黃浩??,李昀豪,???/p>
(電子科技大學(xué)電子工程學(xué)院,成都611731)
基于循環(huán)自相關(guān)的正弦調(diào)頻信號(hào)參數(shù)估計(jì)新方法?
黃浩??,李昀豪,???/p>
(電子科技大學(xué)電子工程學(xué)院,成都611731)
為解決現(xiàn)有的正弦調(diào)頻(SFM)信號(hào)參數(shù)估計(jì)方法運(yùn)算復(fù)雜度高、受信噪比限制等問題,提出了一種基于循環(huán)自相關(guān)的SFM信號(hào)參數(shù)估計(jì)新方法。首先分析了SFM信號(hào)循環(huán)自相關(guān)函數(shù)特征,推導(dǎo)了信號(hào)調(diào)制頻率的估計(jì)表達(dá)式;然后對(duì)信號(hào)延時(shí)相乘以去除其正弦調(diào)制特性,得到單頻信號(hào)并估計(jì)信號(hào)載頻。最后,利用信號(hào)頻率調(diào)制的周期性,對(duì)下變頻至零頻的信號(hào)進(jìn)行周期累加以減少噪聲影響,通過對(duì)累加后的信號(hào)進(jìn)行瞬時(shí)頻率計(jì)算得到調(diào)制指數(shù)估計(jì)值。仿真表明,信噪比(SNR)大于6 dB時(shí),各參數(shù)估計(jì)值的均方根誤差小于-18 dB。該算法計(jì)算量較小,為同等條件下利用卡森準(zhǔn)則(CR)方法的16%,便于工程實(shí)現(xiàn)。
正弦調(diào)頻信號(hào);循環(huán)自相關(guān);參數(shù)估計(jì);周期累加
作為一種典型的非線性調(diào)頻信號(hào),正弦調(diào)頻(Sinusoidal Frequency Modulation,SFM)信號(hào)具有截獲概率低、距離分辨率高等特點(diǎn),其在雷達(dá)[1]、通信[2]、聲納[3]等領(lǐng)域有廣泛的應(yīng)用前景。SFM信號(hào)的檢測(cè)及參數(shù)估計(jì)已成為當(dāng)前雷達(dá)及通信信號(hào)處理的熱點(diǎn)研究問題[4]。Barbarossa和Lemoine利用重分配平滑偽Wigner-Ville分布(RSPWVD)方法和Hough變換估計(jì)SFM信號(hào)的參數(shù),但存在計(jì)算量大和交叉項(xiàng)不能準(zhǔn)確估計(jì)信號(hào)參數(shù)的問題[5]。呂遠(yuǎn)等將SFM信號(hào)建模為高階多項(xiàng)式相位信號(hào)模型,通過離散多項(xiàng)式變換確定模型階數(shù),實(shí)現(xiàn)SFM信號(hào)參數(shù)估計(jì),但受限于調(diào)制系數(shù)[6]。文獻(xiàn)[7]提出一種基于離散正弦調(diào)頻變換(DSFMT)的單分量SFM信號(hào)參數(shù)估計(jì)方法,該方法能完整保留SFM信號(hào)的調(diào)制頻偏和調(diào)制頻率信息,但受限于信噪比且具有信號(hào)不可重構(gòu)等缺陷。文獻(xiàn)[8]對(duì)SFM信號(hào)進(jìn)行時(shí)頻分析,提出一種基于時(shí)頻脊提取-隨機(jī)Hough變換的SFM信號(hào)參數(shù)估計(jì)方法,該方法較傳統(tǒng)的基于時(shí)頻分析-Hough變換方法有計(jì)算量和存儲(chǔ)空間上的優(yōu)勢(shì),但同時(shí)也具有多值性等缺點(diǎn)。文獻(xiàn)[9]利用SFM信號(hào)頻譜對(duì)稱的特征,提出一種利用卡森準(zhǔn)則的SFM信號(hào)參數(shù)估計(jì)方法,該方法不受調(diào)制指數(shù)限制,但在低信噪比情況下調(diào)制參數(shù)估計(jì)性能欠佳??梢?,現(xiàn)有的SFM信號(hào)參數(shù)估計(jì)方法普遍存在運(yùn)算量大、在低信噪比情況下參數(shù)估計(jì)性能欠佳等缺點(diǎn)。
