• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    microRNAs and ceRNAs: RNA networks in pathogenesis of cancer

    2013-06-12 12:33:54
    Chinese Journal of Cancer Research 2013年2期
    關(guān)鍵詞:目標(biāo)值下層約束條件

    Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China

    microRNAs and ceRNAs: RNA networks in pathogenesis of cancer

    Xiangqian Su, Jiadi Xing, Zaozao Wang, Lei Chen, Ming Cui, Beihai Jiang

    Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China

    Corresponding to:Xiangqian Su, MD, Professor. Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China. Email: suxiangqian@bjmu.edu.cn.

    microRNAs (miRNAs) are a class of endogenous, single-stranded non-coding RNAs of 20-23 nucleotides in length, functioning as negative regulators of gene expression at the post-transcriptional level. The dysregulation of miRNAs has been demonstrated to play critical roles in tumorigenesis, either through inhibiting tumor suppressor genes or activating oncogenes inappropriately. Besides their promising clinical applications in cancer diagnosis and treatment, recent studies have uncovered that miRNAs could act as a regulatory language, through which messenger RNAs, transcribed pseudogenes, and long noncoding RNAs crosstalk with each other and form a novel regulatory network. RNA transcripts involved in this network have been termed as competing endogenous RNAs (ceRNAs), since they influence each other’s level by competing for the same pool of miRNAs through miRNA response elements (MREs) on their target transcripts. The discovery of miRNA-ceRNA network not only provides the possibility of an additional level of post-transcriptional regulation, but also dictates a reassessment of the existing regulatory pathways involved in cancer initiation and progression.

    miRNA; ceRNA; cancer

    Scan to your mobile device or view this article at:http://www.thecjcr.org/article/view/1754/2485

    Introduction

    microRNAs (miRNAs) are small, evolutionarily conserved, single-stranded RNAs of 18-25 nucleotides in length that play major roles in gene regulation. miRNAs were shown to inhibit their target genes through binding to miRNA response elements (MREs) on the 3' untranslated regions (UTRs) of target RNA transcripts with imperfect complementarity, and leading to decreased expression of their target proteins either by mRNA degradation or translational inhibition (1). Single mRNA usually contains MREs for multiple miRNAs. At the same time, individual miRNA often targets up to 200 transcripts which are diverse in their function. miRNAs have been shown to suppress the expression of important cancer-related genes and have been proved useful in the diagnosis and treatment of cancer (2). However, the mechanism by which the miRNA could be regulated is largely unknown.

    Based on the fact that the MREs on the RNA transcripts could be predicted and validated by many types of software and experimental techniques, Salmenaet al.hypothesized that all types of RNA transcripts talk to each other by miRNA-mediated language. The previous pattern, “miRNAs→RNAs”, could be replaced by “RNAs→miRNAs→RNAs”. RNA transcripts sharing multiple MREs in their 3' UTRs communicate to each other and regulate the expression levels by competing for a limited pool of miRNAs. The upregulation of a given mRNA leads to the increased total number of MREs, which exceeds their targeting miRNAs. As a result, the targeting miRNAs would be diluted with the derepression of other mRNAs sharing the same MREs. RNAs involved in this process are known as competitive endogenous RNAs (ceRNAs). The large scale identification of ceRNAs constructs ceRNAs regulatory networks (Figure 1) (3,4).

    Figure 1 The role of miRNA in ceRNA networks. Multiple RNA transcripts share MREs for the same miRNA in their 3' UTR. Overexpression of ceRNAs increases the concentration of specific MREs and shifts the miRNA pool distribution, consequently, leading to the increased expression of target mRNA

    In this system, in addition to conventional function of RNAs to translate to proteins, RNAs may exert another function through their ability to regulate other RNAs (5-8). Furthermore, general studies in gene function usually focus on gene coding regions by overexpression or knocking down of the coding sequence (CDS). The function of UTRs in transcript will be neglected. However, hypothesis of ceRNAs network provides a new understanding on the regulatory function of full transcript including 3' UTR and CDS. The discovery of ceRNAs not only dictates a reevaluation of our understanding of gene regulatory networks but also opens up the possibility of a new biological mechanism that could be targeted by oligonucleotide gene therapy (3).

    Methods of Identification of ceRNAs

    The identification of ceRNAs depends on the precision of MREs prediction on RNAs, as well as miRNA target prediction (4). miRNAs target prediction algorithms and experimental approaches make it possible to identify MREs related to the RNA-induced silencing complex (RISC). Tayet al. devised a novel approach termed mutually targeted MRE enrichment (MuTaME) to predict the candidate ceRNAs for distinct target. The possibility of putative ceRNAs rank on MuTaME scores generated from the rna22 miRNA target prediction algorithm, which is mainly based on the number of miRNAs with which ceRNAs and target transcripts shared, as well as the distribution of MREs in both ceRNAs and target transcripts (9). Sumazinet al.presented Hermes, a new multivariate analysis method, to analyze candidates according to genome-wide expression profiles of mRNAs and miRNAs from the same tumor samples (10). On the other hand, the novel biochemical techniques, including the argonaute high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (Ago HITS-CLIP) and photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP), provide general platforms for identification of ceRNAs, due to restricting the precise sequences for miRNA-mRNA interactions (11).

