• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Applying the maximum information principle to cell transmission model of traffic flow*

    2013-06-01 12:29:58LIUXimin劉喜敏
    水動力學研究與進展 B輯 2013年5期

    LIU Xi-min (劉喜敏)

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    Traffic and Transportation Engineering College and Key Laboratory of Road Structure and Material of Communication Ministry, Changsha University of Science and Technology, Changsha 410114, China,

    E-mail: roadtrafficuliu@126.com

    LU Shou-feng (盧守峰)

    Traffic and Transportation Engineering College, Changsha University of Science and Technology, Changsha 410114, China

    (Received October 31, 2012, Revised February 18, 2013)

    Applying the maximum information principle to cell transmission model of traffic flow*

    LIU Xi-min (劉喜敏)

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    Traffic and Transportation Engineering College and Key Laboratory of Road Structure and Material of Communication Ministry, Changsha University of Science and Technology, Changsha 410114, China,

    E-mail: roadtrafficuliu@126.com

    LU Shou-feng (盧守峰)

    Traffic and Transportation Engineering College, Changsha University of Science and Technology, Changsha 410114, China

    (Received October 31, 2012, Revised February 18, 2013)

    This paper integrates the maximum information principle with the Cell Transmission Model (CTM) to formulate the velocity distribution evolution of vehicle traffic flow. The proposed discrete traffic kinetic model uses the cell transmission model to calculate the macroscopic variables of the vehicle transmission, and the maximum information principle to examine the velocity distribution in each cell. The velocity distribution based on maximum information principle is solved by the Lagrange multiplier method. The advantage of the proposed model is that it can simultaneously calculate the hydrodynamic variables and velocity distribution at the cell level. An example shows how the proposed model works. The proposed model is a hybrid traffic simulation model, which can be used to understand the self-organization phenomena in traffic flows and predict the traffic evolution.

    kinetic traffic model, Cell Transmission Model (CTM), maximum information principle, traffic flow, velocity distribution

    Introduction

    The models for vehicular traffic flows can be divided into macroscopic, mesoscopic and microscopic ones. For the macroscopic model, the related variables are directly the velocity, density and flow flux. For the mesoscopic model, the main concern is the velocity distribution. For the microscopic model, the first concern is the microscopic driving behavior. In the present paper, we focus ourselves on the mesoscopic model.

    Until now, the approaches to the evolution equations of velocity distribution can be summarized as three ones. The first approach is the Boltzmann-like treatments, which was initiated from a pioneered mesoscopic model. The second one is to use encounter rate and table of games, which is called the methods of discrete mathematical kinetic theory. The third one is to construct the lattice Boltzmann model of velocity distribution. The details can be referred to Ref.[1].

    Vehicular traffic can be modeled as a system of interacting particles driven far from equilibrium. Using statistical physics methods to study vehicular traffic offers the possibility to examine various fundamental aspects of this kind of truly non-equilibrium systems[2]. Because phase transitions, hysteresis effects, and other nonlinear effects of synergetics determine spatiotemporal traffic pattern features, spatiotemporal traffic phenomena may be considered an aspect of synergetics[3,4]. Different classes of spatialtemporal patterns in traffic flows can be considered as different phases of the system. Kerner[5]modeled synergetic phenomena in spatial-temporal patterns as phase transition and defined a synchronized flow phase. Phase transitions in traffic flows on multilaneroads were also studied in the framework of his threephase traffic theory proposed by Kerner and Klenov[6,7].

    Microscopic approach of synergetics has been applied to model jamming transition in traffic flows based on the Lorentz system. Synergetic scheme was proposed to describe the jamming transition in traffic flows, taking into account the internal fluctuations of characteristic acceleration/braking time[8]. On the basis of Ref.[8], the influence of the characteristic acceleration/braking time in the most probable headway deviation from its optimal value was studied, and headway deviation characterizing a phase transition was showed[9]. The homotopy perturbation method, the variational iteration method[10]and the differential transformation method[11]were used to give approximations to the governing equations offered in Refs.[8,9], and these three methods could provide highly accurate analytical solutions.

    Recently, the macroscopic approach of synergetics has been used to model complex social systems. The integration of the macroscopic approach of synergetics and the continuity equation was used to model residential mobility macroscopically[12]. In this paper, we attempt to use the maximum information principle, a macroscopic approach of synergetics, to calculate the velocity distribution. The feature of this method is to use the macroscopic variables of traffic flow to derive the velocity distribution, without modeling the microscopic vehicle interactions.