本文在分析SFM信號(hào)模型及其循環(huán)自相關(guān)函數(shù)特性的基礎(chǔ)上,提出了一種新的SFM信號(hào)參數(shù)估計(jì)方法,以解決現(xiàn)有算法計(jì)算量大且受限于信噪比等問題。利用循環(huán)自相關(guān)函數(shù)包絡(luò)峰值周期出現(xiàn)的特性,推導(dǎo)了信號(hào)調(diào)制頻率的估計(jì)方法;通過SFM信號(hào)延時(shí)相乘,去除其正弦調(diào)制特性,給出信號(hào)載頻的估計(jì)表達(dá)式;接著將信號(hào)下變頻至零頻,通過計(jì)算其瞬時(shí)頻率,得到調(diào)制指數(shù)估計(jì)值。本文算法核心為循環(huán)自相關(guān)函數(shù),與現(xiàn)有算法相比,具有計(jì)算量小的優(yōu)勢(shì)。利用信號(hào)頻率調(diào)制的周期性,通過周期累加減少了噪聲影響,提高了算法的抗噪性能。仿真結(jié)果驗(yàn)證了本文算法的正確性和有效性。
信號(hào)x(t)的自相關(guān)函數(shù)為
式中,τ為延遲時(shí)間,E為求期望。
循環(huán)自相關(guān)函數(shù)實(shí)質(zhì)為自相關(guān)函數(shù)的廣義傅里葉系數(shù),信號(hào)x(t)的循環(huán)自相關(guān)函數(shù)定義為
式中,L為信號(hào)長度,α為循環(huán)頻率。
循環(huán)自相關(guān)函數(shù)可由相應(yīng)的時(shí)間自相關(guān)函數(shù)近似得到,如式(3)所示:
復(fù)SFM信號(hào)建模為
式中,A為幅度,f0為載波頻率,mf為調(diào)制指數(shù),fm為調(diào)制頻率,θ為調(diào)制初相。
SFM信號(hào)s(t)的循環(huán)自相關(guān)函數(shù)可近似表示為
其中:
式(6)中,當(dāng)循環(huán)頻率α=0、πfτm=kπ、k=0,1,2,3…時(shí),ψ(t,τ)=0。由復(fù)合函數(shù)性質(zhì)可知,此時(shí)(τ)有極大值,即(τ)以T=1/fm為周期出現(xiàn)峰值。
3.1 調(diào)制頻率估計(jì)
調(diào)制頻率估計(jì)算法流程如下:
(1)由式(5)計(jì)算SFM信號(hào)在α=0處的循環(huán)自相關(guān)函數(shù),并取其模值,得到(τ);
(3)利用重心法對(duì)周期出現(xiàn)的峰值位置進(jìn)行估計(jì),峰值的位置
其中,i代表周期數(shù);
(4)對(duì)峰值位置id3i進(jìn)行差分運(yùn)算并求平均,得到峰值出現(xiàn)周期T的估計(jì)值^T,則^fm=1/^T。
3.2 載頻估計(jì)
SFM信號(hào)的頻率調(diào)制函數(shù)為正弦函數(shù),去除其頻率調(diào)制特性后,即可估計(jì)SFM信號(hào)載頻。
SFM信號(hào)和其延時(shí)τ0=l/(2^fm),l=1,3,5,7…后的信號(hào)相乘,有
易知,τ0=l/(2^fm),l=1,3,5,7…時(shí),
則
通過延時(shí)相乘,去除了SFM信號(hào)的正弦調(diào)制特性,得到載頻為2f0的單頻信號(hào)s(t)s(t+τ0),估計(jì)s(t)s(t+τ0)的載頻則可估計(jì)原SFM信號(hào)的載頻f0。其算法流程如下:
(1)取τ0=l/(2^fm),計(jì)算s(t)s(t+τ0),并求其頻譜;
(2)利用矩形窗的峰值位置估計(jì)算法[10]估計(jì)信號(hào)s(t)s(t+τ0)的載頻^fe;
(3)SFM信號(hào)載頻的估計(jì)值^f0=^fe/2。
下面討論不同的l值對(duì)載頻估計(jì)值^f0均方根誤差的影響。
定義函數(shù):
其中,L為信號(hào)長度,n(t)為零均值、方差為σ2的高斯白噪聲,gn(ω)是加信噪聲n(t)對(duì)g(ω)的干擾項(xiàng)。
令ω0=^ω0+δ ω,其中^ω0=2π·2^f0,δ ω為估計(jì)值^ω0與真實(shí)值ω0之間的偏差,則^ω0的均方根誤差可做如下近似[11]:
其中:
結(jié)合式(13)、(14)、(16)和關(guān)系^f0=^ω0/4π可得
其中,δf0=f0-^f0為載頻估計(jì)值^f0與真實(shí)值f0之間的偏差,SNR=A2/σ2為信噪比。
由式(17)可知,考慮SNR一定,當(dāng)l=1時(shí),τ0=1/(2^fm),此時(shí)載頻估計(jì)值^f0的均方根誤差有最小值。
3.3 調(diào)制指數(shù)估計(jì)
利用載頻的估計(jì)值^f0,將式(4)所示SFM信號(hào)下變頻至零頻,有
信號(hào)s0(t)的瞬時(shí)相位為mfsin(2πfmt+θ),且以1/fm為周期。