    Condition that ceRNA network may occur

    ceRNAs network contains transcripts that share multiple MREs targeted by multiple miRNAs. Thus, whether ceRNAs network has its function largely depends on the concentration of the ceRNAs and their miRNAs. Changes in the ceRNA level need to be large enough to effectively compete for miRNAs binding. Appropriate miRNA level is another important factor impacting ceRNAs network, since there is a balance between ceRNAs and target RNAs for the distribution of miRNAs. In addition, ceRNA networks would also rely on the subcellular distribution and tissue specificity of RNAs and miRNAs existent in a proper cell type at a proper moment (4).

    ceRNA association with cancer and its classification

    Cancers develop from the accumulation of genomic mutations and epigenetic changes that alter gene function and expression. Accordingly, DNA-based somatic base-pair mutations, changes in DNA copy number, chromosomal translocation, as well as mRNA-based gene fusions, alternative splicing are commonly observed in cancer (12). As a result, such events inducing altered expression of UTRs in transcripts would influence MRE levels, or introduce new MREs into the cells. Changes in MREs of ceRNAs impact the capacity of a proper mRNA transcript to attach or titrate miRNAs. Consequently, the perturbed ceRNA network may contribute to diseases and cancers (4,9,10,13,14). There are three types of transcriptome belonging to ceRNA: protein coding genes, transcribed pseudogenes, and long noncoding RNAs.

    Protein coding genes

    The study by Tayet al. identified a series of endogenous protein-coding transcripts, serine incorporator 1 (SERINC1), vesicle-associated membrane protein associated protein A (VAPA), CCR4-NOT transcription complex, subunit 6-like (CNOT6L), as phosphatase and tensin homolog (PTEN) ceRNAs which regulate PTEN levels in a miRNA-dependent manner. Due to the same target miRNAs that PTEN and ceRNAs shared, deletion of ceRNA by siRNAs facilitated more miRNAs contacting withPTEN3' UTR, and resulted in a significant reduction in PTEN protein levels. Moreover, mutual reciprocal regulation of transcripts in the PTEN ceRNA network is validated by the fact not only that PTEN downregulation modulates ceRNA expression, but also that PTEN ceRNAs are coexpressed with PTEN in human samples (9). Further studies by the same group isolated zinc finger E-box binding homeobox 2 (ZEB2) as a PTEN ceRNA by a Sleeping Beauty insertional mutagenesis screen in oncogenic BRAF-induced mouse model of melanoma. Consistent with other PTEN ceRNAs, ZEB2 levels were commonly reduced and significantly correlated with PTEN in a set of human cancers (13). Recently, it has been reported that 3' UTR of versican could serve as a ceRNA in up-regulating the expression of versican, CD34, and fibronectin, leading to the development of hepatocellular carcinoma by controlling the miRNA activity (15). Furthermore, based on Hermes, a novel bioinformatics multivariate analysis method, Sumazinet al.predicted an extensive miRNA-mediated ceRNA network, including about 7,000 genes, which regulate established oncogenic pathways in glioblastoma (10).

    Transcribed pseudogenes

    Although pseudogenes share high sequence identity with their ancestral protein coding genes, they are lack of protein-coding ability, due to various genetic disablements including premature stop codes, frameshifts, insertions, or deletions (16). Nevertheless, sequencing efforts have revealed nearly 19,000 pseudogenes in human genome, many of which are transcribed and are often well conserved, suggesting that selective pressure to maintain pseudogenes exists (17).

