• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Soft Sensor for Inputs and Parameters Using Nonlinear Singular State Observer in Chemical Processes*

    2013-07-31 22:44:06XUFeng許鋒WANGYeye汪曄曄andLUOXionglin羅雄麟

    XU Feng (許鋒), WANG Yeye (汪曄曄) and LUO Xionglin (羅雄麟)**

    Research Institute of Automation, China University of Petroleum, Beijing 102249, China

    Soft Sensor for Inputs and Parameters Using Nonlinear Singular State Observer in Chemical Processes*

    XU Feng (許鋒), WANG Yeye (汪曄曄) and LUO Xionglin (羅雄麟)**

    Research Institute of Automation, China University of Petroleum, Beijing 102249, China

    Chemical processes are usually nonlinear singular systems. In this study, a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes, which are augmented as state variables. Based on the observability of the singular system, this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters. When the observability is satisfied, the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer. The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation. With the catalyst circulation rate as the only unknown input without model error, one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate. However, when uncertain model parameters also exist, additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.

    soft sensor, state observer, nonlinear singular system, unknown inputs, uncertain model parameters, riser reactor of fluid catalytic cracking unit

    1INTRODUCTION

    In chemical processes, the operation and control depend on many key input variables that are difficult to measure in real-time with current process instruments. Soft sensor is an effective method for real-time measurement of unmeasurable variables and gradually receives more attention.

    At present, the research on soft sensor is mainly on the modeling of soft sensor, establishing mathematical relation between the primary variables unmeasurable and the secondary variables easy to be measured. The modeling of soft sensor includes the extended Kalman filter [1], the high-gain observer [2], the artificial neural network [3], the hybrid fuzzy c-means algorithm and support vector machine [4], the independent component analysis and partial least squares [5], and the relevance vector machine [6]. The multiple model method [7, 8] and local learning adaptive model [9] are also used in the modeling of soft sensor. Because of the complexity and uncertainty of chemical processes, errors are inevitably present. Many input variables are unmeasurable and model parameters are uncertain in chemical processes, so the soft sensor for unknown inputs and uncertain model parameters can be corrected only on-line by secondary variables easy to be measured. The form of soft sensor using output correction of secondary variables will be similar to state observer. When the unknown inputs [10-13] and the uncertain model parameters [14, 15] are augmented as state variables, the soft sensor based on state observer could be built to estimate the unknown inputs and correct the uncertain model parameters online.

    The first-principle models of chemical processes are composed of both algebraic and differential equations (DAE), which are called singular systems. Mass and energy balance equations are differential equations, while the equations for mass and energy transfer rate, chemical reaction rate, and thermodynamic state are algebraic equations. In some chemical processes, such as in a riser reactor of fluid catalytic cracking unit (FCCU), the dynamic response of component mass percents is much faster than that of temperature. Hence, the former can be assumed as a quasi-steady state, and mass balance equations become algebraic equations to form another singular system. In the past two decades, singular systems have been widely studied, including stability and Lyapunov theorem [16], poles assignment [17], state feedback stabilization [18], impulse analysis [19], observability and controllability [20-22], most of which focus on linear singular systems or a specific class of nonlinear singular systems. To build the soft sensor for unknown inputs and uncertain model parameters, the nonlinear singular state observer must be used.

    State observer for nonlinear singular systems is important in the singular system control theory. The study on the state observer of a linear singular system is mainly focused on the Luenberger observer [23-25] and has been studied intensively. However, state observer for nonlinear singular systems is much more complicated. Zimmer and Meier [26] studied the problem of observing the state of continuous nonlinear descriptor systems in quasilinear form and presented a method to construct a state observer. Lan et al. [27] presented the state observer for bilinear descriptor systems by poles assignment method and the observeerror was Lyapunov asymptotically stable. For a class of Lipschitz nonlinear singular systems, Lu and Ho [28] constructed both types of full-order and reduced-order observers by a unified linear matrix inequality approach. Darouach and Boutat-Baddas gave the sufficient conditions for the existence of observers using linear matrix inequalities formulation [29] and the H∞observers for Lipschitz nonlinear singular systems [30]. Xu et al. [31] transformed a singular system to a normal system after the linearization of nonlinear singular system at current operating point and designed the state observer according to normal system. In this study, we directly design the singular state observer according to singular system. Using the method of adaptive observer [32, 33], the output feedback matrix of state observer is obtained online through poles assignment of the linear parameter-varying singular system at current operating point of the nonlinear singular system.

    When unknown inputs and uncertain model parameters are augmented as state variables, state observation will become more difficult as the system dimension increases. Waldraff et al. [34] and Vanden-Berg et al. [35] used the observability matrix of linearized systems to analyse system observability and modified sensor placement.

    The present paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters. When observability is satisfied, a soft sensor using augmented nonlinear singular state observer is designed for unknown inputs and uncertain model parameters.

    2AUGMENTATIONS OF UNKNOWN INPUTS AND UNCERTAIN MODEL PARAMETERS

    In the nonlinear singular system given by

    x∈Rnis the state, y∈Rlis the measured output, u∈Rm0is the known control input, v∈Rm1is the unknown input, p∈Rm2is the uncertain model parameter, and f(?) is the n-dimensional mapping function of the state and is assumed to be smooth. The matrix E∈Rn×nmay be singular, and rank(E)=q<n.

    In general real processes, E=diag(Iq,0), and a more practical form is given by

    where x1∈Rqis the differential vector and x2∈Rn?qis the algebraic vector.

    Chemical processes usually belong to an indexone singular system, which implies that

    To be observed, the unknown input v needs to be augmented as state variables. As Besancon [36] reported, the estimation accuracy of an augmented state observer is independent of the dimension of augmented state variables. Thus the dynamic model of augmented unknown input v is

    with the initial value v(t0)=v0.

    As the uncertain model parameter is constant, it is augmented as a state variable of one dimension and the dynamic model is

    with the initial value p(t0)=p0.

    After the unknown inputs and uncertain parameters are augmented as state variables, the augmented system becomes

    The linearized form of the augmented system in Eq. (5) is

    3OBSERVABILITY CRITERION FOR UNKNOWN INPUTS AND UNCERTAIN MODEL PARAMETERS

    Based on the observability criterion of singular systems, a simplified observability criterion under certain conditions is presented for unknown inputs anduncertain model parameters.