    1. Synergetics

    Synergetics is initiated by Haken[13]in 1969, which dealt with complex systems, i.e., systems composed of many individual parts that are able to spontaneously form spatial, temporal or functional structures by means of self-organization. Synergetics has formed two theoretical branches: microscopic or mesoscopic approach and macroscopic approach. For the former approach, the concepts of instability, order parameters and slaving are used, which can be cast into a rigorous mathematical form, and one could show the emergence of structures and concomitantly of new qualities at a macroscopic level. For the latter approach[14], the maximum information principle is used, which is an analogy with thermodynamics. This approach treats complex systems by means of macroscopically observed quantities, and then determines the microscopic structure of the processes which give rise to the macroscopic structure. The maximum information principle claims that the probability distribution is the most possible probability distribution when the information is maximized. In this paper, we use the macroscopic approach to study the velocity distribution evolution of traffic flow.

    2. Cell transmission model

    The Lighthill-Whitham-Richards (LWR) model is a first-order hydrodynamic model of traffic flows, and a macroscopic approach that provides good approximation of traffic flow evolution in realistic networks. Many numerical methods have been developed to solve related problems with the LWR model. One approach is to solve the Riemann problem by applying the Godunov method. Another approach is to use the demand and supply functions[15,16], which turns out to be a variant of the Godunov method. The third approach is the wave tracking resolution scheme[17]. The Godunov discretization scheme is efficient as it has been proved that the flow is constant during a time step. The transmission flow can be easily calculated using the following formula

    whereSandRare the demand and supply functions, respectively defined by

    With the transmission flow, we can write the density updating formula as

    The Cell Transmission Model (CTM) transforms the differential equations in the LWR model into simple difference equations. In the CTM, a road is divided into homogeneous and interconnected segments, referred to as cells, and piecewise linear relationships are assumed between flow and density at the cell level.

    3. Proposed traffic kinetic model

    Let flow flux and density for traffic flow be given. We wish we could derive the probability distribution of speed. In other words, we start from the macroscopic world and wish to draw conclusions about the microscopic world. In synergetics, a measure for the amount of information is connected with the number of possible events (realizations). There is an overwhelming probability of finding that the realizedprobability distribution has the greatest possibilities, and thus the greatest amount of information. This principle has been proved to be fundamental for application to realistic systems in physics, chemistry and biology. Thus, maximum information of traffic flow means the corresponding speed probability distribution has the greatest possibilities to occur.

    The objective function is to maximize the amount of information. An expression for the per information is defined as

    whereiPis the relative frequency of the occurrence of possible speed.

    The constraints are

    Differentiating it with respect toiP, and setting the resulting expression equal to zero, we obtain

    Inserting Eq.(5) into Eq.(3) leads to

    which allows us to determineλonce1λis determined.

    Let

    Then eλ=Zorλ=lnZ. Inserting Eq.(5) into Eq.(2) gives

    Taking the logarithm on its both sides

    Thus, according to Eq.(11) we can calculate1λ, thenZandλ. According to Eq.(5), we can calculateiP. According to Eq.(10), we can calculateSmax.

    4. Example

    We simulate the speed distribution evolution for congestion spreading on the road with 1 km length using the proposed model. We discretize the road into cells with the same length of 50 m. The number of cell is twenty. The direction of traffic flow is from cell 1 to cell 20. The cell discretization is illustrated in Fig.1.

    Fig.1 Cell discretization

    The initial density on the road is discontinuous as follows:

    The cell density is 5.35 veh/cell asx<500 m, and the cell density is 1.95 veh/cell asx>500 m. The initial condition shows that the first 500 m section has higher density, and traffic congestion will spread to the downstream.

    The volume-density relation is

    wherekis the density,qis the flow flax andxis the position. The jam density is set as 224.3 veh/km, i.e., 11.2 veh/cell.

    The speed ranges from 1 km/h to 120 km/h, which are discretized into 24 classes, and the discretization step is 5 km/h. The cell 1 and cell 20 are respectively set as the source cell and the destination cell, in which the density and speed distributions remain unchanged. The number of vehicles distribution in the cell 1 and cell 20 are illustrated in Fig.2. The initial number of vehicles distribution from the cell 2 to the cell 10 is the same as the number of vehicles distribution in the cell 1. The initial number of vehicles distribution from the cell 11 to the cell 19 is the same as the number of vehicles distribution in the cell 20.