    Previous studies focus on miRNA dependent regulation, also known as “miRNAs→RNAs”. However, the studies by Seitzet al. hypothesized that most miRNA targets regulate the miRNA. Since there is a high homology between pseudogenes and their protein coding partners, numerous miRNA targets identified by computational prediction, especially the transcribed pseudogenes, may actually be competitive inhibitors of miRNA function, preventing miRNAs from binding to their authentic targets by sequestering and titrating them (18). Recently, the research by Polisenoet al. also supported the similar theory that pseudogenes can regulate miRNAs, and influence miRNAs’ availability for other RNAs. They discovered that PTENP1, the pseudogene of tumor suppressor PTEN sharing high sequence homology with PTEN, can compete with PTEN for the same pool of miRNAs through many conserved MREs. As a result, PTENP1 3' UTR overexpression increased both PTEN transcript and protein in a DICER-dependent manner. Moreover, the correlation between PTENP1 and PTEN in normal human tissues, and prostate tumor samples, as well as the direct association between PTENP1 copy number and PTEN expression in colon cancer tissues suggests that PTENP1 transcript levels can regulate PTEN expression, and act as a tumor suppressor gene (19). KRAS and its pseudogene KRAS1P have the similar trend to PTEN and PTENP1. KRAS1P 3' UTR overexpression induced KRAS mRNA abundance. The transcript levels of KRAS and KRAS1P are directly correlated in prostate cancer, neuroblastoma, retinoblastoma and hepatocellular carcimoma, which indicates KRAS1P plays a proto-oncogenic role in cancer and acts as a ceRNA of KRAS for the same pool of miRNAs. Sequence alignment also uncovered that a miRNA binding site, MRE, is conserved in gene and its pseudogene counterpart, as OCT4 and OCT4-pg1-5, FOXO3 and FOXO3B, or E2F3 and E2F3P1 (19).

    Long noncoding RNAs

    With the expanding of the number of long noncoding RNAs (lncRNAs), more and more studies pay attention to the role of lncRNAs in diseases. Especially, a subset of lncRNAs is associated with epigenetic mechanisms (20,21). Through the Ago HITS-CLIP technique, a recent Argonaute (Ago)-bound transcripts analysis discovered that lncRNAs are the targets of miRNAs (11,22). Highly up-regulated in liver cancer (HULC) is one of lncRNAs, and plays an important role in tumorigenesis. HULC acts as a ceRNA, which down-regulates a series of miRNAs activities, including miR-372. As a result, the translational level of miR-372 target gene, PRKACB, was derepressed in liver cancer (23). Since noncoding RNAs are not involvedin active protein translation process, they are more effective ceRNAs than protein-coding RNAs in miRNAs binding (24).

    ceRNAs and cancer therapy

    The perturbations of ceRNA networks could lead to carcinogenesis and other diseases (4,9,10,13,14). However, it provides a new perspective to explain disease processes and offer new opportunities to manipulate ceRNA networks through miRNA competition for cancer therapy. Although the mechanism of ceRNAs needs largely to be explored, the techniques are available to identify MREs on the transcripts, and recognize the related binding miRNAs as the ceRNA language.

    With regard to the therapies against miRNA function, many studies found that “miRNA sponges”, the artificial miRNA decoys, which are oligonucleotide constructs with multiple copies of the same MRE in tandem targeting for only one miRNA, have already been used as a RNA-based therapy to deplete individual miRNA in cells and transgenic animals (25-30). In contrast, ceRNAs are “endogenous sponges” which are able to regulate the distribution of miRNAs on their natural targets. Unlike artificial miRNA sponges, ceRNAs contain MREs to combine different miRNAs. Therefore, they could influence the multiple targets containing multiple miRNAs. The application of ceRNA sponges could be an ideal approach for developing therapies against miRNA function (4). Although both miRNA sponges and ceRNA sponges provide strategies for miRNA loss-of-function studies, more study is required to rule out off-target effects and evaluate their potential effects.

    Taken together, the identification of the ceRNA mechanism expands the theory of the dynamics and complexity of the miRNA regulatory network and provides more challenge in the development of new strategies for miRNA-based cancer diagnosis and therapy.

    Acknowledgements

    This study was supported by the grants from the National Natural Science Foundation of China (No. 81272766), Capital Medical Development and Research Foundation (No. 2009-2093), Clinical Characteristics and Application Research of Capital (No. Z121107001012130), Beijing Natural Science Foundation (No. 7132054), and New Star of Science and Technology Program of Beijing (No. 2011060).

    Disclosure:The authors declare no conflict of interest.

    1. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.

    2. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259-69.

    3. Khvorova A, Wolfson A. New competition in RNA regulation. Nat Biotechnol 2012;30:58-9.

    4. Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011;146:353-8.

    步驟4 將決策變量決策變量Wli的值Wlit代入下層模型目標(biāo)函數(shù)中,獲得下層模型函數(shù)目標(biāo)值θ,s-,s+及目標(biāo)值符合滿意值范圍時(shí)(下層約束條件),則轉(zhuǎn)入步驟5;如果目標(biāo)值未達(dá)到滿意值范圍時(shí),根據(jù)松馳變量s-,s+的值,調(diào)整的Wlit值,轉(zhuǎn)入步驟1。

    5. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011;39:D152-7.

    6. Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105.

    7. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101:2999-3004.

    8. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-9.

    9. Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011;147:344-57.

    10. Sumazin P, Yang X, Chiu HS, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 2011;147:370-81.

    11. Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets. Nat Struct Mol Biol 2010;17:1169-74.