    Lemma 1[37]The linear singular system (E, A, C) is observable, if and only if

    Theorem 1With the assumption that the original system in Eq. (1) is observable at the current operating point, the augmented system in Eq. (5), in which unknown inputs and uncertain model parameters are augmented as state variables, is locally observable at an operating point, if and only if

    ProofThe augmented system in Eq. (5) is locally observable at an operating point, if and only if its linearized system ( Ee,Ae,Ce) is observable, such that

    As the original system in Eq. (1) is observable at the current operating point, its linearized system is also observable. Hence, Eq. (11) is obviously satisfied, and Eq. (10) is satisfied, if and only if

    This completes the proof.

    The necessary observability conditions for unknown inputs and uncertain model parameters can be further deduced fromTheorem 1.

    CorollaryThe necessary observability conditions of the augmented system in Eq. (5), in which unknown inputs and uncertain model parameters are augmented as state variables, are

    TheCorollarymeans that the augmented system in Eq. (5) will not be observable if the dimension of the unknown inputs plus the dimension of uncertain model parameters m1+m2is larger than the dimension of measured outputs l.

    4SOFT SENSOR USING AUGMENTED NONLINEAR SINGULAR STATE OBSERVER

    For the augmented system in Eq. (5), a singular state observer exists as

    Based on the singular state observer in Eq. (12), a soft sensor is built to estimate the unknown inputs and uncertain model parameters.

    where0y is the output of soft sensor,, and

    If e=xe?x?eis the estimation error of real states and estimated states, e satisfies the following error equation of the state observer:

    Equation (14) shows that an equilibrium point at e=0 exists. If the error equation in Eq. (14) is locally and asymptotically stable at its equilibrium point e=0, the nonlinear singular state observer in Eq. (12) will be convergent.

    The linearized form of the error equation in Eq. (14) at e=0 is

    Lemma 2[37]If (E, A, C) is observable, a matrix L always exists, which makes the poles set of (E, A?LC)equal any set Λ of q conjugated complex numbers [i.e., σ(E,A?LC)=Λ].

    Theorem 2x=0 is an equilibrium point for the nonlinear singular system Ex˙=f(x) andwhere f:D→Rnis continuously differentiable, and D is the neighbourhood near the origin. If (E, A) is stable and impulse-free, the nonlinear singular system Ex˙=f(x) is asymptotically stable near the origin.

    ProofSee Appendix.

    Theorem 2extends the theory of Lyapunov linearization and stability from a normal system to a singular system. On the basis ofTheorem 2, the following theorem is proposed for the design of a nonlinear singular state observer.

    Theorem 3For the nonlinear singular systemif its linearized system (E, A, C) at the operating point is observable, an asymptotically stable singular state observermust exist.

    ProofThe error equation of the singular state observer is

    Its linearized form at equilibrium point 0=e is

    FromLemma 2, if (E, A, C) is observable, (E, A?LC) can be made stable and impulse-free by choosing L to assign the poles of (E, A?LC) arbitrarily.

    FromTheorem 2, if (E, A?LC) is stable and impulse-free, the error equation of the singular state observer is locally and asymptotically stable at 0=e. The singular state observer will be convergent.

    This procedure completes the proof.

    Hence, if the linearized augmented system (Ee, Ae, Ce) is observable, a singular state observer must exist.

    Obviously, the linearized systemic matrix Aeof the augmented system changes with the operating point of the real process, so the feedback gain matrix L of the singular state observer should be adjusted online accordingly to assign the dynamic poles of (Ee, Ae?LCe) at the appropriate location. Therefore, at each sampling time, the feedback gain matrix L should be refreshed to accommodate the operating point changes through online poles assignment of the linearized system.

    The implementation steps for calculating the feedback gain matrix L are as follows.

    (1) Linearize the augmented nonlinear singular system in Eq. (5) at the operating point to obtain (Ee, Ae, Ce). As Eq. (5) is the index-one singular system, (Ee, Ae, Ce) is the second equivalent form of the singular system [37].

    wheree,22A is non-singular,

    (3) Non-singular matrices Q and P exist.

    The system is thus transformed into the first equivalent form of the singular system [37].

    (4) As (Ee,Ae,Ce) is observable,is controllable and the slow subsystem (A1,B1) is also controllable. On the basis of the state feedback stabilisation controller design method of the normal system,can be found to assign the poles of (A1?B1K1) at the appropriate locations. Thenmakesfor the designed poles assignments.

    (5) With L=KTas the feedback gain matrix of the state observer,

    When the state observer is running, changing the feedback gain matrix L is not continuous but discrete. During each sampling period, the feedback gain matrix L remains unchanged, and the state observer will run for a sampling period. After the sampling period is finished, the feedback gain matrix L will be calculated following Steps (1) to (5), and running the next sampling period will begin. For the convergence of numerical simulation, the sampling period h and the poles need to assign λj, j=1,2,…,m1+m2+q which should satisfy the condition

    5CASE STUDY

    The dynamic model [38] of the riser reactor of FCCU (fluid catalytic cracking unit) is given by

    The dynamic model can be rewritten as

    The riser reactor of FCCU is a typical index-one nonlinear singular system. The catalyst circulation rate GCis the main unknown input. The pre-exponential factor of reaction rate constant of crude oil kA0is always influenced by oil material properties and needs to be modified by real process data, which is considered as the main uncertain model parameter. N is the number of FCCU riser segments, and 4N= here.

    Firstly, the dynamic model of the FCCU riser reactor is assumed to be accurate without uncertain model parameters, and only GCis unknown. GCis thus augmented as one state variable. Only one temperature sensor is present at the outlet of the FCCU riser, that is

    The dimension of the unknown inputs is equal to the dimension of the measurable output, which satisfies the necessary observability condition of theCorollary. At the same time, n=7×N=28, m1=1, m2=1, and

    soTheorem 1is also satisfied.