    Fig.2 The number of vehicles distribution

    Fig.3 Cell density evolution

    Fig.4 Speed distribution at equilibrium

    The vehicle transmission between the cells is cal-culated by the CTM. The speed distribution evolution from the cell 2 to the cell 19 is calculated by the traffic kinetic model proposed in this paper. The time step is taken as 2 s. The obtained cell density evolution is illustrated in Fig.3. Discontinuous initial density evolves to an equilibrium one after some time and the density is almost the same for each cell. When traffic flow evolves to the equilibrium state, the equilibrium speed distribution is the same in each cell, which is illustrated in Fig.4. The evolution of the Lagrange multiplierλand the maximum information are respectively illustrated in Figs.5 and 6. The maximum information in cells, i.e., from the cell 2 to the cell 10, in which the initial density is high and then gradually decreases as the order number of cell density decreases. However, the maximum information for cells, i.e., from the cell 11 to the cell 19, in which the initial density is low, does not increase as the cell order increases.

    Fig.5 Evolution ofλin cells from 1 to 18

    Fig.6 Evolution of maximum informationSmaxin cells from 1 to 18

    5. Conclusion

    In this paper, we have proposed a discrete traffic kinetic model which integrates the CTM with the maximum information principle. The presented model can deduce the speed distribution based on the macroscopic average speed, which is a better attempt to deduce the mesoscopic state from the macroscopic variables. The model provides a way to study the relation between information and traffic flow situation. An example shows the relation between maximum information and the density. As the density is higher than the critical density, the maximum information of speed distribution decreases with decreasing density. As the density is lower than the critical density, the maximum information of speed distribution remains almost unchanged for different densities.

    Acknowledgement

    This work was supported by the Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science and Technology (Grant No. kfj100206).

    [1] LU S., DAI S. and LIU X. A discrete traffic kinetic model-Integrating the lagged cell transmission and continuous traffic kinetic models[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(2): 196-205.

    [2] CHOWDHURY D., SANTEN L. and SCHADSCHEIDER A. Statistical physics of vehicular traffic and some related systems[J]. Physics Reports, 2000, 329(4-6): 199-329.

    [3] KERNER B. The physics of traffic: Empirical freeway pattern features, engineering applications, and theory[M]. Berlin: Springer, 2004.

    [4] KERNER B. Introduction to modern traffic flow theory and control[M]. Berlin: Springer, 2009.

    [5] KERNER B. Synchronized flow as a new traffic phase and related problems for traffic flow modeling[J]. Mathematical and Computer Modelling, 2002, 35(5): 481-508.

    [6] KERNER B., KLENOV S. Phase transitions in traffic flow on multilane roads[J]. Physics Review E, 2009, 80(5): 056101.

    [7] KERNER B., KLENOV S. A theory of traffic congestion at moving bottlenecks[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(42): 425101.

    [8] OLEMSKOI A. I., KHOMENKO A. V. Synergetic theory for jamming transition in traffic flow[J]. Physics Review E, 2001, 63: 1-4.

    [9] KHOMENKO A., KHARCHENKO D. and YUSHCHENKO O. Jamming transition with fluctuations of characteristic acceleration/braking time[J]. Bulletin of Lviv University, 2004, 37: 44-56.

    [10] GANJI S. S., BARARI A. and NAJAFI M. et al. Analytical evaluation of jamming transition problem[J]. Canadian Journal of Physics, 2011, 89(6): 729-738.

    [11] GANJI S. S., BARARI A. and IBSEN L. B. et al. Differential transform method for mathematical modeling of jamming transition problem in traffic congestion flow[J]. Central European Journal of Operations Research, 2012, 20(1): 87-100.

    [12] RAJARAM R., CASTELLANI B. Modeling complex systems macroscopically: Case/agent-based modeling, synergetics, and the continuity equation[J]. Complexity, 2012, 18(2): 8-17.

    [13] HAKEN H. Synergetics, Introduction and advancedtopics[M]. New York: Springer, 2004.