    12. Berger MF, Levin JZ, Vijayendran K, et al. Integrative analysis of the melanoma transcriptome. Genome Res 2010;20:413-27.

    13. Karreth FA, Tay Y, Perna D, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 2011;147:382-95.

    14. Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011;147:358-69.

    15. Fang L, Du WW, Yang X, et al. Versican 3'-untranslated region (3'-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulatingmiRNA activity. FASEB J 2013;27:907-19.

    16. D'Errico I, Gadaleta G, Saccone C. Pseudogenes in metazoa: origin and features. Brief Funct Genomic Proteomic 2004;3:157-67.

    17. Pink RC, Wicks K, Caley DP, et al. Pseudogenes: pseudofunctional or key regulators in health and disease? RNA 2011;17:792-8.

    18. Seitz H. Redefining microRNA targets. Curr Biol 2009;19:870-3.

    19. Poliseno L, Salmena L, Zhang J, et al. A codingindependent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010;465:1033-8.

    20. Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009;458:223-7.

    21. Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 2009;106:11667-72.

    22. Chi SW, Zang JB, Mele A, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009;460:479-86.

    23. Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 2010;38:5366-83.

    24. Gu S, Jin L, Zhang F, et al. Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. Nat Struct Mol Biol 2009;16:144-50.

    25. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 2010;16:2043-50.

    26. Gentner B, Schira G, Giustacchini A, et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 2009;6:63-6.

    27. Brown BD, Gentner B, Cantore A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007;25:1457-67.

    28. Lujambio A, Lowe SW. The microcosmos of cancer. Nature 2012;482:347-55.

    29. Loya CM, Lu CS, Van Vactor D, et al. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 2009;6:897-903.

    30. Zhu Q, Sun W, Okano K, et al. Sponge transgenic mouse model reveals important roles for the microRNA-183 (miR-183)/96/182 cluster in postmitotic photoreceptors of the retina. J Biol Chem 2011;286:31749-60.

    Cite this article as:Su X, Xing J, Wang Z, Chen L, Cui M, Jiang B. microRNAs and ceRNAs: RNA networks in pathogenesis of cancer. Chin J Cancer Res 2013;25(2):235-239. doi: 10.3978/j.issn.1000-9604.2013.03.08

    10.3978/j.issn.1000-9604.2013.03.08

    Submitted Jul 20, 2012. Accepted for publication Feb 21, 2013.