    The soft sensor using augmented singular state observer is designed to estimate GC. To examine how the assigned poles of state observer to influence the observation results, we take two set of assigned poles of state observer into account, with the first poles set of [?0.68, ?0.68, ?0.68, ?0.68, ?0.68] and the second poles set of [?0.4, ?0.4, ?0.4, ?0.4, ?0.4]. To study the influence of signal forms of the unknown input, we consider GCof a square signal or a sinusoidal signal. Fig. 1 (a) shows the curves of the real values and estimated values of GCwhen the unknown input is a square signal, while Fig. 1 (b) shows those when the unknown input is a sinusoidal signal. The estimated values of GCare convergent to the real values. When the assigned poles of state observer are more negative, the convergence rate of state observer is quicker.

    To investigate the adaptive capacity for stochastic noise, we add the normally distributed stochastic noise on the signal of the unknown input. Fig. 2 shows the curves of the real values and estimated values of GCwith two poles set for the unknown input of a square signal or a sinusoidal signal with stochastic noise added. The simulation indicates that the impact of stochastic noise is very limited and the state observer with more negative assigned poles is also of the faster convergence rate even under the condition of stochastic noise.

    Table 1 shows the mean errors of GCduring the whole dynamic processes of state observer. The mean error with noise is slightly larger than that without noise and the more negative assigned poles gives less mean error.

    Figure 1Catalyst circulation rate for unknown input without noisereal value; estimated value of the first poles set; estimated value of the second poles set

    Figure 2Catalyst circulation rate for unknown input with noisereal value; estimated value of the first poles set; estimated value of the second poles set

    Table 1The mean errors of the catalyst circulation rate/kg·s?1

    Secondly, both unknown input and uncertain model parameter exist in the dynamic model of the FCCU riser reactor, where GCis the unknown input and kA0is the uncertain model parameter. If only one temperature sensor is present at the outlet of the FCCU riser as before, that is C1=[000 1], the dimension of the unknown input plus the dimension of the uncertain model parameter is 2, which is larger than that of measured outputs for the only one temperature sensor at the outlet of the FCCU riser. It will not satisfy the necessary observability conditions of theCorollary. At the same time, n=7×N=28, m1=1, m2=1, and

    soTheorem 1is not satisfied either.

    More measure points should be added. If one temperature sensor is placed in the middle of the riser reactor and another is at the outlet, the dimension of the measured outputs becomes 2, that is

    The dimension of the unknown input plus the dimension of the uncertain model parameter is equal to that of measured outputs. The necessary observability condition of theCorollaryis satisfied. At the same time, n=7×N=28, m1=1, m2=1, and

    soTheorem 1is satisfied.

    The soft sensor using augmented singular state observer is designed to estimate both unknown input and uncertain model parameter with the temperature sensor in the middle of the riser reactor added. To study the impact of the assigned poles of state observer, we also consider two set of assigned poles of state observer, the first poles set is [?0.7, ?0.7, ?0.7,?0.7, ?0.1, ?0.1] and the second set is [?0.5, ?0.5,?0.5, ?0.5, ?0.05, ?0.05]. To study the influence of signal forms of the unknown input, we also consider GCof a square signal or a sinusoidal signal. Fig. 3 shows the curves of the real values and estimated values of GCand Fig. 4 shows the curves of kA0. Theestimated values of GCare convergent to the real values, and even if an initial estimation error is encountered for kA0, the estimated value converges to the real value through the online modification of the state observer when it is augmented as a state variable. The assigned poles of state observer are relevant to the convergence rate of state observer. The more negative the assigned poles, the faster the convergence rate.

    Figure 3Catalyst circulation rate for unknown input and uncertain model parameter without noise real value; estimated value of the first poles set; estimated value of the second poles set

    Figure 4Reaction rate constant pre-exponential factor of crude oil without noisereal value; estimated value of the first poles set; estimated value of the second poles set

    Figure 5Catalyst circulation rate for unknown input and uncertain model parameter with noise real value; estimated value of the first poles set; estimated value of the second poles set

    With both the unknown input and uncertain model parameter, we add the normally distributed stochastic noise on the signal of the unknown input. Fig. 5 shows the curves of the real values and estimated values of GCwith stochastic noise and Fig. 6 shows the curves of kA0. The estimated values of GCand kA0converge to the real values and the state observer with more negative assigned poles has faster convergence rate even under the influence of stochastic noise.

    Figure 6Reaction rate constant pre-exponential factor of crude oil with noisereal value; estimated value of the first poles set; estimated value of the second poles set

    Table 2The mean errors of the catalyst circulation rate/kg·s?1

    Table 3The mean errors of the reaction rate constant pre-exponential factor/10?3Pa?1·s?1

    Tables 2 and 3 show the mean errors of GCand kA0in the whole dynamic process of state observer. The mean error with noise is very close to the mean error without noise and the more negative assigned poles also give less mean error. The modified model parameter is used for the online calculation of the state observer, effectively improving the robustness of the soft sensor.

    6CONCLUSIONS

    For the nonlinear singular system in chemical processes, the unknown inputs and uncertain model parameters are augmented as state variables. On the basis of the observability of the singular system, a simplified observability criterion under certain conditions is presented for unknown input and uncertain model parameters. The augmented system will not be observable if the dimension of the unknown input plus the dimension of the uncertain model parameters is larger than the dimension of the measured output.

    When the observability is satisfied, a soft sensor using augmented nonlinear singular state observer is used to estimate the unknown inputs and uncertain model parameters. For the FCCU riser reactor, with only the catalyst circulation rate unknown and no uncertain model parameter, only one temperature sensor at the riser outlet can ensure that the catalyst circulation rate is correctly estimated by soft sensor. When an unknown input and an uncertain model parameter exist, however, another temperature sensor should be added to satisfy the necessary observability condition. Then the catalyst circulation rate and the uncertain model parameter can be estimated correctly by soft sensor.