    [14] HAKEN H. Information and self-organization: A macroscopic approach to complex systems, third enlarged edition[M]. New York: Springer, 2006.

    [15] DAGANZO C. F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research B, 1994, 28(4): 269-287.

    [16] LEBACQUE J. P. The Godunov scheme and what it means for first order traffic flow models[C]. Proceedings of the 13th International Symposium on Transportation and Traffic Theory. Lyon, France, 1996, 647-677.

    [17] HENN V. Wave-based resolution scheme for the hydrodynamic LWR traffic flow model[C]. Proceedings of Traffic and Granular Flow’03. Delft, The Netherlands, 2005, 105-124.

    10.1016/S1001-6058(13)60418-7

    * Project supported by the National Natural Science Foundation of China (Grant No. 71071024), the Hunan Provincial Natural Science Foundation (Grant No.12JJ2025).

    Biography: LIU Xi-min (1980-), Female, Ph. D. Candidate, Lecturer

    LU Shou-feng,

    E-mail: itslusf@gmail.com

    亚洲午夜理论影院| 99国产综合亚洲精品| 欧美日韩精品网址| 淫妇啪啪啪对白视频| 一二三四社区在线视频社区8| 亚洲国产欧美网| 很黄的视频免费| 午夜免费激情av| 91国产中文字幕| 麻豆av在线久日| 国产成人影院久久av| 色综合亚洲欧美另类图片| 亚洲国产精品999在线| 99精品欧美一区二区三区四区| 色综合站精品国产| 欧美午夜高清在线| 亚洲片人在线观看| 麻豆成人av在线观看| 午夜久久久久精精品| 久久久久久伊人网av| 国产乱人偷精品视频| 午夜福利在线在线| 亚洲国产精品sss在线观看| 国产极品精品免费视频能看的| 人妻夜夜爽99麻豆av| 人妻制服诱惑在线中文字幕| 亚洲av成人精品一区久久| 久久久久精品国产欧美久久久| 性欧美人与动物交配| 午夜久久久久精精品| 国产av一区在线观看免费| 老女人水多毛片| 久久午夜亚洲精品久久| 麻豆国产av国片精品| 亚洲欧美精品综合久久99| 久久久久久久亚洲中文字幕| 淫妇啪啪啪对白视频| 大香蕉久久网| 熟女电影av网| 亚洲国产精品sss在线观看| 精品乱码久久久久久99久播| 国产黄色小视频在线观看| 日韩高清综合在线| 能在线免费观看的黄片| 男女之事视频高清在线观看| 色哟哟·www| 亚洲av中文av极速乱| h日本视频在线播放| 插逼视频在线观看| 国产极品精品免费视频能看的| 插阴视频在线观看视频| 中国美女看黄片| 国产一区二区在线av高清观看| 国产精品日韩av在线免费观看| 精品一区二区免费观看| 色噜噜av男人的天堂激情| 亚洲精品一区av在线观看| 精品一区二区三区视频在线观看免费| 国语自产精品视频在线第100页| 国产精品一区二区三区四区免费观看 | 亚洲欧美成人综合另类久久久 | 又黄又爽又免费观看的视频| 好男人在线观看高清免费视频| 少妇人妻精品综合一区二区 | 欧美bdsm另类| 国内少妇人妻偷人精品xxx网站| 亚洲美女黄片视频| 免费av不卡在线播放| 51国产日韩欧美| 日韩av在线大香蕉| av在线蜜桃| h日本视频在线播放| 免费人成在线观看视频色| 亚洲av中文字字幕乱码综合| 午夜免费男女啪啪视频观看 | 午夜影院日韩av| 国产精品久久久久久精品电影| 露出奶头的视频| 欧美xxxx黑人xx丫x性爽| 99久久精品国产国产毛片| 免费电影在线观看免费观看| av在线播放精品| 黄色日韩在线| 亚洲电影在线观看av| 波野结衣二区三区在线| 国产男靠女视频免费网站| 91久久精品电影网| 一个人看视频在线观看www免费| 久久精品夜色国产| 免费看日本二区| 亚洲在线观看片| 人妻丰满熟妇av一区二区三区| 亚洲精品456在线播放app| 国产综合懂色| 九九爱精品视频在线观看| 欧美最黄视频在线播放免费| 日韩一区二区视频免费看| 淫秽高清视频在线观看| 国产精品,欧美在线| 亚洲中文字幕日韩| 91麻豆精品激情在线观看国产| 一区福利在线观看| 女同久久另类99精品国产91| 免费观看在线日韩| 男人舔奶头视频| 亚洲电影在线观看av| av视频在线观看入口| 免费一级毛片在线播放高清视频| 俄罗斯特黄特色一大片| 亚洲熟妇中文字幕五十中出| 少妇熟女aⅴ在线视频| 国产探花在线观看一区二区| 国产综合懂色| av卡一久久| 国产在视频线在精品| 国产精品伦人一区二区| 国产视频内射| 欧美丝袜亚洲另类| 干丝袜人妻中文字幕| 十八禁国产超污无遮挡网站| 久久久久久久亚洲中文字幕| 91精品国产九色| 久久草成人影院| 亚洲国产欧美人成| 舔av片在线| 偷拍熟女少妇极品色| 九色成人免费人妻av| 日韩欧美免费精品| aaaaa片日本免费| 联通29元200g的流量卡| 亚洲精华国产精华液的使用体验 | av在线老鸭窝| 看片在线看免费视频| 国产亚洲精品久久久久久毛片| 精品人妻偷拍中文字幕| 亚洲第一电影网av| 亚洲,欧美,日韩| 日韩精品青青久久久久久| 亚洲精品一区av在线观看| 国产成年人精品一区二区| 黄色视频,在线免费观看| 久久久久国内视频| 久久久久性生活片| 亚洲人成网站高清观看| 国产精品乱码一区二三区的特点| 午夜福利在线在线| 国产一区二区亚洲精品在线观看| 一本一本综合久久| 婷婷色综合大香蕉| 国产综合懂色| 精品日产1卡2卡| 观看免费一级毛片| 天美传媒精品一区二区| 嫩草影视91久久| 黄片wwwwww| 你懂的网址亚洲精品在线观看 | 精品99又大又爽又粗少妇毛片| 日日摸夜夜添夜夜添av毛片| 国产视频一区二区在线看| 欧美bdsm另类| 美女黄网站色视频| 国产乱人偷精品视频| 内地一区二区视频在线| 老师上课跳d突然被开到最大视频| 国产伦一二天堂av在线观看| 久久人人精品亚洲av| 中国国产av一级| 麻豆成人午夜福利视频| 啦啦啦韩国在线观看视频| .国产精品久久| 丰满的人妻完整版| 日韩欧美精品免费久久| 一本精品99久久精品77| 在线a可以看的网站| 美女黄网站色视频| 毛片一级片免费看久久久久| 如何舔出高潮| 日本熟妇午夜| 日韩中字成人| 欧美成人a在线观看| 99热这里只有精品一区| 白带黄色成豆腐渣| 午夜影院日韩av| 91在线精品国自产拍蜜月| 少妇人妻精品综合一区二区 | 听说在线观看完整版免费高清| 亚洲精品久久国产高清桃花| 精品无人区乱码1区二区| 欧美国产日韩亚洲一区| 真人做人爱边吃奶动态| 熟女人妻精品中文字幕| 少妇被粗大猛烈的视频| 嫩草影视91久久| 国产私拍福利视频在线观看| av在线播放精品| 人妻少妇偷人精品九色| 99热6这里只有精品| 麻豆精品久久久久久蜜桃| 18+在线观看网站| 永久网站在线| 天堂动漫精品| 精品久久久久久久末码| 晚上一个人看的免费电影| 日韩在线高清观看一区二区三区| 97碰自拍视频| АⅤ资源中文在线天堂| 精品欧美国产一区二区三| av黄色大香蕉| 小说图片视频综合网站| 亚洲美女视频黄频| av.