則有
由正弦函數(shù)性質(zhì)可知,
則有
為降低噪聲的影響,提高算法的參數(shù)估計(jì)性能,以T=1/fm為周期,對(duì)s0(t)積累后求其平均,則
其中,t=0~1/fm,mean[·]代表取均值,K為積累周期數(shù)。
其算法流程如下:
(1)由載頻估計(jì)值^f0,按式(18)對(duì)SFM信號(hào)進(jìn)行重構(gòu),得到信號(hào)s0(t);
(2)以^T=1/^fm為周期,按式(23)對(duì)s0(t)分段疊加取平均,得到信號(hào)ssmooth(t);
(3)計(jì)算信號(hào)ssmooth(t)的瞬時(shí)相位;
(4)按式(19)構(gòu)造信號(hào)A,并取其模值A(chǔ);
(5)結(jié)合調(diào)制頻率估計(jì)值^fm和式(22),調(diào)制指數(shù)估計(jì)值m^f=2A/T^,其中T^=1/^fm。
3.4 算法復(fù)雜度分析
本文從SFM信號(hào)循環(huán)自相關(guān)函數(shù)的特性出發(fā),提出了SFM信號(hào)的參數(shù)估計(jì)方法,其計(jì)算量分析如表1所示,其中SFM信號(hào)s(t)的循環(huán)自相關(guān)函數(shù)(τ)由式(τ)=IFFT((FFT(s(t)))2)高效實(shí)現(xiàn),表中N為信號(hào)點(diǎn)數(shù),P為FFT點(diǎn)數(shù),M為一個(gè)周期信號(hào)點(diǎn)數(shù)?;诳ㄉ瓬?zhǔn)則(CR)算法的計(jì)算量如表2所示,表中Q為低通濾波器階數(shù),T代表譜峰搜索時(shí)間。當(dāng)N=1 024、P=1 024、M=100、Q=32時(shí),本文提出算法的計(jì)算量為25 988,CR算法的計(jì)算量為163 840,本文的計(jì)算量僅為CR算法的16%,大大降低了計(jì)算的復(fù)雜度??梢?,相比于CR算法,本文所提算法更易于工程實(shí)現(xiàn)。
表1 本文算法計(jì)算量Table 1 Computation of algorithm presented in this paper
表2 CR算法計(jì)算量Table 2 Computation of CR
4.1 算法正確性和有效性
仿真條件:SFM信號(hào)各參數(shù)取值為A=1,f0=0.15,fm=0.01,mf=0.01,信號(hào)點(diǎn)數(shù)N=1 024。式(8)中l(wèi)=1,式(23)中積累周期數(shù)K=10,SNR取值范圍為-5~15 dB,步進(jìn)為1 dB,對(duì)每個(gè)SNR進(jìn)行500次Monte Carlo實(shí)驗(yàn)。
圖1~3分別給出了本文算法(CA)、CR算法在不同SNR取值下SFM信號(hào)調(diào)制頻率、載頻和調(diào)制指數(shù)估計(jì)的均方根誤差。如圖1所示,當(dāng)SNR≥-5 dB時(shí),本文調(diào)制頻率估計(jì)的均方根誤差低于CR算法34 dB左右。如圖2所示,當(dāng)SNR≥5 dB時(shí),本文載頻估計(jì)的均方根誤差低于CR算法3 dB左右。當(dāng)SNR≥7 dB時(shí),本文調(diào)制指數(shù)估計(jì)的均方根誤差低于CR算法8 dB左右,如圖3所示。
圖1 SFM信號(hào)調(diào)制頻率估計(jì)的均方根誤差Fig.1 RMSE of modulated frequency
圖2 SFM信號(hào)載頻估計(jì)的均方根誤差Fig.2 RMSE of carrier frequency
圖3 SFM信號(hào)調(diào)制指數(shù)估計(jì)的均方根誤差Fig.3 RMSE of FM coefficient
4.2 不同l值對(duì)載頻估計(jì)值的影響
仿真條件:SFM信號(hào)各參數(shù)取值為A=1,f0=0.15,fm=0.01,mf=0.01,信號(hào)點(diǎn)數(shù)N=1 024。SNR=10 dB,式(8)中l(wèi)取值范圍為1~19,步進(jìn)為2,對(duì)每個(gè)l值進(jìn)行500次Monte Carlo實(shí)驗(yàn)。