    猜你喜歡
    目標(biāo)值下層約束條件
    基于一種改進(jìn)AZSVPWM的滿調(diào)制度死區(qū)約束條件分析
    AI講座:ML的分類方法
    ML的迭代學(xué)習(xí)過程
    A literature review of research exploring the experiences of overseas nurses in the United Kingdom (2002–2017)
    一類多個(gè)下層的雙層規(guī)劃問題
    積雪
    陜西橫山羅圪臺(tái)村元代壁畫墓發(fā)掘簡報(bào)
    考古與文物(2016年5期)2016-12-21 06:28:48
    線性規(guī)劃的八大妙用
    有借有還
    不同危險(xiǎn)程度患者的降脂目標(biāo)值——?dú)W洲《血脂異常防治指南》
    久久久久久久久久人人人人人人| 狠狠精品人妻久久久久久综合| 一级片'在线观看视频| 国产精品一区二区三区四区免费观看| 国产黄色视频一区二区在线观看| 国产精品国产三级专区第一集| 日韩视频在线欧美| 日韩免费高清中文字幕av| 午夜久久久在线观看| 国产黄色免费在线视频| 免费看光身美女| 亚洲欧美色中文字幕在线| 亚洲成人手机| 一级a做视频免费观看| 夜夜看夜夜爽夜夜摸| 国产亚洲av片在线观看秒播厂| 一区二区三区免费毛片| 男人操女人黄网站| 久久久久久久久久成人| 久久久久久人妻| 99热6这里只有精品| 啦啦啦视频在线资源免费观看| 精品国产乱码久久久久久小说| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美日韩在线播放| 99久久精品国产国产毛片| 最新中文字幕久久久久| 精品国产一区二区三区久久久樱花| 18禁在线无遮挡免费观看视频| 久久影院123| 亚洲精品亚洲一区二区| 久久婷婷青草| 亚洲精品成人av观看孕妇| 伦理电影免费视频| 日本vs欧美在线观看视频| 免费观看av网站的网址| 午夜视频国产福利| 狂野欧美激情性bbbbbb| 国产精品一区二区在线不卡| 制服诱惑二区| 国产免费现黄频在线看| 亚洲少妇的诱惑av| 亚洲欧美清纯卡通| 黄色毛片三级朝国网站| 七月丁香在线播放| 夜夜看夜夜爽夜夜摸| 久久鲁丝午夜福利片| 国产在视频线精品| 中文欧美无线码| 亚洲国产毛片av蜜桃av| 亚洲精品成人av观看孕妇| 国产免费一区二区三区四区乱码| av又黄又爽大尺度在线免费看| 91aial.com中文字幕在线观看| 日日摸夜夜添夜夜添av毛片| 丝袜在线中文字幕| 王馨瑶露胸无遮挡在线观看| 久久午夜综合久久蜜桃| 久久99精品国语久久久| 久久久久久久久久久久大奶| 欧美xxⅹ黑人| 成人亚洲精品一区在线观看| 80岁老熟妇乱子伦牲交| 中文字幕人妻熟人妻熟丝袜美| 久热久热在线精品观看| 免费看av在线观看网站| 飞空精品影院首页| 国产精品久久久久久久久免| 2021少妇久久久久久久久久久| 国产av国产精品国产| 国产高清有码在线观看视频| 午夜福利视频精品| 精品少妇内射三级| 久久久久人妻精品一区果冻| 最新中文字幕久久久久| 国产黄色免费在线视频| 欧美精品一区二区免费开放| 边亲边吃奶的免费视频| 交换朋友夫妻互换小说| 全区人妻精品视频| 精品酒店卫生间| 欧美人与善性xxx| 国产成人一区二区在线| 新久久久久国产一级毛片| 久久久久久久亚洲中文字幕| 在线亚洲精品国产二区图片欧美 | 99国产精品免费福利视频| 精品人妻一区二区三区麻豆| 国产69精品久久久久777片| 国产在视频线精品| 丰满迷人的少妇在线观看| 国产亚洲最大av| 又粗又硬又长又爽又黄的视频| 如日韩欧美国产精品一区二区三区 | 成人二区视频| 最近手机中文字幕大全| 国产精品一区www在线观看| 在线免费观看不下载黄p国产| videossex国产| 国产高清国产精品国产三级| 欧美精品国产亚洲| 婷婷色综合大香蕉| 国产免费福利视频在线观看| 久久久久久久久久久久大奶| 一级,二级,三级黄色视频| 亚洲精华国产精华液的使用体验| 亚洲人与动物交配视频| 精品卡一卡二卡四卡免费| 久久影院123| 综合色丁香网| 丰满乱子伦码专区| 一边亲一边摸免费视频| 三级国产精品欧美在线观看| 日韩,欧美,国产一区二区三区| 一级a做视频免费观看| 亚洲国产精品一区二区三区在线| 免费观看在线日韩| 色5月婷婷丁香| 成人午夜精彩视频在线观看| 日日啪夜夜爽| 中文字幕人妻熟人妻熟丝袜美| 九九爱精品视频在线观看| 亚洲av综合色区一区| 麻豆乱淫一区二区| 日韩 亚洲 欧美在线| 国产精品一区www在线观看| 中文乱码字字幕精品一区二区三区| 能在线免费看毛片的网站| 男男h啪啪无遮挡| 