在线天堂| 日韩制服骚丝袜av| 国模一区二区三区四区视频| 女的被弄到高潮叫床怎么办| 国产精品一区二区三区四区免费观看 | 少妇高潮的动态图| 国产蜜桃级精品一区二区三区| 国内精品宾馆在线| 99精品在免费线老司机午夜| 国产三级在线视频| 欧美日韩乱码在线| 亚洲精品456在线播放app| 欧美日韩国产亚洲二区| 亚洲成人精品中文字幕电影| 九色成人免费人妻av| 国产真实乱freesex| 精品久久久久久成人av| 在线观看美女被高潮喷水网站| 久久天躁狠狠躁夜夜2o2o| 听说在线观看完整版免费高清| 久久久成人免费电影| 少妇被粗大猛烈的视频| a级毛片免费高清观看在线播放| 免费看美女性在线毛片视频| 热99re8久久精品国产| 老女人水多毛片| 97超碰精品成人国产| 欧美日韩综合久久久久久| 村上凉子中文字幕在线| 婷婷六月久久综合丁香| 亚洲av五月六月丁香网| 九九在线视频观看精品| 国产三级在线视频| 久久久精品欧美日韩精品| 少妇熟女欧美另类| 久久久久久久久久久丰满| 免费黄网站久久成人精品| av专区在线播放| 久久热精品热| 听说在线观看完整版免费高清| 韩国av在线不卡| 亚洲国产日韩欧美精品在线观看| 国产极品精品免费视频能看的| 色哟哟哟哟哟哟| 久久久色成人| www.色视频.com| 欧美日本亚洲视频在线播放| 麻豆国产97在线/欧美| 国产精华一区二区三区| 国产精品永久免费网站| 18+在线观看网站| 亚洲第一区二区三区不卡| 成人国产麻豆网| 日韩欧美免费精品| 午夜精品在线福利| 国产高清三级在线| 看免费成人av毛片| 午夜爱爱视频在线播放| 免费看av在线观看网站| 天堂av国产一区二区熟女人妻| 91久久精品电影网| 床上黄色一级片| 亚洲av免费高清在线观看| 人妻丰满熟妇av一区二区三区| 日韩人妻高清精品专区| 欧美一区二区亚洲| 女人被狂操c到高潮| 精品久久久噜噜| 高清毛片免费观看视频网站| 日韩亚洲欧美综合| 尾随美女入室| avwww免费| 一本一本综合久久| 国产精品不卡视频一区二区| 亚洲精品成人久久久久久| 欧美成人一区二区免费高清观看| 国产v大片淫在线免费观看| 成年av动漫网址| 伦理电影大哥的女人| 搡女人真爽免费视频火全软件 | 国产精品免费一区二区三区在线| 偷拍熟女少妇极品色| 麻豆国产av国片精品| 亚洲人与动物交配视频| 欧美日本视频| 少妇熟女aⅴ在线视频| 日韩精品青青久久久久久| 哪里可以看免费的av片| 亚洲最大成人手机在线| av在线老鸭窝| 日韩欧美 国产精品| 日本熟妇午夜| 人妻少妇偷人精品九色| 观看免费一级毛片| 中文字幕av成人在线电影| 亚洲av成人av| 男人的好看免费观看在线视频| 又爽又黄a免费视频| 成人综合一区亚洲| 日本五十路高清| 观看美女的网站| 久久人人爽人人片av| 99riav亚洲国产免费| 此物有八面人人有两片| 长腿黑丝高跟| 国产成人aa在线观看| 波多野结衣巨乳人妻| 国产高潮美女av| 成人av一区二区三区在线看| 精品少妇黑人巨大在线播放 | 亚洲无线在线观看| 免费看美女性在线毛片视频| 国产91av在线免费观看| 日本黄色视频三级网站网址| 久久精品综合一区二区三区| 亚洲精品乱码久久久v下载方式| 亚洲中文字幕一区二区三区有码在线看| 国产精品精品国产色婷婷| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 亚洲av成人av| 最近2019中文字幕mv第一页| 搡老妇女老女人老熟妇| 亚洲18禁久久av| 夜夜爽天天搞| 亚洲精品久久国产高清桃花| 精品午夜福利视频在线观看一区| 国产精品人妻久久久久久| 婷婷亚洲欧美| 日韩欧美精品v在线| 免费看光身美女| 国产爱豆传媒在线观看| 国产精品精品国产色婷婷| 热99re8久久精品国产| 国内精品一区二区在线观看| 99热只有精品国产| 三级毛片av免费| 久久久久国产精品人妻aⅴ院| 