圖4給出了不同l值下SFM信號(hào)載頻估計(jì)的均方根誤差。如圖4所示,隨著l值的增加,SFM信號(hào)載頻估計(jì)的均方根誤差增加。當(dāng)l=1時(shí),式(8)中τ0=1/(2^fm),此時(shí)載頻估計(jì)值^f0的均方根誤差有最小值。仿真結(jié)果與式(17)所示結(jié)果一致。
圖4 l值對(duì)載頻估計(jì)均方根誤差的影響Fig.4 RMSE of carrier frequency as function of l
4.3 不同積累周期K對(duì)調(diào)制指數(shù)估計(jì)值的影響
仿真條件:SFM信號(hào)各參數(shù)取值為A=1,f0=0.15,fm=0.01,mf=0.01,信號(hào)點(diǎn)數(shù)N=1 024。式(8)中l(wèi)=1,SNR=10 dB,式(23)中積累周期數(shù)K取值范圍為1~10,步進(jìn)為1,對(duì)每個(gè)K值進(jìn)行500次Monte Carlo實(shí)驗(yàn)。
圖5給出了不同K值下SFM信號(hào)調(diào)制指數(shù)估計(jì)的均方根誤差。由圖5可知,積累周期數(shù)K值越大,調(diào)制指數(shù)估計(jì)的均方根誤差越小。積累K個(gè)周期,信號(hào)調(diào)制指數(shù)估計(jì)精度能提高約5·lgK dB。
圖5 K值對(duì)調(diào)制指數(shù)估計(jì)均方根誤差的影響Fig.5 RMSE of FM coefficient as function of K
基于循環(huán)自相關(guān),本文研究了一種新的SFM信號(hào)參數(shù)估計(jì)方法。在分析SFM信號(hào)循環(huán)自相關(guān)函數(shù)特性的基礎(chǔ)上,依次對(duì)SFM信號(hào)調(diào)制頻率、載頻及調(diào)制指數(shù)進(jìn)行估計(jì)。仿真結(jié)果表明,該算法具有良好的抗噪性能,當(dāng)SNR≥10 dB時(shí),各參數(shù)估計(jì)值均方根誤差低于-18 dB。同時(shí),算法計(jì)算量小,為同等條件下CR方法的16%,在工程上具有良好的實(shí)用價(jià)值。
本文方法適用于單分量SFM信號(hào)的參數(shù)估計(jì)問題,如何改進(jìn)算法,使其適用于多分量SFM信號(hào)的參數(shù)估計(jì)情況,將是我們進(jìn)一步研究的內(nèi)容。
[1]Chen V C,Li F,Ho S,et al.Micro-Doppler effect in radar:phenomenon,model and simulation study[J].IEEE Transactions on Aerospace Electronic System,2006,42(1):2-21.
[2]Stankovic L,Djukanovic S.Local polynomial Fourier transformation receiver for non-stationary interference excision in DSSS communication[J].IEEE Transactions on Signal Processing,2008,56(4):1627-1636.
[3]Ward S.The use of sinusoidal frequency modulated pulses for low-Doppler detection[C]//Proceedings of 2001 MTS/IEEE Conference and Exhibition.Honolulu,HI:IEEE,2001:2147-2151.
[4]Deng B,Qin Y L,Wang H Q,et al.SFM signal detection and parameter estimation based on pulse-repetition-interval transform[C]//Proceedings of the 20th European Signal Processing Conference.Bucharest:IEEE,2012:1855-1859.
[5]Barbarossa S,Lemoine O.Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation[J]. IEEE Signal Processing Letters,1996,3(4):112-115.