    NOMENCLATURE

    A systemic matrix of singular system

    B input matrix of singular system

    C output matrix of singular system

    Cracoke mass percentage of catalyst in riser, %

    E singular matrix

    EA, Eφreaction activation energy of oil cracking and catalyst deactivation, kJ·kmol?1

    e observation error

    F unknown input matrix of singular system

    FOflow rate of crude oil, kg·s?1

    f state equation

    G uncertain parameter matrix of singular system

    GCcatalyst circulation rate, kg·s?1

    ΔHAAcoke adsorption heat, kJ·kg?1

    ΔHAR, ΔHDR, ΔHNRcracking reaction heat of crude oil, diesel and gasoline, kJ·kg?1

    h output equation

    K state feedback gain matrix

    kA0, kD0, kN0pre-exponential factor of reaction rate constant of crude oil, diesel and gasoline, Pa?1·s?1

    kφ0pre-exponential factor of reaction rate constant of catalyst deactivation, Pa?1

    L output feedback matrix of state observer

    l dimension of outputs

    m dimension of inputs

    N number of riser segments

    n dimension of states

    P, Q equivalent transform matrix

    p uncertain model parameter

    prapressure of riser reactor, Pa

    q rank of singular matrix

    R gas constant, 8.314 kJ·kmol?1·K?1

    STreaction time, s

    Tratemperature of riser reactor, K

    u known control input

    v unknown input

    x state of singular system

    y measurable output

    yA, yD, yN, yGunconverted oil rate, diesel yield, gasoline yield, gas yield, % (by mass)

    y0unmeasurable output

    Γ correction coefficient of heat capacity for tube

    Λ correction coefficient of heat capacity for oil

    υAD, υAN, υAG, υACstoichiometric coefficient of oil-diesel reaction, oilgasoline reaction, oil-gas reaction, oil-coke reaction

    υDN, υDG, υDC, υNGstoichiometric coefficient of diesel-gasoline reaction, diesel-gas reaction, diesel-coke reaction, gasoline-gas reaction

    ? activity of catalyst, %

    Superscripts

    — the first equivalent form

    ~ the second equivalent form

    ^ estimated value

    · derivative of time

    Subscripts

    e augmented system

    0 primary variables

    1 differential

    2 algebraic

    REFERENCES

    1 Prasad, V., Schley, M., Russo, L. P., Bequette, B. W., “Product property and production rate control of styrene polymerization”, Journal of Process Control,12(3), 353-372 (2002).

    2 Bakir, T., Othman, S., Fevotte, G.., Hammouri, H., “Nonlinear observer of crystal-size distribution during batch crystallization”, AIChE Journal,52(6), 2188-2197 (2006).

    3 Gonzaga, J.C.B., Meleiro, L.A.C., Kiang, C., Maciel, F.R.,“ANN-based soft-sensor for real-time process monitoring and control of anindustrial polymerization process”, Computers and Chemical Engineering,33(1), 43-49 (2009).

    4 Fu, Y., Su, H., Zhang, Y., Chu, J., “Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process”, Chin. J. Chem. Eng.,16(5), 746-751 (2008).

    5 Kaneko, H., Arakawa, M., Funatsu, K., “Development of a new soft sensor method using independent component analysis and partial least squares”, AIChE Journal,55(1), 87-98 (2009).

    6 Ge, Z., Song, Z., “Nonlinear soft sensor development based on relevance vector machine”, Industrial & Engineering Chemistry Research,49(18), 8685-8693 (2010).

    7 Pan, T.H., Wong, D.S.H., Jang, S.S., “Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach”, Industrial & Engineering Chemistry Research,49(10), 4738-4747 (2010).

    8 Li, X., Su, H., Chu, J., “Multiple model soft sensor based on affinity propagation, gaussian process and Bayesian committee machine”, Chin. J. Chem. Eng.,17(1), 95-99 (2009).

    9 Kadlec, P., Gabrys, B., “Local learning-based adaptive soft sensor for catalyst activation prediction”, AIChE Journal,57(5), 1288-1301 (2011).

    10 Floquet, T., Barbot, J. P., “State and unknown input estimation for linear discrete-time systems”, Automatica,42(11), 1883-1889 (2006).

    11 Jiang, Q., Cao, Z., Chen, Z., “Online observation for unmeasurable inputs in FCCU riser”, Journal of Chemical Industry and Engineering,54(2), 204-208 (2003). (in Chinese)

    12 Kravaris, C., Sotiropoulos, V., Georgiou, C., “Nonlinear observer design for state and disturbance estimation”, Systems & Control Letters,56(11-12), 730-735 (2007).

    13 Ha, Q.P., Trinh, H., “State and input simultaneous estimation for a class of nonlinear systems”, Automatica,40(10), 1779-1785 (2004).

    14 Dochain, D., “State and parameter estimation in chemical and biochemical processes: A tutorial”, Journal of Process Control,13(8), 801-818 (2003).

    15 Keesman, K.J., “State and parameter estimation in biotechnical batch reactors”, Control Engineering Practice,10(2), 219-225 (2002).

    16 Ishihara, J.Y., Terra, M.H., “On the Lyapunov Theorem for singular systems”, IEEE Transactions on Automatic Control,47(11), 1926-1930 (2002).

    17 Yu, R., Wang, D., “Structural properties and poles assignability of LTI singular systems under output feedback”, Automatica,39(4), 685-692 (2003).

    18 Xia, Y., Boukas, E.K., Shi, P., Zhang, J., “Stability and stabilization of continuous-time singular hybrid systems”, Automatica,45(6), 1504-1509 (2009).

    19 Yan, Z., Duan, G., “Impulse analysis of linear time-varying singular systems”, IEEE Transactions on Automatic Control,51(12), 1975-1979 (2006).

    20 Ishihara, J.Y., Terra, M.H., “Impulse controllability and observability of rectangular descriptor systems”, IEEE Transactions on Automatic Control,46(6), 991-994 (2001).

    21 Wang, C.J., Liao, H.E., “Impulse observability and impulse controllability of linear time-varying singular systems”, Automatica,37(11), 1867-1872 (2001).

    22 Reis, T., “Controllability and observability of infinite-dimensional descriptor systems”, IEE E Transactions on Automatic Control,53(4), 929-940 (2008).

    23 Hou, M., Muller, P. C., “Observer design for descriptor systems”, IEEE Transactions on Automatic Control,44(1), 164-168 (1999).

    24 Wang, W., Zou, Y., “Analysis of impulsive modes and Luenberger observers for descriptor systems”, Systems & Control Letters,44(5), 347-353 (2001).