色吧在线观看| 免费看av在线观看网站| 国产精品亚洲一级av第二区| 亚洲无线在线观看| 精品99又大又爽又粗少妇毛片| 人妻夜夜爽99麻豆av| 久久综合国产亚洲精品| 精品人妻一区二区三区麻豆 | 在线观看一区二区三区| 日本欧美国产在线视频| 国产伦一二天堂av在线观看| 五月玫瑰六月丁香| 免费看日本二区| 亚洲一区二区三区色噜噜| 偷拍熟女少妇极品色| 中文字幕人妻熟人妻熟丝袜美| 人人妻,人人澡人人爽秒播| 亚洲va在线va天堂va国产| 国产免费男女视频| 亚洲熟妇熟女久久| 精品久久久久久成人av| 一进一出抽搐gif免费好疼| 99九九线精品视频在线观看视频| 中文在线观看免费www的网站| 一区二区三区高清视频在线| 五月伊人婷婷丁香| 91久久精品国产一区二区三区| 别揉我奶头 嗯啊视频| 神马国产精品三级电影在线观看| 欧美色视频一区免费| h日本视频在线播放| av在线天堂中文字幕| 国产精品一区二区免费欧美| 3wmmmm亚洲av在线观看| 最近在线观看免费完整版| 欧美区成人在线视频| 日韩成人av中文字幕在线观看 | 婷婷色综合大香蕉| 51国产日韩欧美| av.在线天堂| 欧美激情在线99| 国产精品电影一区二区三区| 日本免费一区二区三区高清不卡| 欧美日韩国产亚洲二区| 人人妻,人人澡人人爽秒播| 免费高清视频大片| 国产午夜精品论理片| av天堂在线播放| 亚洲熟妇熟女久久| 免费黄网站久久成人精品| 全区人妻精品视频| 国产成年人精品一区二区| 高清毛片免费看| av天堂在线播放| 亚洲精品国产av成人精品 | 人人妻人人澡欧美一区二区| 久久精品国产亚洲av香蕉五月| 人人妻人人澡欧美一区二区| 偷拍熟女少妇极品色| 精品一区二区三区视频在线| 国产伦精品一区二区三区四那| 日韩精品中文字幕看吧| 国产男人的电影天堂91| 成年女人毛片免费观看观看9| 身体一侧抽搐| 18禁在线播放成人免费| 老司机午夜福利在线观看视频| av天堂中文字幕网| 国产高清视频在线观看网站| 日本黄色片子视频| 国产成人精品久久久久久| 日本a在线网址| 欧美潮喷喷水| 香蕉av资源在线| 老司机午夜福利在线观看视频| 国产爱豆传媒在线观看| 一边摸一边抽搐一进一小说| 午夜精品一区二区三区免费看| 男女下面进入的视频免费午夜| 秋霞在线观看毛片| 久久精品91蜜桃| 丝袜美腿在线中文| 中国美白少妇内射xxxbb| 亚洲国产欧洲综合997久久,| 欧美高清性xxxxhd video| 亚洲精品一区av在线观看| 99在线视频只有这里精品首页| av天堂中文字幕网| 亚洲av第一区精品v没综合| 精品久久久久久久人妻蜜臀av| 高清日韩中文字幕在线| 色av中文字幕| 自拍偷自拍亚洲精品老妇| 人妻少妇偷人精品九色| 欧美三级亚洲精品| 六月丁香七月| 中文资源天堂在线| 99在线人妻在线中文字幕| 亚洲国产精品国产精品| 久久久午夜欧美精品| 国产成人影院久久av| 久久99热6这里只有精品| 久久99热6这里只有精品| 黄色日韩在线| 淫秽高清视频在线观看| 观看免费一级毛片| 精品人妻视频免费看| 午夜福利视频1000在线观看| 亚洲国产精品合色在线| 国产成人福利小说| 午夜久久久久精精品| 亚洲成人精品中文字幕电影| videossex国产| 日本爱情动作片www.在线观看 | 成人精品一区二区免费| 国产成人91sexporn| 蜜桃亚洲精品一区二区三区| 亚洲国产高清在线一区二区三| 中文字幕熟女人妻在线| 男女那种视频在线观看| 婷婷色综合大香蕉| 久久精品夜色国产| .国产精品久久| 亚洲av第一区精品v没综合| 免费观看精品视频网站| 国产精品人妻久久久影院| 老女人水多毛片| 免费av毛片视频| 欧美xxxx性猛交bbbb| 99视频精品全部免费 在线| 日韩成人av中文字幕在线观看 | 尾随美女入室| 淫秽高清视频在线观看| 亚洲av成人精品一区久久| 国产精品人妻久久久影院| 国产伦一二天堂av在线观看| 国产一区二区激情短视频| 亚洲在线自拍视频| 高清日韩中文字幕在线| 欧美高清性xxxxhd video| 久久国产乱子免费精品| 乱系列少妇在线播放| 国内精品美女久久久久久| 免费大片18禁| av在线亚洲专区| 九九热线精品视视频播放| 97超碰精品成人国产| 午夜亚洲福利在线播放| 免费看光身美女| 免费观看人在逋| 搡老熟女国产l中国老女人| 亚洲av免费在线观看| 亚洲av电影不卡..