[6]呂遠(yuǎn),??。票?基于DPT的非線性調(diào)頻信號(hào)參數(shù)估計(jì)[J].電子測(cè)量與儀器學(xué)報(bào),2009,23(6):63-67. LV Yuan,ZHU Jun,TANG Bin.Estimation of nonlinear FM signal parameter based on DPT[J].Journal of Electronic Measurement and Instrument,2009,23(6):63-67.(in Chinese)
[7]陳晶.線性調(diào)頻信號(hào)與正弦調(diào)頻信號(hào)參數(shù)估計(jì)方法[D].哈爾濱:哈爾濱工程大學(xué),2012. CHEN Jing.Parameters Estimation Methods of Linear Frequency Signals and Sinusoidal Frequency Signals[D]. Harbin:Harbin Engineering University,2012.(in Chinese)
[8]劉進(jìn)云,趙鋒,李永禎,等.基于時(shí)頻脊提取—隨機(jī)Hough變換的正弦調(diào)頻信號(hào)參數(shù)估計(jì)[J].信號(hào)處理,2009,25(8A):47-49. LIU Jin-yun,ZHAO Feng,LI Yong-zhen,et al.Parameter Estimation of SFM Signal Based on Time-Frequency Ridge Extraction and Random Hough Transformation[J].Signal Processing,2009,25(8A):47-49.(in Chinese)
[9]熊輝,呂遠(yuǎn),曾德國,等.利用卡森準(zhǔn)則的正弦調(diào)頻信號(hào)參數(shù)估計(jì)方法[J].電子測(cè)量與儀器學(xué)報(bào),2010,24(4):353-357. XIONG Hui,LV Yuan,ZENG De-guo,et al.SFM Signal Parameters Estimation Algorithm Based on Carson Rule[J]. Journal of Electronic Measurement and Instrument,2010,24(4):353-357.(in Chinese)
[10]James T.寬帶數(shù)字接收機(jī)[M].2版.楊小牛,譯.北京:電子工業(yè)出版社,2002:82. James T.Digital techniques for wideband receiver[M].2nd Edition.Translated by YANG Xiao-niu.Beijing:Publishing House of Electronics Industry,2002:82.(in Chinese)
[11]Peleg S,Porat B.Linear FM Signal Parameter Esti-mation from Discrete-Time observations[J].IEEE Transactions on Aerospace Electronic system,1991,27(4):607-616,
HUANG Hao was born in Suining,Sichuan Province,in 1989.He received the B.S.degree from University of Electronic Science and Technology of China in 2011.He is now a graduate student.His research concerns signal detection,parameter estimation and recognition.
Email:harold-huang@foxmail.com
李昀豪(1987—),男,重慶人,現(xiàn)為電子科技大學(xué)博士研究生,主要從事雷達(dá)及電子對(duì)抗技術(shù)的研究;
LI Yun-hao was born in Chongqing,in 1987.He is currently working toward the Ph.D.degree.His research concerns radar and electronic warfare.
Email:kalec-li@sina.com
??。?973—),男,四川南充人,博士后,主要從事雷達(dá)及電子對(duì)抗技術(shù)的研究。
ZHU Jun was born in Nanchong,Sichuan Province,in 1973. He is now a post-doctoral researcher.His research concerns radar and electronic warfare.
Email:uestczhujun@163.com
A New Sinusoidal FM Signal Parameters Estimation Algorithm Based on Cyclic Autocorrelation
HUANG Hao,LI Yun-hao,ZHU Jun
(College of Electronic Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
A new approach for Sinusoidal Frequency Modulation(SFM)signal based on cycle autocorrelation function is proposed to lower the computational complexity and adapt lower Signal to Noise Ratio(SNR).First,by computing the cyclic autocorrelation function of SFM signal and analyzing its traits,the estimation for modulated frequency is given.By delay-and-compute the SFM signal,its sinusoidal modulation character is eliminated and it becomes a single-frequency signal from which the carrier frequency can be estimated.Utilizing the periodicity of the frequency modulation,the zero frequency signal after down conversion is periodically accumulated to decrease the effect of noise.Then,the FM coefficient can be obtained by estimating the instantaneous frequency of the accumulated signal.The simulation results demonstrate that when SNR≥6 dB,the Root Mean Square Error(RMSE)is lower than-18 dB.The computation of the algorithm which is just 16%of the one of Carson Rule(CR)under the same conditions shows that the algorithm is easy for engineering realization.
sinusoidal FM;cyclic autocorrelation;parameter estimation;periodic accumulation
date:2013-04-18;Revised date:2013-06-06
??通訊作者:harold-huang@foxmail.comCorresponding author:harold-huang@foxmail.com
TN971.1
A
1001-893X(2013)09-1180-06
黃浩(1989—),男,四川遂寧人,2011年于電子科技大學(xué)獲學(xué)士學(xué)位,現(xiàn)為碩士研究生,主要研究方向?yàn)樾盘?hào)檢測(cè)、參數(shù)估計(jì)與識(shí)別;
10.3969/j.issn.1001-893x.2013.09.012
2013-04-18;
2013-06-06