    25 Wang, Z., Shen, Y., Zhang, X., Wang, Q., “Observer design for discrete-time descriptor systems: An LMI approach”, Systems & Control Letters,61(6), 683-687 (2012).

    26 Zimmer, G., Meier, J., “On observing nonlinear descriptor systems”, Systems & Control Letters,32(1), 43-48 (1997).

    27 Lan, Q., Liang, J., Guo, W., “Design of state observer for generalized bilinear systems”, Systems Engineering and Electronics,29(7), 1144-1148 (2007). (in Chinese).

    28 Lu, G., Ho, D. W. C., “Full-order and reduced-order observers for Lipschitz descriptor systems: The unified LMI approach”, IEEE Transactions on Automatic Control,53(7), 563-567 (2006).

    29 Darouach, M., Boutat-Baddas, L., “Observers for a class of nonlinear singular systems”, IEEE Transactions on Automatic Control,53(11), 2627-2633 (2008).

    30 Darouach, M., Boutat-Baddas, L., Zerrougui, M., “H∞ observers design for a class of nonlinear singular systems”, Automatica,47(11), 2517-2525 (2011).

    31 Xu, F., Guan, J., Luo, X., “On-line estimation of FCCU riser unmeasurable variables based on state observer”, CIESC Journal,62(10), 2828-2838 (2011). (in Chinese).

    32 Liu, Y., “Robust adaptive observer for nonlinear systems with unmodeled dynamics”, Automatica,45(8), 1891-1895 (2009).

    33 Xu, F., Guan, J., Luo, X., “Adaptive state observer design of nonlinear differential-algebraic systems”, Systems Engineering and Electronics,32(11), 2442-2446 (2010). (in Chinese)

    34 Waldraff, W., Dochain, D., Bourrel, S., “On the use of observability measures for sensor location in tubular reactor”, Journal of Process Control,8(5-6), 497-505 (1998).

    35 VandenBerg, F.W.J., Hoefsloot, H.C.J., Boelens, H.F.M., “Selection of optimal sensor position in a tubular reactor using robust degree of observability criteria”, Chemical Engineering Science,55(4), 827-837(2000).

    36 Besancon, G., “Remarks on nonlinear adaptive observer design”, Systems & Control Letters,41(4), 271-280 (2000).

    37 Yang, D., Zhang, Q., Yao, B., Singular System, Science Press, Beijing (2004). (in Chinese)

    38 Luo, X., Yuan, P., Lin, S., “Dynamic model of fluid catalytic cracking unit (I) Reactor section”, Acta Petrolei S inica (Petroleum Processing Section),14(1), 34-40 (1998). (in Chinese)

    APPENDIX

    Proof of Theorem 2

    Consider a linear singular system described by

    where E∈Rn×nis singular, and rank(E)=q<n. r=degdet(sE ?A) is assumed, and obviously, r≤q<n. (E, A) is said to be impulse-free if (E, A) is regular and r=q.

    Lemma 3[37](E, A) is stable and impulse-free if and only if a matrix Y exists, such that

    Theorem 20=x is assumed to be an equilibrium point for the nonlinear singular system ()=˙ Exf x andwhere f:D→Rnis continuously differentiable, and D is the neighbourhood near the origin. If (E, A) is stable and impulse-free, the nonlinear singular system Ex˙=f(x) is asymptotically stable near the origin.

    ProofThe origin x=0 is an equilibrium point for the nonlinear singular system [i.e., f(0)=0]. The nonlinear system is linearized near the origin

    As (E, A) is stable and impulse-free, V(x)=xTETYx is used as the Lyapunov function for the nonlinear singular system. The derivative of V(x) of the system is given by

    FromLemma 3, 0>W(wǎng) can be derived. Thus, the first term on the right of the equation is negative.

    Due to the continuous function, g(x) satisfies

    Therefore, for any 0γ>, an 0r> exists, such that

    Hence,

    whereλmin(?) is the minimum eigenvalue of a matrix.

    As W is symmetric and positive definite, λmin(W) is real and positive., which ensures that V˙ is negative definite. Thus the nonlinear singular system Ex˙=f(x) is asymptotically stable near the origin.

    This procedure completes the proof.

    10.1016/S1004-9541(13)60570-4

    2012-08-28, accepted 2013-01-10.

    * Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).

