• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      二維Volterra-Fredholm型積分方程問題Taylor配置解法及誤差分析

      2013-07-16 05:45:44王奇生賴嘉導(dǎo)
      關(guān)鍵詞:數(shù)值方程誤差

      王奇生,賴嘉導(dǎo)

      ?

      二維Volterra-Fredholm型積分方程問題Taylor配置解法及誤差分析

      王奇生,賴嘉導(dǎo)

      (五邑大學(xué) 數(shù)學(xué)與計算科學(xué)學(xué)院,廣東 江門 529020)

      利用Taylor配置方法,研究二維Volterra-Fredholm型積分方程問題的數(shù)值解. 即對研究的積分方程問題進行Taylor配置離散,將積分方程問題轉(zhuǎn)化為代數(shù)方程進行求解,建立了Taylor逼近解的求解格式,給出了配置解與精確解的誤差估計結(jié)果以及闡述理論分析的3個數(shù)值例子.

      二維Volterra-Fredholm型積分方程;Taylor配置解;誤差分析

      積分方程在自然科學(xué)領(lǐng)域應(yīng)用十分廣泛,Volterra和Fredholm型積分方程是其中兩種最常見的類型,許多實際問題都可以轉(zhuǎn)化為這兩類方程來求解. 有關(guān)積分方程解的存在性理論已經(jīng)很完善,但在實際應(yīng)用中,除了一些極為特殊的情形,積分方程解的解析形式難以求出,因此必須求助于近似方法. 而另一方面,Taylor配置方法是求解積分方程問題數(shù)值解的有力工具. 在過去的20年,Taylor配置方法被廣泛應(yīng)用于求解積分方程近似解的研究中:利用Taylor配置方法M.sezer[1]解決了Volterra型積分方程的解拆,S.Yalinbas等[2-3]將其應(yīng)用于求解高階線性、非線性一維Volterra-Fredholm型積分-微分方程問題,P.Darania等[4]研究了二維Volterra型積分-微分方程Taylor配置方法求解,陳少軍等[5-6]研究了二維Volterra積分方程問題的Chebyshev和Legendre譜配置解法及收斂性,M.T.Rashed等[7-9]研究了積分方程、微分方程、積分-微分方程問題的Lagrange配置方法,陳艷萍等[10-11]研究了帶奇異核Volterra型積分問題的Chebyshev和Legendre譜配置解法及收斂性. 本文利用Taylor配置方法求解二維Volterra-Fredholm積分方程問題,給出了Taylor配置解的求解格式和誤差分析的結(jié)果,同時給出了闡述理論分析結(jié)果的數(shù)值例子.

      考慮二維Volterra-Fredholm型積分方程問題:

      1 方法介紹

      因為

      再把式(6)、(7)代入式(3),得:

      可簡寫成

      2 誤差分析

      對二維積分方程問題(1),定義誤差函數(shù):

      用式(1)減去式(4),且由式(13)可得:

      3 數(shù)值例子

      例1 求解二維線性Volterra-Fredholm型積分方程

      表1 例2的誤差函數(shù)變化趨勢

      圖1 例2數(shù)值解與誤差函數(shù)的圖像

      表2 例3的誤差函數(shù)變化趨勢

      圖2 例3數(shù)值解與誤差函數(shù)的圖像

      [1] SEZER M. Taylor polynomial solution of Volterra integral equations [J]. Int J Math Educ Sci Technol, 1994, 25(5): 625.

      [2] YALINBAS S, SEZER M. The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials [J]. Appl Math Comp, 2000, 112: 291-308.

      [3] YALCINBAS S. Taylor polynomial solutions of nonlinear Volterra–Fredholm integral equations [J]. Appl Math Comp, 2002, 127: 195-206.

      [4] DARANIA P, SHALI J A, IVAZ K. New computational method for solving some 2-dimensional nonlinear Volterra integro-differential equations [N]. Numer Algor, 2011, 57: 125–147.

      [5] 陳少軍,王奇生. 二維Volterra積分方程Chebyshev譜配置解法及誤差分析[J]. 五邑大學(xué)學(xué)報:自然科學(xué)版,2011, 25(2): 15-19.

      [6] CHEN Shaojun, WANG Qisheng. Legendre spectral method and convergence analysis for 2-dimension Volterra integral equation [C]// Proceedings of the Ninth International Conference on Matrix Theory and its Applications, 2010, Shanghai. England: World Academic Press, 3: 121-124.

      [7] RASHED M T. Numerical solution of functional integral equations [J]. Applied Mathematics and Computation, 2004, 156: 507-512.

      [8] RASHED M T. Lagrange interpolation to compute the numerical solutions of differential, integral and integro-differential equations [J]. Applied Mathematics and Computation, 2004, 151: 869-878.

      [9] RASHED M T. Numerical solution of functional differential,integral and integro-differential equations [J]. Applied Mathematics and Computation, 2004, 156: 485-492.

      [10] CHEN Yanping, TANG Tao. Spectral methods for weakly singular Volterra integral equations with smooth Solutions [J]. Journal of Computational and Applied Mathematics, 2009, 233: 938-950.

      [11] TANG Tao, XU Xiang, CHENG Jin. On spectral methods for Volterra integral equations and the convergence analysis [J]. Journal of Computational and Applied Mathematics, 2008, 26: 825-837.

      [責(zé)任編輯:熊玉濤]

      Taylor Collocation Solution and Error Analysis for 2-Dimensional Volterra-Fredholm Integral Equations

      WANGQi-sheng, LAIJia-dao

      (School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China)

      An approximate method for solving 2-dimensional Volterra-Fredholm integral equations is presented by Taylor collocation method. That is, the Volterra-Fredholm integral equations are discretized by Taylor collocation method,which are transformed for the algebraic property systems,the format of Taylor collocation method are obtained. The results of error analysis are given between the collocation solution and the exact solution. Moreover,the effectiveness of this method are illustrated by means of 3 numerical examples.

      2-dimensional Volterra-Fredholm integral equations; Taylor collocation solution; error analysis

      1006-7302(2013)01-0001-05

      O189.1

      A

      2012-09-19

      廣東省計算科學(xué)重點實驗室開放基金資助項目(201206007)

      王奇生(1961—),男,湖南衡陽人,教授,博士,碩士生導(dǎo)師,研究方向為微積分方程數(shù)值解法.

      猜你喜歡
      數(shù)值方程誤差
      用固定數(shù)值計算
      方程的再認(rèn)識
      方程(組)的由來
      數(shù)值大小比較“招招鮮”
      角接觸球軸承接觸角誤差控制
      哈爾濱軸承(2020年2期)2020-11-06 09:22:26
      Beidou, le système de navigation par satellite compatible et interopérable
      圓的方程
      壓力容器制造誤差探究
      九十億分之一的“生死”誤差
      山東青年(2016年2期)2016-02-28 14:25:41
      基于Fluent的GTAW數(shù)值模擬
      焊接(2016年2期)2016-02-27 13:01:02
      大冶市| 延庆县| 衡南县| 启东市| 玉环县| 邵阳市| 信丰县| 巴东县| 恭城| 华亭县| 化隆| 平山县| 本溪市| 淮北市| 固安县| 浑源县| 榆社县| 保定市| 隆化县| 化隆| 新密市| 和平县| 八宿县| 项城市| 荥经县| 增城市| 钦州市| 松滋市| 石门县| 阳西县| 古浪县| 丹江口市| 苗栗县| 波密县| 莱阳市| 温宿县| 栖霞市| 双峰县| 凤阳县| 天全县| 仪陇县|