热re99久久国产66热| 亚洲精品视频女| 亚洲国产色片| 亚洲精品亚洲一区二区| 中文乱码字字幕精品一区二区三区| 亚洲国产色片| 啦啦啦在线观看免费高清www| 国产成人免费观看mmmm| 成人国产麻豆网| 五月伊人婷婷丁香| 又大又黄又爽视频免费| 日韩精品有码人妻一区| 成人国产麻豆网| 91午夜精品亚洲一区二区三区| 亚洲av二区三区四区| 在线精品无人区一区二区三| 亚洲精品乱码久久久v下载方式| 欧美xxxx性猛交bbbb| 国语对白做爰xxxⅹ性视频网站| 制服人妻中文乱码| 欧美国产精品一级二级三级| 少妇被粗大猛烈的视频| 久久免费观看电影| 在线天堂最新版资源| 国产探花极品一区二区| h视频一区二区三区| 高清在线视频一区二区三区| 日韩一区二区三区影片| 插阴视频在线观看视频| 国产精品人妻久久久影院| 成人手机av| 大话2 男鬼变身卡| 大陆偷拍与自拍| 国产熟女欧美一区二区| 国产成人freesex在线| 一级毛片aaaaaa免费看小| 久久久a久久爽久久v久久| 一个人免费看片子| av在线老鸭窝| 日本欧美视频一区| 青春草视频在线免费观看| 国产成人午夜福利电影在线观看| 人妻 亚洲 视频| 99久久人妻综合| 久久久久久久大尺度免费视频| 欧美成人精品欧美一级黄| a级毛色黄片| 99热全是精品| 欧美xxxx性猛交bbbb| 亚洲五月色婷婷综合| 久久国内精品自在自线图片| 亚洲四区av| 我要看黄色一级片免费的| 一本久久精品| 久久午夜综合久久蜜桃| 黄色怎么调成土黄色| 精品一区在线观看国产| 日韩中文字幕视频在线看片| 亚洲av男天堂| 少妇人妻久久综合中文| 超色免费av| 国产免费福利视频在线观看| 女人久久www免费人成看片| 国产成人精品福利久久| 久久久久久久久久久免费av| .国产精品久久| av有码第一页| 伦理电影大哥的女人| 免费看光身美女| 国产精品.久久久| 久久久久久久久久成人| 国产伦理片在线播放av一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩视频在线欧美| 91成人精品电影| 一区二区日韩欧美中文字幕 | 狠狠精品人妻久久久久久综合| 黄色一级大片看看| 一区二区av电影网| 性色avwww在线观看| 久久久久久久亚洲中文字幕| 永久免费av网站大全| 欧美另类一区| 麻豆精品久久久久久蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产 精品1| 欧美老熟妇乱子伦牲交| 91午夜精品亚洲一区二区三区| 日韩av不卡免费在线播放| 黄片无遮挡物在线观看| 日韩中字成人| 少妇人妻 视频| 国产男人的电影天堂91| 人成视频在线观看免费观看| 久久99热6这里只有精品| 一区二区三区乱码不卡18| 日韩欧美精品免费久久| 一级毛片我不卡| 久久精品久久久久久久性| 久久精品国产亚洲av天美| 国产av一区二区精品久久| 亚洲中文av在线| 亚洲国产精品一区二区三区在线| 街头女战士在线观看网站| 中国三级夫妇交换| 搡老乐熟女国产| 亚洲四区av| 国产欧美日韩一区二区三区在线 | 九九久久精品国产亚洲av麻豆| 精品午夜福利在线看| 亚洲av电影在线观看一区二区三区| 综合色丁香网| 亚洲精品日本国产第一区| 婷婷成人精品国产| 午夜影院在线不卡| 亚洲性久久影院| 性高湖久久久久久久久免费观看| 边亲边吃奶的免费视频| 精品国产乱码久久久久久小说| 18禁裸乳无遮挡动漫免费视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲人成网站在线播| 少妇精品久久久久久久| 国产精品国产av在线观看| 中文字幕人妻丝袜制服| 婷婷色综合大香蕉| 大码成人一级视频| 美女xxoo啪啪120秒动态图| 一区二区三区四区激情视频| 在线观看免费高清a一片| 色婷婷久久久亚洲欧美| 成人二区视频| 久久久国产欧美日韩av| 十八禁网站网址无遮挡| 天天躁夜夜躁狠狠久久av| 26uuu在线亚洲综合色| 久久久精品94久久精品| 在线观看免费高清a一片| av不卡在线播放| 欧美 日韩 精品 国产| 十八禁高潮呻吟视频| 赤兔流量卡办理| 亚洲国产日韩一区二区| 成人毛片a级毛片在线播放| 久久久久精品久久久久真实原创| 亚洲国产av新网站| 亚洲精品乱久久久久久| 高清av免费在线| 国产黄片视频在线免费观看| 日韩亚洲欧美综合| 精品一区二区三区视频在线| 91精品国产九色| 成人综合一区亚洲| 日本黄色日本黄色录像| 91午夜精品亚洲一区二区三区| 26uuu在线亚洲综合色| 亚洲内射少妇av| 国精品久久久久久国模美| 国产日韩一区二区三区精品不卡 | 最近的中文字幕免费完整| 日韩 亚洲 欧美在线| av线在线观看网站| 