    ** To whom correspondence should be addressed. E-mail: luoxionglin@gmail.com

    亚洲在线自拍视频| 丰满人妻一区二区三区视频av| 成人漫画全彩无遮挡| 一边摸一边抽搐一进一小说| 中文字幕人妻熟人妻熟丝袜美| 日韩国内少妇激情av| 午夜福利高清视频| 亚洲欧洲日产国产| 午夜精品在线福利| 欧美97在线视频| 老司机影院毛片| 婷婷色综合大香蕉| 亚洲av熟女| 久久久久性生活片| 91狼人影院| 纵有疾风起免费观看全集完整版 | 色综合亚洲欧美另类图片| 少妇裸体淫交视频免费看高清| 国产黄色视频一区二区在线观看 | 欧美性感艳星| 亚洲一区高清亚洲精品| 一个人看视频在线观看www免费| 日韩av不卡免费在线播放| 国产精品一区二区三区四区久久| 老司机影院成人| videos熟女内射| 久久久久久久久久久免费av| 亚洲美女视频黄频| 日韩欧美精品免费久久| 丝袜喷水一区| 国产免费一级a男人的天堂| 亚洲综合色惰| 99久久精品国产国产毛片| 亚洲国产精品国产精品| 欧美最新免费一区二区三区| 99久久中文字幕三级久久日本| 99久久无色码亚洲精品果冻| 亚洲不卡免费看| 成人高潮视频无遮挡免费网站| 人人妻人人澡欧美一区二区| 一夜夜www| 国产精品伦人一区二区| 少妇高潮的动态图| 99热网站在线观看| 2021少妇久久久久久久久久久| 亚洲人成网站高清观看| 亚洲国产高清在线一区二区三| 草草在线视频免费看| 免费观看性生交大片5| 啦啦啦啦在线视频资源| 亚洲欧美日韩东京热| 国产精品福利在线免费观看| 高清av免费在线| 大香蕉97超碰在线| 国产精品麻豆人妻色哟哟久久 | 高清日韩中文字幕在线| 亚洲婷婷狠狠爱综合网| 日本一本二区三区精品| 欧美一区二区精品小视频在线| 欧美精品国产亚洲| 欧美色视频一区免费| 尤物成人国产欧美一区二区三区| 成年版毛片免费区| 久久这里只有精品中国| 久久6这里有精品| 人妻少妇偷人精品九色| 免费一级毛片在线播放高清视频| 亚洲精品乱码久久久久久按摩| 少妇的逼好多水| 春色校园在线视频观看| 一级毛片aaaaaa免费看小| 亚洲欧美精品自产自拍| 99在线人妻在线中文字幕| 日韩亚洲欧美综合| 18+在线观看网站| 亚洲精品亚洲一区二区| 国产黄色小视频在线观看| 久久精品国产99精品国产亚洲性色| 中国美白少妇内射xxxbb| 日本与韩国留学比较| 国产精品精品国产色婷婷| 久久久久性生活片| 两性午夜刺激爽爽歪歪视频在线观看| 国产伦精品一区二区三区视频9| 亚洲国产精品成人综合色| 国产91av在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 成人av在线播放网站| 国产日韩欧美在线精品| 久久欧美精品欧美久久欧美| 成人午夜高清在线视频| av黄色大香蕉| 男人舔奶头视频| 久久久久久大精品| 中文字幕制服av| 亚洲色图av天堂| 久久精品久久久久久噜噜老黄 | 亚洲精品aⅴ在线观看| 99在线人妻在线中文字幕| 水蜜桃什么品种好| 亚洲在久久综合| 亚洲国产精品sss在线观看| 一二三四中文在线观看免费高清| 亚洲国产精品国产精品| 男女啪啪激烈高潮av片| 深爱激情五月婷婷| 亚洲精品456在线播放app| 看免费成人av毛片| 在线免费观看的www视频| 99久久精品国产国产毛片| 青春草视频在线免费观看| 中文天堂在线官网| 乱人视频在线观看| av线在线观看网站| 寂寞人妻少妇视频99o| 黑人高潮一二区| 国产精品爽爽va在线观看网站| 国产真实乱freesex| 国产91av在线免费观看| 亚洲最大成人中文| АⅤ资源中文在线天堂| 又爽又黄无遮挡网站| 亚洲欧美日韩东京热| 九九久久精品国产亚洲av麻豆| 久久久久九九精品影院| 亚洲人成网站在线观看播放| 国产精品av视频在线免费观看| 能在线免费看毛片的网站| 十八禁国产超污无遮挡网站| 亚洲精品久久久久久婷婷小说 | 欧美变态另类bdsm刘玥| 久久精品久久久久久噜噜老黄 | 日本五十路高清| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 嘟嘟电影网在线观看| h日本视频在线播放| 亚洲综合色惰| 国产精品一二三区在线看| 伊人久久精品亚洲午夜| 亚洲av男天堂| 一级黄片播放器| 亚洲最大成人中文| 精品久久国产蜜桃| 亚洲久久久久久中文字幕| 国产老妇女一区| 国产成人福利小说| 嘟嘟电影网在线观看| 精品不卡国产一区二区三区| 99在线人妻在线中文字幕| 桃色一区二区三区在线观看| 国产午夜福利久久久久久| 亚洲精品国产成人久久av| 久久精品国产99精品国产亚洲性色| 在线a可以看的网站| 中文精品一卡2卡3卡4更新| 免费在线观看成人毛片| 高清午夜精品一区二区三区| 乱人视频在线观看| 男女那种视频在线观看| 日本午夜av视频| videossex国产| 欧美97在线视频| 久久99蜜桃精品久久| 亚洲婷婷狠狠爱综合网| av在线亚洲专区| www.色视频.com| 在现免费观看毛片| 看十八女毛片水多多多| 国产精品日韩av在线免费观看| 啦啦啦啦在线视频资源| 九九在线视频观看精品| 搡老妇女老女人老熟妇| 国产淫语在线视频| 热99在线观看视频| 三级毛片av免费| 大香蕉久久网| 国产亚洲最大av| 欧美极品一区二区三区四区| 男女啪啪激烈高潮av片| 丰满少妇做爰视频| 国产精品野战在线观看| 黄片wwwwww| 在线观看66精品国产| 亚洲av福利一区| 欧美丝袜亚洲另类| 波野结衣二区三区在线| 一边亲一边摸免费视频| 欧美高清性xxxxhd video| 精品熟女少妇av免费看| 综合色av麻豆| 久久久久久久亚洲中文字幕| 欧美日韩精品成人综合77777| 国语对白做爰xxxⅹ性视频网站| 波多野结衣巨乳人妻| 3wmmmm亚洲av在线观看| 国产中年淑女户外野战色| 精品酒店卫生间| 国产男人的电影天堂91| 成年av动漫网址| 国内精品美女久久久久久| 欧美性猛交黑人性爽| 午夜精品国产一区二区电影 | 波多野结衣巨乳人妻| 最新中文字幕久久久久| 中文字幕精品亚洲无线码一区| 