在线观看| 国产午夜精品久久久久久一区二区三区 | 久久人人爽人人片av| 精品少妇黑人巨大在线播放 | 久久亚洲国产成人精品v| 少妇的逼好多水| 人妻丰满熟妇av一区二区三区| 99在线人妻在线中文字幕| 老女人水多毛片| 精品一区二区免费观看| 蜜桃亚洲精品一区二区三区| 日产精品乱码卡一卡2卡三| 少妇人妻精品综合一区二区 | 啦啦啦观看免费观看视频高清| 亚洲av免费在线观看| 国产综合懂色| 亚洲综合色惰| 别揉我奶头 嗯啊视频| 亚洲欧美成人综合另类久久久 | 亚洲熟妇中文字幕五十中出| 久久久久久久亚洲中文字幕| 97超视频在线观看视频| 国产 一区 欧美 日韩| 国产精品免费一区二区三区在线| 国产aⅴ精品一区二区三区波| 丰满的人妻完整版| 国产在视频线在精品| 色吧在线观看| 午夜精品一区二区三区免费看| 国产精品人妻久久久影院| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 蜜桃久久精品国产亚洲av| 搡女人真爽免费视频火全软件 | 欧美最新免费一区二区三区| 美女内射精品一级片tv| av福利片在线观看| 毛片女人毛片| 在线观看免费视频日本深夜| 国产亚洲av嫩草精品影院| 三级国产精品欧美在线观看| 久99久视频精品免费| 国产三级中文精品| a级毛色黄片| 美女免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 欧美bdsm另类| 久久久久久久久久久丰满| 日韩制服骚丝袜av| 亚洲国产精品国产精品| 免费av毛片视频| 一本精品99久久精品77| 久久亚洲精品不卡| 欧美国产日韩亚洲一区| 丰满的人妻完整版| 丝袜喷水一区| 国产精品,欧美在线| 亚洲av免费在线观看| 1024手机看黄色片| 免费在线观看影片大全网站| 狂野欧美激情性xxxx在线观看| 日韩在线高清观看一区二区三区| 中国国产av一级| 日韩成人伦理影院| 综合色丁香网| 亚洲经典国产精华液单| 久久九九热精品免费| 国产免费一级a男人的天堂| 久久久色成人| 国产高清视频在线播放一区| 最近的中文字幕免费完整| 国产爱豆传媒在线观看| 亚洲av美国av| 亚洲五月天丁香| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 国产色爽女视频免费观看| АⅤ资源中文在线天堂| 亚洲丝袜综合中文字幕| 综合色av麻豆| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久av不卡| 在线观看66精品国产| 亚洲四区av| av在线蜜桃| 国产中年淑女户外野战色| 欧美日本亚洲视频在线播放| 久久草成人影院| 国产高清激情床上av| 亚洲国产精品国产精品| av免费在线看不卡| 欧美最黄视频在线播放免费| 九九热线精品视视频播放| 伦精品一区二区三区| 日日摸夜夜添夜夜爱| 中文亚洲av片在线观看爽| 成人性生交大片免费视频hd| 蜜臀久久99精品久久宅男| 成熟少妇高潮喷水视频| 菩萨蛮人人尽说江南好唐韦庄 | 少妇高潮的动态图| 一本久久中文字幕| 日韩av不卡免费在线播放| 免费看av在线观看网站| 色噜噜av男人的天堂激情| 国产aⅴ精品一区二区三区波| 有码 亚洲区| 日韩,欧美,国产一区二区三区 | 国产精品久久久久久亚洲av鲁大| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 亚洲av成人精品一区久久| 日韩强制内射视频| 伦理电影大哥的女人| 少妇猛男粗大的猛烈进出视频 |