日日摸夜夜添夜夜添av毛片| 日本-黄色视频高清免费观看| 成人手机av| 精品午夜福利在线看| 成人漫画全彩无遮挡| 国产精品99久久99久久久不卡 | 久久午夜福利片| 天堂俺去俺来也www色官网| 亚洲三级黄色毛片| 亚洲成色77777| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩卡通动漫| 女的被弄到高潮叫床怎么办| 在线免费观看不下载黄p国产| 国产精品99久久99久久久不卡 | 久久久精品区二区三区| 久久精品国产亚洲网站| 亚洲av在线观看美女高潮| 尾随美女入室| 欧美精品一区二区大全| 成人国产麻豆网| 久久久久人妻精品一区果冻| 男人爽女人下面视频在线观看| 香蕉精品网在线| 在线观看免费视频网站a站| 狠狠婷婷综合久久久久久88av| 交换朋友夫妻互换小说| 亚洲国产av影院在线观看| 国产片内射在线| 最近2019中文字幕mv第一页| 亚洲丝袜综合中文字幕| 欧美日韩综合久久久久久| 日韩中字成人| 国产黄片视频在线免费观看| 一级黄片播放器| h视频一区二区三区| 国产免费福利视频在线观看| 黑人高潮一二区| 欧美 亚洲 国产 日韩一| 涩涩av久久男人的天堂| 大香蕉久久网| 免费高清在线观看视频在线观看| 欧美另类一区| 免费黄色在线免费观看| 久久精品熟女亚洲av麻豆精品| 久久人妻熟女aⅴ| 日韩三级伦理在线观看| 一区二区三区免费毛片| 建设人人有责人人尽责人人享有的| 成年女人在线观看亚洲视频| 搡女人真爽免费视频火全软件| av电影中文网址| 日日摸夜夜添夜夜添av毛片| 七月丁香在线播放| 成年人午夜在线观看视频| 亚洲国产精品999| 久久久久精品久久久久真实原创| 国产老妇伦熟女老妇高清| 亚洲无线观看免费| 18在线观看网站| 9色porny在线观看| 欧美亚洲日本最大视频资源| kizo精华| 亚洲av二区三区四区| 九九在线视频观看精品| 欧美亚洲 丝袜 人妻 在线| 久久99蜜桃精品久久| 日韩中文字幕视频在线看片| 国模一区二区三区四区视频| 欧美丝袜亚洲另类| 国产精品人妻久久久久久| 欧美日韩成人在线一区二区| 久久午夜综合久久蜜桃| videossex国产| 啦啦啦啦在线视频资源| tube8黄色片| 看十八女毛片水多多多| 国产黄色免费在线视频| 亚洲精品乱久久久久久| 日本av手机在线免费观看| 日韩亚洲欧美综合| 亚洲美女搞黄在线观看| 久久久久国产网址| 如日韩欧美国产精品一区二区三区 | 国产毛片在线视频| 国产精品久久久久久久电影| 久久久久久伊人网av| 丝袜美足系列| 高清在线视频一区二区三区| 久久久国产精品麻豆| 国产伦精品一区二区三区视频9| 91在线精品国自产拍蜜月| 一边摸一边做爽爽视频免费| 少妇的逼水好多| 制服丝袜香蕉在线| 超色免费av| a级毛片免费高清观看在线播放| 日韩亚洲欧美综合| 欧美精品高潮呻吟av久久| 久久国产精品大桥未久av| 日本午夜av视频| 伦理电影免费视频| 国产精品熟女久久久久浪| 18禁观看日本| 中国美白少妇内射xxxbb| 在线天堂最新版资源| freevideosex欧美| 乱码一卡2卡4卡精品| 一级a做视频免费观看| 在线观看人妻少妇| 一级片'在线观看视频| 久久亚洲国产成人精品v| 不卡视频在线观看欧美| 欧美精品人与动牲交sv欧美| 大片电影免费在线观看免费| av女优亚洲男人天堂| 久热这里只有精品99| 91午夜精品亚洲一区二区三区| √禁漫天堂资源中文www| 啦啦啦啦在线视频资源| 精品人妻熟女毛片av久久网站| 国产欧美日韩综合在线一区二区| 色视频在线一区二区三区| 中文字幕免费在线视频6| 国产精品一区二区三区四区免费观看| 免费播放大片免费观看视频在线观看| 国模一区二区三区四区视频| 午夜福利视频在线观看免费| 午夜av观看不卡| 一区二区三区免费毛片| av在线app专区| 天天操日日干夜夜撸| 久久人人爽av亚洲精品天堂| 欧美成人精品欧美一级黄| 国产视频内射| 伦理电影大哥的女人| 亚洲精品色激情综合| 精品人妻熟女av久视频| 欧美老熟妇乱子伦牲交| 亚洲欧洲国产日韩| av不卡在线播放| 尾随美女入室| 99热网站在线观看| 日韩 亚洲 欧美在线| 免费大片黄手机在线观看| 七月丁香在线播放| 午夜激情福利司机影院| 精品少妇黑人巨大在线播放| 亚洲国产精品专区欧美| 美女国产高潮福利片在线看| 熟女av电影| 亚洲国产精品专区欧美| 国产黄色视频一区二区在线观看| 久久久久久久久久成人| 美女国产视频在线观看| 国产精品嫩草影院av在线观看| 亚洲三级黄色毛片| av在线观看视频网站免费| 国产av国产精品国产| 亚洲图色成人| 高清黄色对白视频在线免费看| 亚洲精品国产色婷婷电影| 欧美97在线视频| 人妻制服诱惑在线中文字幕| 最近最新中文字幕免费大全7| 