日本欧美国产在线视频| 人妻丰满熟妇av一区二区三区| 亚洲精品日韩av片在线观看| 在线看三级毛片| 大型黄色视频在线免费观看| 国产精品久久视频播放| 亚洲最大成人中文| a级毛片a级免费在线| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 国产av一区在线观看免费| 最新中文字幕久久久久| 成人亚洲精品av一区二区| 无遮挡黄片免费观看| 国内精品久久久久久久电影| 日韩人妻高清精品专区| 国产人妻一区二区三区在| 动漫黄色视频在线观看| 亚洲va在线va天堂va国产| 在线a可以看的网站| 一本久久中文字幕| 成人特级黄色片久久久久久久| av在线天堂中文字幕| 尾随美女入室| 日韩欧美免费精品| 欧美激情国产日韩精品一区| 少妇裸体淫交视频免费看高清| 韩国av一区二区三区四区| 91久久精品国产一区二区三区| 免费人成在线观看视频色| 床上黄色一级片| 国产在线男女| 日韩强制内射视频| 日日摸夜夜添夜夜添av毛片 | 九九爱精品视频在线观看| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 97碰自拍视频| 97超级碰碰碰精品色视频在线观看| 久久热精品热| 精品人妻熟女av久视频| 大型黄色视频在线免费观看| 三级毛片av免费| 中文字幕av成人在线电影| 一进一出抽搐动态| 自拍偷自拍亚洲精品老妇| 国产69精品久久久久777片| 精品人妻视频免费看| 亚洲av电影不卡..在线观看| 村上凉子中文字幕在线| 成年女人毛片免费观看观看9| 免费在线观看影片大全网站| 亚洲av免费高清在线观看| 成人av一区二区三区在线看| 久9热在线精品视频| 91午夜精品亚洲一区二区三区 | 成年女人看的毛片在线观看| 国产精品嫩草影院av在线观看 | 免费电影在线观看免费观看| 中文在线观看免费www的网站| 久久精品夜夜夜夜夜久久蜜豆| 欧美极品一区二区三区四区| 热99在线观看视频| 又爽又黄a免费视频| 国产男人的电影天堂91| 欧美潮喷喷水| 噜噜噜噜噜久久久久久91| 老司机深夜福利视频在线观看| 深爱激情五月婷婷| 国产精品乱码一区二三区的特点| 欧美一区二区亚洲| 又黄又爽又免费观看的视频| 国产精品久久久久久av不卡| 麻豆成人av在线观看| 一本一本综合久久| 大型黄色视频在线免费观看| 国产日本99.免费观看| 亚洲精品日韩av片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 免费av毛片视频| 大又大粗又爽又黄少妇毛片口| 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲精品综合一区在线观看| 亚洲av成人av| 免费在线观看日本一区| 成人特级av手机在线观看| 特级一级黄色大片| 99国产精品一区二区蜜桃av| 在线观看66精品国产| 午夜精品久久久久久毛片777| 欧美日韩黄片免| 久久久国产成人免费| 婷婷精品国产亚洲av在线| 国产69精品久久久久777片| 18禁黄网站禁片免费观看直播| 婷婷丁香在线五月| www.色视频.com| 免费人成在线观看视频色| 日韩强制内射视频| 成人国产综合亚洲|