网址你懂的国产日韩在线| 又粗又硬又长又爽又黄的视频| 国产69精品久久久久777片| 老司机影院毛片| 狂野欧美激情性xxxx在线观看| 免费黄网站久久成人精品| 欧美一区二区精品小视频在线| 欧美激情在线99| 黄色欧美视频在线观看| 国产精品福利在线免费观看| 偷拍熟女少妇极品色| 亚洲综合精品二区| 国产精品,欧美在线| 日韩高清综合在线| 99久久成人亚洲精品观看| 一个人看的www免费观看视频| 亚洲av男天堂| 51国产日韩欧美| 中国美白少妇内射xxxbb| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 国产单亲对白刺激| h日本视频在线播放| 欧美精品国产亚洲| 三级国产精品片| 三级经典国产精品| 国产欧美另类精品又又久久亚洲欧美| 国产视频内射| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲美女视频黄频| 国产精品久久视频播放| 亚洲av中文字字幕乱码综合| 婷婷色综合大香蕉| 亚洲综合精品二区| 国产色婷婷99| 国产免费一级a男人的天堂| 久久久精品欧美日韩精品| 久久久久性生活片| 欧美激情久久久久久爽电影| 99热网站在线观看| 在线免费十八禁| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| av女优亚洲男人天堂| 久久亚洲国产成人精品v| 日韩中字成人| 99久久精品国产国产毛片| 国产伦精品一区二区三区四那| 日本与韩国留学比较| 18禁在线无遮挡免费观看视频| 成人一区二区视频在线观看| 91aial.com中文字幕在线观看| 99久久无色码亚洲精品果冻| 十八禁国产超污无遮挡网站| 久久热精品热| 一级毛片久久久久久久久女| 国产在线一区二区三区精 | 寂寞人妻少妇视频99o| 男女边吃奶边做爰视频| 色视频www国产| www.av在线官网国产| 日韩大片免费观看网站 | 精品少妇黑人巨大在线播放 | 亚洲久久久久久中文字幕| 国产av码专区亚洲av| 麻豆国产97在线/欧美| 国产精品嫩草影院av在线观看| 国产伦精品一区二区三区四那| 99视频精品全部免费 在线| 国产一区二区亚洲精品在线观看| 国产精品伦人一区二区| 欧美三级亚洲精品| 亚洲av电影在线观看一区二区三区 | 日韩,欧美,国产一区二区三区 | 精品99又大又爽又粗少妇毛片| 日本熟妇午夜| 五月玫瑰六月丁香| 色视频www国产| 久久久久免费精品人妻一区二区| 97人妻精品一区二区三区麻豆| 精品久久久久久久末码| 成人综合一区亚洲| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 免费在线观看成人毛片| 欧美高清成人免费视频www| 国产三级中文精品| 久久人人爽人人爽人人片va| 好男人视频免费观看在线| 麻豆av噜噜一区二区三区| 国产免费男女视频| 国产爱豆传媒在线观看| 欧美性猛交黑人性爽| 国产人妻一区二区三区在| kizo精华| 黄片wwwwww| 我要看日韩黄色一级片| 免费看日本二区| 欧美日韩国产亚洲二区| 久久精品久久久久久噜噜老黄 | 色噜噜av男人的天堂激情| 少妇人妻精品综合一区二区| 日韩精品青青久久久久久| 一级毛片我不卡| 青春草视频在线免费观看| 国产极品天堂在线| 一夜夜www| 中文在线观看免费www的网站| 久久热精品热| 欧美成人一区二区免费高清观看| 麻豆一二三区av精品| 热99在线观看视频| 免费在线观看成人毛片| 成人亚洲欧美一区二区av| 婷婷六月久久综合丁香| 男人和女人高潮做爰伦理| 欧美激情久久久久久爽电影| 日日摸夜夜添夜夜爱| 国产免费男女视频| 国产黄片视频在线免费观看| 久久久久国产网址| 日本爱情动作片www.在线观看| 在线播放无遮挡| 久久精品综合一区二区三区| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 可以在线观看毛片的网站| 国产精品人妻久久久影院| videos熟女内射| 99久久精品热视频| 久久精品国产亚洲av天美| av国产免费在线观看| 久久久久性生活片| 黄片无遮挡物在线观看| 欧美3d第一页| 国产午夜精品久久久久久一区二区三区| 99热6这里只有精品| 中文字幕av成人在线电影| 亚洲av免费高清在线观看| 天天一区二区日本电影三级| 国产成人91sexporn| 亚洲激情五月婷婷啪啪| 亚洲av福利一区| 少妇人妻精品综合一区二区| h日本视频在线播放| 淫秽高清视频在线观看| 少妇熟女欧美另类| 天天一区二区日本电影三级| 爱豆传媒免费全集在线观看| 国内精品宾馆在线| 我的老师免费观看完整版| 午夜精品在线福利| 纵有疾风起免费观看全集完整版 | 日本一二三区视频观看| 国产人妻一区二区三区在| 亚洲av中文字字幕乱码综合| 男女国产视频网站| 色5月婷婷丁香| 久久久精品欧美日韩精品| 欧美高清成人免费视频www| 淫秽高清视频在线观看| 欧美+日韩+精品| 国产精品精品国产色婷婷| 午夜免费男女啪啪视频观看| a级毛片免费高清观看在线播放| 午夜视频国产福利| 听说在线观看完整版免费高清| 国产午夜精品一二区理论片| 免费大片18禁| 国产精品一区二区三区四区免费观看| 69人妻影院| 搞女人的毛片| 亚洲av熟女| 免费无遮挡裸体视频| 日韩av在线大香蕉| 九九在线视频观看精品| 大香蕉97超碰在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲va在线va天堂va国产| 国产精品久久久久久久电影| 午夜精品在线福利| 男女啪啪激烈高潮av片| 国产乱来视频区| 中文欧美无线码| 91精品国产九色| 色噜噜av男人的天堂激情| 亚洲不卡免费看| 久久久久久伊人网av| 真实男女啪啪啪动态图| 久久精品影院6| 精品国内亚洲2022精品成人| 97在线视频观看| 小蜜桃在线观看免费完整版高清| 亚洲精品乱久久久久久| 三级国产精品片| 99久久九九国产精品国产免费| 国产精品人妻久久久影院| 久久99热6这里只有精品| 九九在线视频观看精品| 日本av手机在线免费观看| 美女高潮的动态| 全区人妻精品视频| 