午夜激情av网站| 亚洲在久久综合| 亚洲一级一片aⅴ在线观看| 亚洲人与动物交配视频| 免费看光身美女| 777米奇影视久久| 欧美亚洲日本最大视频资源| 欧美日韩综合久久久久久| 免费av中文字幕在线| 十分钟在线观看高清视频www| 狂野欧美白嫩少妇大欣赏| 美女脱内裤让男人舔精品视频| 黑人猛操日本美女一级片| 亚洲不卡免费看| 亚洲av欧美aⅴ国产| 中文字幕av电影在线播放| 国产高清三级在线| 18在线观看网站| 国产免费一区二区三区四区乱码| 亚洲三级黄色毛片| 美女主播在线视频| 夜夜骑夜夜射夜夜干| 亚洲精品久久成人aⅴ小说 | 99热国产这里只有精品6| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 少妇丰满av| 美女国产高潮福利片在线看| 免费大片黄手机在线观看| www.av在线官网国产| xxx大片免费视频| 美女视频免费永久观看网站| 永久免费av网站大全| 国产黄片视频在线免费观看| 美女中出高潮动态图| 欧美人与性动交α欧美精品济南到 | 国产亚洲午夜精品一区二区久久| 免费看av在线观看网站| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 亚洲国产成人一精品久久久| 男女免费视频国产| 久久韩国三级中文字幕| 少妇被粗大的猛进出69影院 | 尾随美女入室| 九九久久精品国产亚洲av麻豆| 九九久久精品国产亚洲av麻豆| 一级黄片播放器| 中文字幕人妻丝袜制服| 最近中文字幕高清免费大全6| 日韩电影二区| 亚洲国产精品专区欧美| 丰满饥渴人妻一区二区三| 日本免费在线观看一区| 国精品久久久久久国模美| av专区在线播放| 女人精品久久久久毛片| 在线观看www视频免费| 久久久久久久久久久久大奶| videossex国产| 99国产精品免费福利视频| 国国产精品蜜臀av免费| 新久久久久国产一级毛片| av免费观看日本| 亚洲精品第二区| 永久网站在线| 少妇猛男粗大的猛烈进出视频| 欧美激情 高清一区二区三区| 大片电影免费在线观看免费| 国产在线一区二区三区精| 街头女战士在线观看网站| 亚洲欧美一区二区三区国产| 99国产综合亚洲精品| 精品少妇久久久久久888优播| 赤兔流量卡办理| 一级片'在线观看视频| 91成人精品电影| 国产欧美日韩综合在线一区二区| 性色av一级| 大话2 男鬼变身卡| 最后的刺客免费高清国语| 免费大片黄手机在线观看| 一级二级三级毛片免费看| 日韩欧美一区视频在线观看| 亚洲一级一片aⅴ在线观看| av线在线观看网站| 最黄视频免费看| 国产乱来视频区| 2022亚洲国产成人精品| 亚洲国产色片| 三级国产精品欧美在线观看| 国模一区二区三区四区视频| 国产成人精品福利久久| 久久精品久久精品一区二区三区| 女人久久www免费人成看片| 国产高清国产精品国产三级| 欧美一级a爱片免费观看看| 国产国语露脸激情在线看| 性色av一级| 日产精品乱码卡一卡2卡三| 午夜激情福利司机影院| 女性被躁到高潮视频| 亚洲成色77777| 少妇猛男粗大的猛烈进出视频| 91精品三级在线观看| 国产视频首页在线观看| 日韩电影二区| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| 3wmmmm亚洲av在线观看| 国产无遮挡羞羞视频在线观看| 久久久午夜欧美精品| 精品一区二区三区视频在线| 精品熟女少妇av免费看| 人妻人人澡人人爽人人| 波野结衣二区三区在线| 黄色毛片三级朝国网站| 国产在线免费精品| 中文字幕av电影在线播放| 黄色配什么色好看| 国产高清有码在线观看视频| 国产精品99久久久久久久久| 成人18禁高潮啪啪吃奶动态图 | 国产男女超爽视频在线观看| 日日摸夜夜添夜夜爱| 看免费成人av毛片| av国产精品久久久久影院| 亚洲,欧美,日韩| 青青草视频在线视频观看| 少妇被粗大的猛进出69影院 | 日韩av在线免费看完整版不卡| 熟女人妻精品中文字幕| 精品人妻偷拍中文字幕| 国产精品99久久99久久久不卡 | 交换朋友夫妻互换小说| 国产精品久久久久久精品电影小说| 日本-黄色视频高清免费观看| 2021少妇久久久久久久久久久| 夜夜看夜夜爽夜夜摸| 日本欧美国产在线视频| 人妻夜夜爽99麻豆av| 国产精品一区www在线观看| 国产免费福利视频在线观看| 少妇猛男粗大的猛烈进出视频| 80岁老熟妇乱子伦牲交| 亚洲av福利一区| 一区二区日韩欧美中文字幕 | www.av在线官网国产| 国国产精品蜜臀av免费| 在线播放无遮挡| 狂野欧美激情性xxxx在线观看| 一个人免费看片子| 少妇人妻 视频| 久久久国产欧美日韩av| 久久久国产一区二区| 人妻 亚洲 视频| 美女xxoo啪啪120秒动态图| 国产成人freesex在线|