69人妻影院| 看十八女毛片水多多多| 一级毛片我不卡| 国产极品精品免费视频能看的| 麻豆成人午夜福利视频| 只有这里有精品99| 极品教师在线视频| 久久婷婷人人爽人人干人人爱| 亚洲天堂国产精品一区在线| 亚洲av福利一区| 日韩一区二区视频免费看| 男女国产视频网站| 天天一区二区日本电影三级| 欧美成人一区二区免费高清观看| 国产精品一区二区性色av| 国产麻豆成人av免费视频| 2021天堂中文幕一二区在线观| 亚洲一区高清亚洲精品| 亚洲美女视频黄频| 国产色婷婷99| 成人漫画全彩无遮挡| 欧美激情国产日韩精品一区| 91精品伊人久久大香线蕉| 欧美区成人在线视频| 精品欧美国产一区二区三| 男的添女的下面高潮视频| 51国产日韩欧美| 国产亚洲5aaaaa淫片| 亚洲欧美精品综合久久99| 久久99热这里只有精品18| 在线播放国产精品三级| 床上黄色一级片| 看黄色毛片网站| 99九九线精品视频在线观看视频| 国产白丝娇喘喷水9色精品| 男插女下体视频免费在线播放| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 97人妻精品一区二区三区麻豆| 爱豆传媒免费全集在线观看| 免费黄网站久久成人精品| 最近最新中文字幕免费大全7| 大又大粗又爽又黄少妇毛片口| 狂野欧美激情性xxxx在线观看| 精品少妇黑人巨大在线播放 | 国产一级毛片七仙女欲春2| 狂野欧美白嫩少妇大欣赏| 深夜a级毛片| 久久久久久久久久久丰满| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美国产在线观看| 成年女人永久免费观看视频| 欧美人与善性xxx| 美女内射精品一级片tv| 中文天堂在线官网| 亚洲精品456在线播放app| 国内揄拍国产精品人妻在线| 亚洲三级黄色毛片| 观看美女的网站| 三级经典国产精品| 久久久色成人| 亚洲精品,欧美精品| 亚洲久久久久久中文字幕| 国产一区亚洲一区在线观看| 中国美白少妇内射xxxbb| 91精品伊人久久大香线蕉| 精品一区二区三区人妻视频| 干丝袜人妻中文字幕| 久久亚洲精品不卡| 国产免费又黄又爽又色| 久久久精品欧美日韩精品| 99久久九九国产精品国产免费| 大香蕉97超碰在线| 村上凉子中文字幕在线| videos熟女内射| 久久精品综合一区二区三区| 精品酒店卫生间| 精品欧美国产一区二区三| av播播在线观看一区| 99久久成人亚洲精品观看| 国产私拍福利视频在线观看| 日韩欧美国产在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文精品一卡2卡3卡4更新| 超碰97精品在线观看| 哪个播放器可以免费观看大片| videos熟女内射| 久久久久久大精品| 黄色日韩在线| 欧美xxxx性猛交bbbb| 日本色播在线视频| 久久久a久久爽久久v久久| 噜噜噜噜噜久久久久久91| 超碰av人人做人人爽久久| 三级经典国产精品| 精品人妻熟女av久视频| 久久久久精品久久久久真实原创| 国产色婷婷99| 狠狠狠狠99中文字幕| 午夜福利在线观看免费完整高清在| 麻豆精品久久久久久蜜桃| 菩萨蛮人人尽说江南好唐韦庄 | av免费在线看不卡| 国产午夜精品一二区理论片| 嫩草影院新地址| 国产一级毛片七仙女欲春2| 色视频www国产| 我的女老师完整版在线观看| 尾随美女入室| 国产在视频线精品| 日本五十路高清| 亚洲图色成人| 淫秽高清视频在线观看| 一级黄色大片毛片| 人妻系列 视频| 亚洲怡红院男人天堂| 国产在线男女| 国产精品久久久久久av不卡| 久久精品人妻少妇| 亚洲精品一区蜜桃| 男女国产视频网站| 亚洲成人av在线免费| 99热全是精品| 最近最新中文字幕免费大全7| 亚洲国产日韩欧美精品在线观看| 日韩高清综合在线| av播播在线观看一区| 久久久a久久爽久久v久久| 国产亚洲午夜精品一区二区久久 | 日韩成人伦理影院| 午夜免费激情av| 国产亚洲5aaaaa淫片| 国产大屁股一区二区在线视频| 成人漫画全彩无遮挡| 亚洲国产高清在线一区二区三| 色视频www国产| 黑人高潮一二区| 伊人久久精品亚洲午夜| 国产精品熟女久久久久浪| 国产精品无大码| 最近最新中文字幕大全电影3| 超碰av人人做人人爽久久| 天堂中文最新版在线下载 | 少妇猛男粗大的猛烈进出视频 | 纵有疾风起免费观看全集完整版 | 秋霞伦理黄片| 六月丁香七月| 亚洲激情五月婷婷啪啪| 色尼玛亚洲综合影院| 一级毛片电影观看 | 女人十人毛片免费观看3o分钟| 国产精品一区二区性色av| 午夜福利成人在线免费观看| 久久久精品94久久精品| 九九在线视频观看精品| 一级av片app| 国产高清视频在线观看网站| 少妇高潮的动态图| 精品无人区乱码1区二区| 丰满人妻一区二区三区视频av| 欧美激情国产日韩精品一区| 麻豆成人午夜福利视频| 国产伦精品一区二区三区视频9| 可以在线观看毛片的网站| 亚洲精品影视一区二区三区av| 日韩精品青青久久久久久| 天堂影院成人在线观看| 美女xxoo啪啪120秒动态图| 欧美日韩一区二区视频在线观看视频在线 | 久久精品夜夜夜夜夜久久蜜豆| 小蜜桃在线观看免费完整版高清| 一区二区三区乱码不卡18| 亚洲欧美日韩无卡精品| 啦啦啦观看免费观看视频高清| 99久久无色码亚洲精品果冻| 亚洲真实伦在线观看| 亚洲在线观看片| 免费搜索国产男女视频| 国产三级中文精品| 国产一区有黄有色的免费视频 | av女优亚洲男人天堂| 日本wwww免费看| 日韩在线高清观看一区二区三区| 男人的好看免费观看在线视频| 欧美日韩在线观看h| 成人一区二区视频在线观看| 欧美成人一区二区免费高清观看| 亚洲国产精品sss在线观看| 秋霞伦理黄片| 一本久久精品| 久久精品国产自在天天线| 国产精品人妻久久久久久| 男插女下体视频免费在线播放| 国产一区二区在线观看日韩| 亚洲精华国产精华液的使用体验| 亚洲精品国产av成人精品| 久久精品国产自在天天线| 欧美高清成人免费视频www| 日本欧美国产在线视频| 国产不卡一卡二| 少妇的逼水好多| 亚洲精品国产av成人精品| 在线观看一区二区三区| 国产成人午夜福利电影在线观看| 久久久久九九精品影院|